
Code Contracts for Windows Communication Foundation (WCF)

Bernhard Hollunder
Department of Computer Science

Furtwangen University of Applied Sciences
Robert-Gerwig-Platz 1, D-78120 Furtwangen, Germany

Email: hollunder@hs-furtwangen.de

Abstract—Code contracts allow the specification of precon-
ditions, postconditions and invariants for .NET interfaces and
classes. Code contracts not only perform constraint checking
at runtime, but also provide tools for static code analysis and
documentation generation. WCF is another .NET technology
supporting the creation and deployment of distributed services
such as Web services. Currently, WCF services cannot be
equipped with code contracts. Though a combination of both
technologies would bring additional expressive power to WCF
and Web services, there does not exist a solution yet. In this
paper, we present a novel approach that brings code contracts
to WCF. Our solution combines standard technologies such as
WSDL and WS-Policy. The feasibility of the approach has been
demonstrated by a proof of concept implementation.

Keywords-Code Contracts; Windows Communication Foun-
dations; WCF; Web Services; WS-Policy

I. INTRODUCTION

Code contracts [1] are a specific realization of the design
by contract concept proposed by Bertrand Meyer. With code
contracts, i) methods of .NET types can be enhanced by
preconditions and postconditions, and ii) .NET types can
be equipped with invariant expressions that each instance
of the type has to fulfill. While the application developer
specifies code contracts for interfaces and classes, it is the
responsibility of the runtime environment for checking the
constraints and signaling violations. Furthermore, following
tools are available for code contracts:

• Static code analysis;
• Documentation generation;
• Integration into VisualStudio IDE.

From a theoretical point of view, static code checking has its
limitations and cannot detect all possible contract violations.
Nevertheless, it is a sophisticated instrument to help iden-
tifying common programming errors during compile time
thus improving code quality at an early stage.

With the Windows Communication Foundation (WCF),
service-oriented, distributed .NET applications can be devel-
oped and deployed on Windows. WCF provides a runtime
environment for hosting services and enables the exposition
of .NET types, i.e., Common Language Runtime (CLR)
types, as distributed services. WCF employs well-known
standards and specifications such as XML [2], WSDL [3],
SOAP [4], and WS-Policy [5]. The Web Services Interop-
erability Technology (WSIT) project [6] demonstrates how

to create Web services clients and implementations that
interoperate between the Java platform and WCF.

When developing a WCF service one starts with the
definition of an interface (e.g., in C#) that is annotated with
a ServiceContract attribute. To implement the service, a
class is created that implements the interface. During service
deployment, WCF will automatically generate an interface
representation in the Web Services Description Language
(WSDL). WSDL is programming language independent and
makes it possible to create client applications written in other
programming languages (e.g., Java) and running on different
platforms. With the help of tools such as svcutil.exe and
wsdl2java so-called proxy classes for specific program-
ming languages can be generated. A proxy object takes a
local service invocation and forwards the request to the real
service implementation on server side by exchanging so-
called SOAP documents.

In order to bring code contracts to WCF, one may proceed
as follows: The methods in a WCF service implementation
class are extended with code contracts expressions, i.e.,
preconditions, postconditions, and object invariants. In fact,
the compiler will not produce any errors and will create
executable intermediate code. However, the code contracts
constraints are completely ignored when WCF generates the
WSDL description for the service. As a consequence, a
WCF client application cannot profit from the code contracts
attached to the service implementation. This behavior has
already been observed elsewhere [7]; however, a generic
solution has not been elaborated yet.

This paper presents a novel approach that combines WCF
with code contracts. The strategy is as follows. When
deploying a WCF service, the code contracts contained in the
service implementation class are extracted. Next, code con-
tracts constraints are represented in a programming language
independent manner with WS-Policy [5]. The WS-Policy
description will be attached to the service’s WSDL. On
service consumer side, the generation of the proxy classes is
enhanced by including the code contracts expressions, which
are extracted from the WSDL/WS-Policy file.

The approach has the following features:
• It combines standard technologies such as WSDL and

WS-Policy to bring code contracts to WCF.
• The approach is transparent from a WCF service de-

14

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

velopment point of view. There are no special activities
required.

• Code contracts are already checked on client side,
including static code analysis. This may save resources
during runtime because invalid service requests will not
be transmitted to server side.

• The feasibility of the approach has been demonstrated
by a proof of concept implementation.

The paper is structured as follows. The next section will
shortly introduce the underlying technologies. Section III
will recapitulate the problem description; the solution pro-
posed will be presented in Section IV. Section V will show
how to represent code contracts with WS-Policy and how
to attach a WS-Policy description to a WSDL file. Then,
in Section VI, the client side proxy generation will be
addressed. An implementation strategy (proof of concept)
will be given in Section VII. The paper will conclude with
a summary and directions for future work.

II. FOUNDATIONS

This section will give a brief overview on the required
technologies. We start with introducing code contracts, fol-
lowed by WCF and WS-Policy.

A. Code Contracts

With code contracts [1] additional expressivity is brought
to .NET interfaces and classes by means of preconditions,
postconditions, and object invariants. A method can be
equipped with preconditions and postconditions. A precon-
dition is a contract on the state of the system when a
method is invoked and typically imposes constraints on
parameter values. Only if the precondition is satisfied, the
method is really executed; otherwise an exception is thrown.
In contrast, a postcondition is evaluated when the method
terminates, prior to exiting the method.

Code contracts provide a Contract class in the name-
space System.Diagnostics. Static methods of Contract
are used to express preconditions and postconditions. To give
an example, consider a method squareRoot that should not
accept negative numbers. This could be encoded as follows:� �
using System.Diagnostics.Contract;

class MyService {
double squareRoot(double d) {

Contract.Requires(d >= 0);
return Math.Sqrt(d);

}
}� �

Definition of a precondition for squareRoot.

The Contract.Requires statement defines a precondi-
tion. There is an analogous method Contract.Ensures

that can be used to specify postconditions.
Object invariants of code contracts are conditions that

should hold on each instance of a class whenever that object

is visible to a client. During runtime checking, invariants are
checked at the end of each public method. In order to specify
an invariant for a class, an extra method is introduced that is
annotated with the attribute ContractInvariantMethod.
Within this method, the conditions are defined with the
method Contract.Invariant.

The above sample shows how preconditions can be ex-
pressed for classes. As a method in an interface is described
only by its signature and cannot have a body, code contracts
foresee a simple trick to encode constraints for interface
methods. The required constraints are specified in another
class, which is associated with the interface.

Suppose a class AContract should implement code
contracts for an interface IA. Then IA is annotated with
the attribute [ContractClass(typeof(AContract))],
and AContract is equipped with [ContractClass-

For(typeof(IA))]. Now the code contracts of ACon-

tract apply to the interface IA.
Note that most methods of the Contract class are

conditionally compiled. It can be configured via symbols
to which degree code contracts should be applied during
compilation. Code contracts can be completely turned on
(full checking) and off (all Contract methods are ignored);
it is also possible to check only selected code contracts
constraints such as preconditions.

B. Windows Communication Foundation

According to [8], “WCF is a software development kit for
developing and deploying services on Windows.” Services
are autonomous, distributed and have well-defined inter-
faces. An important feature of a WCF service is its location
transparency: a consumer always uses a local proxy object
– regardless of the location (local vs. remote) of the service
implementation. The proxy object has the same interface as
the service and forwards a call to the service implemen-
tation by exchanging SOAP documents. As the messages
are independent of transport protocols, WCF services may
communicate over different protocols such as HTTP, TCP,
IPC and Web services.

The following listing shows the squareRoot functional-
ity from above as a WCF service.� �
using System.ServiceModel;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

return Math.Sqrt(d);
}

}� �
squareRoot as a WCF service.

15

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In order to successfully deploy a WCF service, the WCF
runtime environment requires the definition of at least one
endpoint. An endpoint consists of

• an address,
• a binding defining a particular communication pattern,
• a contract that defines the exposed services.
Endpoints are typically defined in an XML configuration

file (external to the service implementation), but can also be
created programmatically.

During deployment, WCF generates a WSDL interface
description for the service. A WSDL description has an
interchangeable, XML-based format and comprises different
parts, each addressing a specific topic such as the abstract
interface, the mapping onto a specific communication pro-
tocol such as HTTP, and the location of a specific WCF
service implementation.

There are tools that transform WSDL descriptions into
a programming language specific representation. Such a
representation comprises classes for the proxy objects used
by client applications. WCF delivers the tool svcutil.exe,
which generates proxy classes for, e.g., C# together with a
configuration file containing endpoint definitions. Basically,
a proxy object constructs a SOAP message, which is sent to
server side. A SOAP message consists of a body, containing
the payload of the message (including the current parameter
values of the request), and an optional header, containing
additional information such as addressing or security data.

C. WS-Policy

When taking a closer look to a WSDL file one will
find a couple of policy entries. These entries add further
information to the service such as security requirements.

With the help of the WS-Policy specification [5], policies
can be expressed in an interoperable manner. In general, WS-
Policy is a framework for defining policies, which comprise
so-called (WS-Policy) assertions. A single assertion may
represent a domain-specific capability, constraint or require-
ment.

The following XML fragment shows how to associate a
WS-Policy description to a service definition.� �
<definitions name="Service">
<Policy wsu:Id="SamplePolicy">
<ExactlyOne>

<All>
<EncryptedParts> <Body/> </EncryptedParts>

</All>
</ExactlyOne>

</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#SamplePolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
...

</definitions>� �
WS-Policy attachment.

In the example, a WS-Policy description is attached to the
squareRoot service via the PolicyReference element.
The policy states that the body of the SOAP request must
be encrypted. Note that the policy is part of the WSDL
interface of the service. Hence, if a client does not encrypt
the message body, the server would reject the request.

III. PROBLEM DESCRIPTION

Suppose we want to create a WCF service with code
contracts. A straightforward approach to combine both tech-
nologies would be as follows:� �
using System.ServiceModel;
using System.Diagnostics.Contract;

[ServiceContract]
public interface IService {
[OperationContract]
double squareRoot(double d);

}

public class IServiceImpl : IService {
public double squareRoot(double d) {

Contract.Requires(d >= 0);
return Math.Sqrt(d);

}
}� �

WCF service with code contracts.

We define a WCF service interface as usual. The code
contracts for the service are encoded in the implementation
class of the service.

This WCF service implementation can be successfully
compiled and deployed. However, the generated WSDL
description does not include any information about code
contracts. In other words, code contracts are completely
ignored and are not part of the WSDL interface. There are
two important consequences to stress here:

1) Code contracts imposed on the service implementation
are not considered when generating the proxy classes.

2) Clients of the WCF service are not aware of any
code contracts. Hence, code contracts support such as
static analysis and runtime checking is not available
on client side.

Next we will elaborate a concept that resolves these deficits.

IV. CODE CONTRACTS AND WCF: THE CONCEPT

We observe that a WCF service implementation class can
use the methods of the Contract class according to the
code contracts programming model (see Section II-A). When
deploying the service, the following additional activities will
be performed:

• The code contracts expressions are extracted from
the WCF service implementation class and are trans-
lated into corresponding WS-Policy assertions (so-
called code contracts assertions).

• The resulting WS-Policy description is included into
the WSDL interface of the WCF service.

16

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In order to exploit code contracts contained in WSDL on
client side, we will enhance the generated proxy classes.
This is achieved by two activities:

• Extraction of the code contracts expressions contained
in the WSDL description.

• Creation of corresponding Contract method calls and
integration into the proxy classes.

Before we will discuss each of these steps in more detail,
we give some remarks. From a service development point of
view, the approach is transparent. One can apply the standard
programming models both for WCF and code contracts. The
enhanced deployment infrastructure has the responsibility
to realize the above mentioned activities. Secondly, code
contracts imposed on WCF services are also available for
client technologies other than .NET. Finally, due to enhanced
proxy generation, code contracts tool support is available for
.NET clients. Again, this enhancement is transparent for the
(client) developer.

V. CODE CONTRACTS ASSERTIONS FOR WS-POLICY

To formally represent code contracts expressions with
WS-Policy, we introduce a WS-Policy assertion type, which
is called CodeContractsAssertion.

The XML schema is defined as follows. (Note that
we omit, for sake of simplicity, some attributes such as
targetNamespace.)� �
<xsd:schema ...>
<xsd:element name = "CodeContractsAssertion"/>
<xsd:complexType>
<xsd:sequence>

<xsd:element name = "requires"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "ensures"
type = "xsd:string"
maxOccurs = "unbounded"/>

<xsd:element name = "invariant"
type = "xsd:string"
maxOccurs = "unbounded"/>

</xsd:sequence>
<xsd:attribute name = "name"

type = "xs:anyURI"/>
<xsd:attribute name = "context"

type = "xs:anyURI"
use = "required"/>

</xsd:complexType>
</xsd:schema>� �

XML schema for CodeContractsAssertion.

A CodeContractsAssertion has two attributes: name
and context. The context attribute specifies the service
to which the constraint applies. To be precise, the value of
the context attribute is the (uniquely defined) name of the
service as specified in the binding section of the WSDL.

The body of CodeContractsAssertion consists of a
set of requires, ensures, and invariant elements. The
values of these elements have the type xsd:string and
should be valid code contracts expressions. The expressions

contained in the requires and ensures elements typically
refer to parameter names of the service, which are also
part of the WSDL. An invariant expression applies to
instances of data types used as service parameters. Such an
expression may impose restrictions on the (public) members
of the type.

Observe that code contracts expressions should only be
imposed on parameters that are visible at WCF service
interface level, and hence are meaningful to the client
developer.

The created CodeContractAssertions are packaged
into a WS-Policy description, which is attached via a
PolicyReference to the service definition. The following
WS-Policy description is produced for the WCF service
squareRoot from the previous section.� �
<definitions name="Service1">
<Policy wsu:Id="CCPolicy">
<ExactlyOne>

<All>
<CodeContractsAssertion

name="squareRootAssertion"
context=
"IService.squareRoot(System.Double)">

<requires>d >= 0</requires>
</CodeContractsAssertion>

</All>
</ExactlyOne>

</Policy>
...
<binding name="IService" type="IService">
<wsp:PolicyReference URI="#CCPolicy"/>
<operation name="squareRoot"> ... </operation>

</binding>
</definitions>� �

Code contracts policy.

Before we will describe in Section VII how to create
and attach policies for code contracts during the deployment
process, we first take a look at the service consumer side.

VI. CODE CONTRACTS ON CLIENT SIDE

On client side, a WSDL description is compiled into
proxy classes of a concrete programming language. The tool
svcutil.exe, provided by WCF, takes a URL of a WSDL
description and creates C# proxy classes. To be precise, a
C# interface is generated that defines the available services,
and a C# class that implements the interface. This class
is instantiated by the client application to invoke a WCF
service.

The standard version of svcutil.exe does not take
into account custom WS-Policy descriptions such as code
contracts policies. Hence, the generated proxy classes do
not contain any code contracts expressions.

In order to include code contracts into proxy classes, one
can proceed as follows. One can either modify the generated
client proxy classes by incorporating the required Contract

methods calls. For object invariants new methods will be
added. Alternatively, an additional class can be created that

17

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

contains only the code contracts expressions. This class will
be linked via the ContractClassFor attribute to the proxy
interface.

From a client developer point of view, the enhanced
proxy classes bring the following advantages. First, a static
analysis of the code contracts can be performed, which helps
detecting invalid invocations of the WCF service during
compile time. Second, during runtime a validation of the
constraints will already be performed on client side. As
a consequence, invalid service calls are not transmitted to
the service implementation thus saving resources such as
bandwidth and server consumption.

VII. PROOF OF CONCEPT

A. Code Contracts Extraction

Given a WCF service implementation, we need some
mechanism to obtain its preconditions, postconditions and
invariants. Recently, API functions have been published
to access code contracts expressions. These functions are
part of the Common Compiler Infrastructure project [9].
We adapted the proposed visitor pattern to obtain the
methods’ code contracts expressions and created a func-
tion getCodeContractsForAssembly that computes for
a given assembly a code contracts dictionary; the key is
the full qualified name of the method and the value is a
list of strings each representing a code contracts expression.
Each expression starts either with pre:, post:, or inv: to
indicate its type.

The function makes use of types defined directly or
indirectly in the namespace Microsoft.Cci.

B. Creation of WS-Policy Code Contracts Assertions

In this step, we create an XML representation for the code
contracts expressions according to WS-Policy. The XML
schema for CodeContractsAssertion has been described
in Section V.

This transformation is realized as follows: It takes the
code contracts dictionary from the previous step and iter-
ates over the keys (i.e., methods with code contracts). For
each key, a corresponding CodeContractsAssertion is
created. A single CodeContractsAssertion may contain
several expressions. As each expression string starts with
pre:, post:, or inv:, it is clear which of the elements
requires, ensures and invariant are to be created in
the assertion.

How to embed a set of CodeContractsAssertions as
a WS-Policy description into a WSDL file is described next.

C. WS-Policy Creation and Attachment

In WCF, additional policies can be attached to a WSDL
file via custom bindings. We define a custom binding that
uses the PolicyExporter mechanism also provided by
WCF. To achieve this, we implement two classes:

• ExporterBindingElementConfigurationSection

• CCPolicyExporter.

The former class is derived from the abstract WCF
class BindingElementExtensionElement. The inherited
method CreateBindingElement is implemented in such
a way that an instance of CCPolicyExporter is created.
CCPolicyExporter has BindingElement as super class
and implements the ExportPolicy method, which contains
the specific logic for creating code contracts policies.

The following figure visualizes the class layout.

Figure 1. Class diagram for WS-Policy creation.

In our case, the ExportPolicy method creates the Code-
ContractsAssertions as described in the previous step.
The result of this activity is an enriched WSDL description
as shown in Section V.

To use the custom binding, the configuration file of the
WCF service must be adapted as follows:

1) In the definition of the service endpoint, the attribute
binding is changed to customBinding and the at-
tribute bindingConfiguration is set to exporter-
Binding.

2) In the bindings section, the element custom-

Binding declares exporterBinding.
3) The element bindingElementExtensions is in-

troduced in the extensions section. Its add ele-
ment specifies the assembly in which the Exporter-

BindingElementConfigurationSection class is
implemented.

During deployment of the service, WCF now uses the
custom binding. As a result, the generated WSDL file will
include the code contracts policy.

18

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

D. Importing Code Contracts Policies
In order to invoke a service, a WCF client application

requires a definition of a service endpoint. Typically, this is
declared in a configuration file, similar to the one used on
server side. In our case, we extend the endpoint definition
by a policyImporters element that refers to the class
CCPolicyImporter.

We have realized this class in the following way. It imple-
ments the WCF interface IPolicyImporterExtension,
which declares the ImportPolicy method. CCPolicy-

Importer implements this method in such a way that code
contracts policies referenced in the WSDL are imported.
During the import, a code contracts dictionary (similar to
the one on server side as described in Section VII-A) is
constructed. This dictionary will be used to enhance the
proxy classes, which is shown next.

E. Enhanced Proxy Generation
The tool svcutil.exe does not process custom policies.

Hence, the standard proxy classes generated do not contain
any code contracts constraints.

In our proof of concept we have realized the following
approach. First, we apply svcutil.exe to create the stan-
dard proxy classes. In a second step, the following activities
are performed:

1) Create an additional source file that contains a contract
class for the proxy interface;

2) Link the generated contract class to the proxy inter-
face.

The contract class will contain all constraints that are
found in the code contracts policy. In the proof of con-
cept, we construct the contract class as follows. Via the
reflection interface we iterate on the methods of the proxy
interface. For each method contained in the code con-
tracts dictionary we create a method body with the corre-
sponding Contract.Requires, Contract.Ensures, and
Contract.Invariant statements. Otherwise, if the code
contracts policy does not contain any constraints for the
method at hand, an empty method body is generated, which
means that no additional constraint is imposed to the method.

Next, we link the generated contract class to the proxy in-
terface. This is achieved by equipping the contract class with
the ContractClassFor(typeof(...)) attribute. Finally,
the proxy interface generated by svcutil.exe will be ex-
tended by an analogous ContractClass(typeof(...))

attribute. This completes the generation and linkage of the
code contract class with the proxy interface.

We have developed a simple tool ccsvcutil.exe that
wraps svcutil.exe as described. Thus, a client developer
uses ccsvcutil.exe to generate the client proxy infras-
tructure. It should be noted that the code contracts processing
is transparent for the client developer – with the exception
that the code contracts runtime environment and tools are
now available on client side.

F. Object Invariants

In WCF, so-called data contracts are types that can
be passed to and from the service. In addition to built-
in types such as int and string user defined data con-
tracts can be introduced be annotating a class with the
DataContract attribute. WCF will serialize all fields that
are marked with DataMember. To impose object invari-
ants on data contracts one may introduce a method an-
notated with ContractInvariantMethod that contains
Contract.Invariant statements (cf. Section II-A).

As an example consider a data contract AddressData

with members such as street, zip and city and an object
invariant method that, for example, controls the zip format.
Suppose a WCF service ChangeAddress takes an instance
of AddressData together with a customer id as parameters.
Because AddressData is part of the service’s signature, it
has a representation as complexType in the WSDL. There-
fore, svcutil.exe will generate a corresponding C# class
AddressData, which is used by the service consumer to
construct address instances. We note that this class contains
only a default constructor to create “empty” instances; their
members can be accessed via public getters and setters.

In order to invoke the ChangeAddress service, a client
may proceed as follows: i) create an empty instance of
AddressData, ii) set the specific values of the members
with the public setters, and iii) pass the instance together
with the customer id to the service. Unfortunately, the code
contracts infrastructure on client side will report an error
after the first step. This is due to the fact that the empty zip
member contains an invalid value, which is recognized by
the object invariant.

To overcome this problem, one needs on client side a
public constructor that takes all relevant address data and
constructs a properly initialized instance (which conforms
to the object invariant). However, such a constructor is not
generated by the standard svcutil.exe tool. Thus, we pro-
pose that the code contracts aware version ccsvcutil.exe

should generate for each user defined data contract a corre-
sponding public constructor.

On WCF service provider side this is not an issue, though.
When introducing a data contract, specific constructors
can be implemented by the creator of the WCF service.
These constructors are available for general usage on WCF
provider side.

G. Exception Handling

There are two separated code contracts runtime environ-
ments: one on WCF service consumer side and one on WCF
service provider side.

As described in Section 7 of [1], code contracts support
several runtime behavior alternatives. By default, a contract
violation yields an “assert on contract failure”. Thereafter,
a user interaction is required to continue or abort program
execution. While this behavior may be acceptable on client

19

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

side during the development and testing phase, an analogous
behavior would not be helpful on WCF provider side. Each
time a violation occurs, the WCF service process requires a
user interaction, which means that the server process must be
observed the whole time. In general, this is not acceptable,
not even during development and testing.

To remedy this problem, we disable “assert on contract
failure” in the WCF service project. As a consequence, a
contract violation now leads to the creation of an exception,
which will be handled by the WCF runtime environment.
By default, WCF returns a FaultException to the client
indicating that something went wrong without giving de-
tailed information. In order to embed the real reason into
the exception (e.g., a “Precondition failed: d >= 0” mes-
sage) the IncludeExceptionDetailInFaults parameter
of the ServiceBehavior attribute in the WCF service
implementation class is set to true.

On client side, standard exception handling can be applied
to inspect the exception’s reason.

H. Service Provider Side Development Model

To sum up, the development model that brings code
contracts to WCF services is as follows:

1) Creation of a WCF service and an assembly with
VisualStudio as usual, e.g. as WCF Service Library
project.

2) Definition of a service endpoint that includes a custom
binding as described in Section VII-C.

3) Deployment of the WCF service by launching the
project.

4) Creation of a WCF client project as usual.
5) Invocation of ccsvcutil.exe to generate the en-

hanced proxy classes.
6) Usage of the code contracts infrastructure on client

side.

VIII. SUMMARY AND FUTURE WORK

In this paper we have elaborated a concept that combines
WCF with code contracts. As a consequence, WCF appli-
cation developers – both on server and client side – can
now profit from the additional expressive power of code
contracts including runtime and tool support. It has been
stressed elsewhere that there does not exist a generic solution
yet.

Our novel approach exploits well-known standards such as
WSDL and WS-Policy. We have described how to transform
code contracts expressions contained in the WCF service
into a programming language independent representation.
This representation will be used to generate an enhanced
client proxy infrastructure, thus allowing to evaluate the
WCF service’s code contracts already on client side.

We see several areas for future work. One direction is
concerned with a precise definition of “WCF code contracts

expressions.” When defining code contracts for WCF ser-
vices, only those variables should be referred that are visible
to the service consumer. While service parameters are public
and hence meaningful for a service consumer, it is not useful
for the client when members of the service implementation
class are included into the created code contracts assertions.
Therefore, rules should be defined that i) characterize valid
expressions (similar to the ones presented in Section 5 on
contract extraction in [10]) and ii) translate the code con-
tracts statements into corresponding WS-Policy assertions
embedded into the service’s WSDL description.

Additional tool support for WCF code contracts is an-
other topic. We have shown how a custom binding can be
defined such that code contracts expressions are exported to
(resp. imported from) the WSDL. For a WCF developer, it
would be helpful to have a specific “WCF code contracts”
project type for VisualStudio that automatically introduces
the required elements in the WCF configuration files.

This work is concerned with making code contracts
available for a WCF client environment. Another interesting
question is how a WCF service consumer developed with
an alternative technology such as Java (see e.g., [11]) can
process the code contracts expressions.

ACKNOWLEDGMENTS

I would like to thank the anonymous reviewers for giving
helpful comments. This work has been partly supported by
the German Ministry of Education and Research (BMBF)
under research contract 17N0709.

REFERENCES

[1] Microsoft Corporation, “Code contracts user manual,” 2009.

[2] Extensible Markup Language (XML) 1.1. http://www.w3.org/
TR/xml11/.

[3] Web Services Description Language (WSDL) 1.1. http://
www.w3.org/TR/wsdl/.

[4] SOAP Version 1.2. http://www.w3.org/TR/soap/.

[5] Web Services Policy 1.5 - Framework. http://www.w3.org/
TR/ws-policy/.

[6] Web Services Interoperability Technology (WSIT). https://
wsit.dev.java.net.

[7] Writing rock solid code with Code Contracts. http://blog.
hexadecimal.se/2009/3/9, last access on 08/24/2010.

[8] J. Löwy, Programming WCF Services. O’Reilly, 2007.

[9] Common Compiler Infrastructure: Code Model and AST API.
http://cciast.codeplex.com/, last access on 08/24/2010.

[10] M. Barnett, M. Fahndrich, and F. Logozzo, “Embedded
contract languages,” in ACM SAC - OOPS. Association for
Computing Machinery, 2010.

[11] E. Hewitt, Java SOA Cookbook. O’Reilly, 2009.

20

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

