
Formalisation of Mediation Protocol for Web Services Composition with

ACME/ARMANI ADL

Raoudha Maraoui

Faculty of Sciences of Monastir

Tunisia

maraoui.raoudha@gmail.com

Mohamed Graiet

MIRACL, ISIMS, Tunisia

Mohamed.graiet@imag.fr

 Mourad Kmimech

MIRACL, ISIMS, Tunisia

mkmimec2@iutbayonne.univ-pau.fr

Mohamed Tahar Bhiri

MIRACL, ISIMS, Tunisia

tahar_bhiri@yahoo.fr

Béchir El Ayeb

Faculty of Sciences of Monastir

TUNISIA

Ayeb_b @yahoo.fr

Abstract—SOA (Service Oriented Architecture) defines a new

Web Services cooperation paradigm in order to develop

distributed applications using reusable services. The handling

of such collaboration has different problems that lead to many

research efforts. In this paper, we address the problem of Web

service composition. Indeed, various heterogeneities can arise

during the composition. The resolution of these heterogeneities,

called mediation, is needed to achieve a service composition. In

this paper, we propose a sound approach to formalize Web

services composition mediation with the ADL (Architecture

Description Language) ACME. To do so, we first model the

meta-model of composite service manager and mediation. Then

we specify semi formal properties associated with this meta-

model using OCL (Object Constraint Language). Afterwards,

we formalize the mediation protocol using Armani, which

provides a powerful predicate language in order to ensure

service execution reliability.

 Keywords- Web Services Composition; Mediation;

Transactional Web Services; Formalization; ACME/ARMANI

ADL; reliability.

I. INTRODUCTION

 The recent evolution of Internet technologies expands
the role of the Web from a simple data support to a
middleware for B2B (Business to Business) applications.
This new Internet wave is guided by the concept of Web
services. However, it is necessary to combine a set of atomic
service to answer for more complex requirements [1]. The
problem we are interested in is how to ensure a reliable Web
service composition. By reliable, we mean any compositions
where all instances are correct in the sense that they meet
designer’s requirements, and especially in case of component
failure. But, despite the organization of the composition into
steps, the Web services composition has many heterogeneity

problems. The resolution of these heterogeneities, called
mediation, is needed to achieve a reliable service
composition. In this paper, we formalize a reliable service
composition based on non-functional Web Services
properties. To do so, we describe the protocol mediation
using the ACME of architectural concept style and Armani
[17], to detect architectures software disparities.

This paper is organized as follows. In Sections 2 and 3,
we present the Web services modeling related works, and
then describe our formalization approach of Web services
composition, respectively. In Section 4, we study the Web
services meta-model and we propose a new composite
service meta-model. Afterwards, we present in Section 5 the
informal and semiformal specification of transactional
properties. In Section 6, we propose a new architecture. In
Section 7, we present our case study: a travel agency
application. Finally, we conclude the paper by summarizing
the main results and describing our futures woks.

II. RELATED WORKS

 Many efforts have been provided to allow a usable and
acceptable Web services composition. These efforts have
been implemented by several composition standard and
approaches and vary between those that aspire to become
industry standards to those that are much more abstract.
There are several formalisms for modeling Web services
composition. We can cite the Petri nets, contracts, graphs, [2]
, [3] UML (Unified Modeling Language), and ADLs. Each
approach has advantages and disadvantages. For example,
modeling using Petri nets is sound, has an intuitive graphical
representation, and very visual. This approach is relevant but
does not use the power of Petri nets for the composition
verification. It does not model inputs and outputs of services.
Another approach [4] used the concept of contracts, which

41

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

mailto:maraoui.raoudha@gmail.com

are graph transformations rules. They are specified by
assertions expressing the the parties’ obligations and rights.
This approach remains inadequate if we want to make a
dynamic or semi-automatic service composition. In our
work, we try to formalize Web services compositions with
ADL, an architecture description language which describes
such formal process. It is recognized that UML does not
describe software architecture within the meaning of ADL
[5]. Even if you can use profiles to give the ADL
characteristics [6], this approach limits his strong reusability
property. Therefore, our approach is inspired by ADL. Yet
most approaches ignore the specification of non-functional
properties such as security, dependency, or transaction
management. We try in this work to formalize Web services
compositions with an architecture description language by
implementing the protocol mediation and encouraging a
large proportion of non-functional properties namely
transaction management. In the next section, we present our
method of formalization that derives from an MDE (Model
Driven Engineering) approach which is based on the use of
the ADL ACME / Armani.

III. PROPOSED APPROACH

 In order to check the Web services composition, we use
an MDE-based approach (Fig. 1).

Figure 1. An overview of our services composition checking approach

applied to the web service model.

Indeed, we distinguish two levels M2 and M1. The M2 level
describes the Web services composition meta-model and its
formalization in Acme/Armani while the M1 level describes
the services model. We aim to check its conformity with its
meta-model.
For that purpose, we transform this service model into
Acme/Armani through the M2 level formalized in
Acme/Armani. The M1 level is conform to the M2 level if it
checks the coherence of rules described in the M2 level and
the specific rules described in the M1 level. This is checked
thanks to the AcmeStudio environment, which enables the
evaluation of the Armani constraints [8].

Indeed, to achieve the formalization of web service
composition in ACME and check the consistency of this
composition, we describe the meta-model of web service
composition (M2) using the concept of architectural style of

ACME. A web services composition in M1 is described
using the concept of ACME system. Level M1 is said to be
conform to M2 if it satisfies the consistency rules described
in M2 in addition to specific rules outlined in M1.

Our approach of components assembly checking has
several advantages:

 It could be applied to several components models.

 It allows validating (see the labeled arrow updated
on Fig. 1) the coherence rules described on the M2
level of the considered component model. Indeed,
the completeness of these rules must be considered
as well on the theoretical level as on the practical
level through a test activity. Representative test
models based on functional testing can be
established in order to validate the coherence of the
suggested rules thanks to the AcmeStudio
execution environment.

 The expressiveness power of Acme/Armani is
higher than the UML/OCL which is considered as
an alternative to our approach.

IV. META-MODELING OF COMPOSITE SERVICE

 In this section, we offer an overview of the services
composition that defines a meta-model of composite service.
This meta-model reifies all reliable characteristics of a
service composition. It identifies their interdependencies,
allows a comprehensive understanding of the mechanism
composition and provides the ability to reuse our meta-
model, which is independent of application domains or
specific technologies. The construction of our meta-model is
based on the modification of various properties of a service
composition. Each of its properties is clearly identified and
defined. Moreover, our meta-model is built as an extension
of the meta-service model of OASIS (Organization for the
Advancement of Structured Information Standards) [10] and
W3C (World Wide Web Consortium). As, an atomic service,
a composite service inherit all properties [11]. A composite
service is a composition of one or several services: services:
the services' constituents.

We allocate these services constituents to business
services and management services of the composite (Fig. 2):

Figure 2. A meta-model of composite service.

42

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

 Business services: These services provide their
functionality without global knowledge of the
composition. The business services are grouped in
the composite service business or CBS.

 Manager Services Composite MSC: These are
specialized services in the management of the
composition logic. They manage the other
components and services, which have a
comprehensive understanding of the composition.
The service managers are grouped in the manager
service composite or MSC [12].

The MSC meets all services managers who are totally
transparent to users. It is the invisible part of the composite,
in charge of the composition logic. Inspired by services
composition existing work, we can abstract four main roles
that are described in Fig. 3:

Figure 3. A meta-model of Manager Service Composite.

We focus mainly on the definition of MSC and more
specifically on the mediation manager.

A. Web services mediation

 The resolution of heterogeneities between Web services is

critical to the achievement of the composition of these

services. Indeed, the composition would lead most of the

times to failure without a mediation between the functioning

of services and data exchanged between them. In general,

mediation is to resolve conflicts between stakeholders to

ensure successful interactions. Furthermore, no current

approach offers a comprehensive solution to the mediation

protocol for Web services composition. Our work aims to

answer to this lack of clarity. We are interested in a

classification proposed by [7]:

 The integration level of Web services: aims to
resolve all the heterogeneities between the non-
functional properties.

 The adaptation level interface: aims to resolve all the
heterogeneities of the service properties described in
a WSDL document

 The data level mediation: aims to resolve all the
heterogeneities of the service of data exchanged
between the composed Web services.

Figure 4. A meta-model of manager mediation

However, we can go further into the analysis of the meta-

model and extract other properties to solve all kinds of

heterogeneity. These properties included the specific non

functional properties such as:

 The sequences message exchange (MEM).

 The transactional properties: They are managed by
the Transaction Service Manager (TSM).

 Quality of service (QSM): This term includes
nonfunctional properties, such as availability, speed,
and cost

B. The transactional patterns mediators

 Moreover, we introduce in our mediation the concept of

transactional pattern, which is a point of convergence

between workflow patterns and ATMs (Advanced

Transactional Models) [14], one can express the logic of

business processes, and the other can define the reliability of

the executions. We also show their use to define and ensure

service reliability compounds. For example, we use the

ANDJoin pattern [15] that describes a class of interactions

where a service will be activated after the termination of

other services (Fig. 5).

Figure 5. Transactional patterns.

43

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

C. Composition of transactional Web services

 In this section, we show how we combine a set of
transactional Web services to offer a new more complex
value-added service. To manage the coordination of service
components of a Transactional Composite Service (TCS), a
composed service defines preconditions for external
transitions (Fig. 6). These preconditions specify how the
service responds to state of other services and how it can
influence their behavior. Thus, a transactional web service
can be set up as the couple of all components of its services
and all preconditions set on their external transitions [13].

Figure 6. Definition of a transactional composite service.

Then, we show in Fig. 7 how these preconditions can express
a level of abstraction above dependencies between services.
These dependencies in turn define the control flow and the
transactional flow of the service compound.

Figure 7. The preconditions to express a level of abstraction above
dependencies between services.

 The internal transitions that we consider in our approach are
fail (), terminate () and external transitions are activate (),
drop (), cancel () and compensate ().

 Dependencies between services components of a

TCS:

The preconditions express the form of dependency relations

(successions, alternative, etc) between service components,

that is to say how services are coupled and how the behavior

of some services can influence the others. In general, a

dependency of S1 on S2 exists if the initiation of a transition

(internal and external) of S1 can be triggered from external

transition of S2. The management of these dependencies

includes the definition of 5 types of dependencies:

activation, alternative, abandonment, compensation and

cancellation.

V. SPECIFYING PROPERTIES OF WEB SERVICES FROM THE PROPOSED

META-MODEL

A. Non functional transactional properties

 It is necessary to make a choice among various

nonfunctional properties for each system as it is often

impossible to fully satisfy all. We have chosen to highlight

the transactional approach by the interest it provides. In

addition if you want to move towards more rigorous, it is

possible to complete this vision chart needs through the

appropriate use of pre and post conditions expressed

textually with OCL [16].Thus the semi-formal specification

of some OCL constraints described informally as follows:

 In the component type AndSplit mediator, any port

service type must have a pre-condition equal to

active.

 Context MedAndSplit

InvPortServiceTerminate:Self.ports oclIsTypeOf

(PortTWSService)implies Forall(p : PortWSServicejp:P rec

== activate)

B. Structural properties

 Although our framework focuses on the specification of

transactional properties related to non-functional mediation

for web service composition, it is clear that the

formalization of these properties generates other properties

related to the structure and the operation of composed Web

services. Among the structural properties of our style, we

can cite:

 Every component in the system must satisfy to be

made a Web service client, mediator or service.

Context System

InvServiceType:Self.service oclIsTypeOf

(CompTWSClient) ORoclIsTypeOf(CompTWSService)

ORoclIsTypeOf(CompTWSMediator)

 In the Component CompTWSMediator, there must at

least two ports, a port of entry and an output port.

44

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

Context CompTWSMediator

Inv AtLeast2ports:Self.port size () >=2

C. Fonctional properties

A specific style shows sequences of operations. Among the

functional properties of our style, we can cite:

 A mediator AndSplit type specifies tha a set of

services will be activated after the termination of

another service.

Context AndSplit

Pre:SCN.PortTWSClient.Prec==terminate

Post:FB.PortTWSService.Prec==activateAND

HR.PortTWSService.Prec==activate

VI. A NEW ARCHITECTURE STYLE:WSM

 By studying the deployed systems, there is a number of

architecture which are not limited to one style only use. This

is the case for our style that works in client/server roles style

and symmetrical drawing some specific pipe/filter style.

This WSM style (Web Service Mediation) has three

components: clients, servers and mediators. They all play

the role of a service with certain features. The Ombudsman

is the link between the actors who are clients and servers.

Clients and servers can communicate only with the

mediators. There is no direct connection between the

different clients of the system or between different servers.

They use SOAP (Simple Object Access Protocol) as the

communication protocol in order to exchange structured

data regardless the programming languages or operating

systems. The WSM style is an interaction model application

implementing connections to perform a Web services

composition. This style is not specific to a domain, it is

rather generic in order to increase the level of reuse and

adapt it to any field. In fact this advantage goes to the

ACME ADL that allows these users to formalize their own

styles.

A. The ADL ACME

 The ADL ACME [17] [18], developed at Carnegie

Mellon, is a common foundation for architecture description

languages. It aims to enable the exchange of architectural

specifications across different ADLs. ACME is based on

seven types of entities to describe architecture: components,

connectors, systems, ports, roles, representations, and rep-

maps (map representation). Moreover, it provides a rather

powerful predicates language called Armani [19] with

functions appropriate to the field of software architecture.

The Armani language allows describing architectural

properties in the invariant or heuristics forms attached to

any architectural element (component, family, system,

connector, etc.). Such properties are achievable within the

AcmeStudio environment [20]. In the same way, the ADL

Acme supports the type concept. One can define types of

architectural elements (component type, connector type, role

type, port type and style type). The concept property of

Acme used in the type and instance levels allows attaching

nonfunctional properties to the architectural elements.

Lastly, Acme provides basic types (int, float, boolean and

string) and type builders (enum, record, set and sequence).

B. Formalisation of the mediation service for the Web

services composition with ACME

 Our work began with the improvement of an existing

style. We have studied the work of [21] dealing Web

services composition without mediation approach, or control

over the execution of flow of services. The added mediation

approach is used to increase the interactions reliability

between services and ensured proper implementation

through transactional patterns and connectors that represent

mediators. We define in our WSM style five types of

connectors that inherit from ConnTWS which is connector

type of Web service and represents the five types of

dependencies mentioned above. The connector ConnTWS

contains rules that detect inconsistencies and show that the

connector should have only two roles. Fig. 8 shows an

example of an activation connector, which specifies a

fundamental property to ensure the activation dependency.

This property ensures that for any role r1 attached to a port

P1, and for any role r2 attached to a port p2 , the two roles

are different, the port p1 must be a precondition equal to

”terminate”. Therefore, to ensure this property the port p2

should be equal to a pre-condition ’activate’ and vice versa.

46. // Definition of Activation Connector

47. Connector Type ConnTWSAct extends ConnTWS with

{

48. Rule CondActivation = invariant forall r1 : Role in

self.ROLES |

49. Forall r2 : Role in self.ROLES |

50. Forall p1 : PortTWSClient in r1.ATTACHEDPORTS |

51. Forall p2 : PortTWSService in r2.ATTACHEDPORTS|

52. (r1 != r2 AND attached (r1, p1) AND attached (r2, p2))

-> (p1.Prec == terminate AND p2.Prec == activate) OR

(p2.Prec == terminate AND p1.Prec == activate) ;}

Figure 8. The ACME descriptions of the activation connector.

 In addition, this style cans be used to detect the
mismatches between web services. Thus, rules are defined,
illustrated in Fig. 9. The first rule states that all the elements
found in a system of this style must meet the requirement of
being one of three component types CompTWSClient, or
CompTWSService or CompTWSMediateur.

The second rule checks that if two components are
connected one of them must be of mediator type and the
third shows that the control flow is formalized as a
composition between the AndSplit mediator on one hand and
activation connector on the other. Indeed, if the component
AndSplit exists it must necessarily be attached to an
activation connector.

45

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

VII. CASE STUDY

We present in this section a scenario to show how this
style can be used in ACME Studio to detect inconsistencies.
The example shows a web travel organization application.
The client specifies its requirements in terms of destination
and choice of accommodation through the activity
”Specification of Client Needs” (SCN). This specification is
then passed through mediation service AndSplit that
describes how the services “Flight Booking” (FB) and
”Hotel Reservation” (HR) will be activated after SCN
termination.

The organization Travel Service Online (TSO) described
above, specifies a dependency of activation between SCN
and HR services, denoted depAct (SCN,HR) under the
activation condition, HR CondAct (HR) = SCN.terminate().
So HR will be activated after the termination of SCN. But
the client component SCN has only Client type port
according to the WSM specification style. In addition the
mediator, AndSplit has an input service type port that can be
assembled with the client port component SCN having a pre-
condition “activate”.

143. /// Configuration of few rules
144. Rule rule33 = invariant forall comp: Component in self.

COMPONENTS satisfiesType(comp, CompTWSClient)
OR satisfiesType(comp, CompTWSService) OR
satisfiesType(comp, CompTWSMediateur)

145. Rule rule34 = invariant forall c1: Component in self.
COMPONENTS | forall c2: Component in self.
COMPONENTS|connected(c1,c2)
(satisfiesType(c1, CompTWSClient) AND
satisfiesType(c2, CompTWSMediateur)) OR
(satisfiesType(c1, CompTWSService) AND
satisfiesType(c2, CompTWSMediateur)) OR
(satisfiesType(c2, CompTWSClient) AND
satisfiesType(c1, CompTWSMediateur)) OR

146. (satisfiesType(c2, CompTWSService) AND
satisfiesType(c1, CompTWSMediateur))

147. Rule rule35 = invariant exists c: Component in self.
COMPONENTS | declaresType(c, MedAndSplit) AND
forall conn : ConnTWS in self.CONNECTORS |
attached(c, conn) (satisfiesType
(conn,ConnTWSAct)); }

Figure 9. The The ACME descriptions of few rules.

It also has two ports as client having”terminate” as pre-
condition. A fundamental property was described in the
activation connector and specifies that any assembly with a
client port service must satisfy a dependency of activation,
i.e., a precondition ”activate” and pre-condition ”terminate”
on both sides of the connected ports. So given these
properties checked during assembly AndSplit mediation
service that has a service port ”activate” pre-condition with
the SCN client service, it can only have one client port pre-
condition ” terminate”. As a result, we check the function of
a listed mediator AndSplit, which is to complete a service
that is SCN client service. On the other side the mediator has

the same role to enable other service that are the HR Service
and FB using the same process as the AndSplit mediation
service which can be linked with an activation connector.
However, the different dependencies of activation,
alternative, and cancellation have been fulfilled with the
ADL ACME / Armani and fostered a reliable Web service
composition through mediation. We note that Acme Studio
puts warning triangles in architecture during the
inconsistency detection process. These triangles are
superimposed on pre signaling components or connectors,
which indicate that one or more constraints are not met. In
this case, it means that an architecture inconsistency has been
detected and is localized around the connector or component
as in Fig. 10.

Figure 10. The initial system architecture with warning triangles showing

where mismatches have been detected.

A triangle does not indicate what type of asymmetry is.
This is why we should select the connector in question to
find the reported failed rules. Fig. 11 shows this point of
view of the activation connector between FB and services
ANDJoin. The rule states that the activation connector fail to
evaluate to true as shown in the figure and as consequence
the activation dependence is failed, which then leads to
failure of the entire system.

Figure 11. The initial system architecture with warning triangles showing

where mismatches have been detected.

To process the ANDJoin mediator, it is necessary to satisfy
the activation condition in the connector between FB and
ANDJoin. To correct the detected inconsistency, we have to
establish a good activation condition between these

46

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

components by associating a precondition to enable
ConfirmReqReserv port of the ANDJoin component.

VIII. CONCLUSION AND FUTURE WORKS

 This work presented in a general framework to ensure a

safe design and execution of software architectures

specifically the web services composition. We could

formalize this composition mechanism by implementing the

mediation protocol and ensuring reliability advocated by

specifying non-functional properties. To do so we use Acme

to check assembling consistency of Web service

composition. We address this issue by describing the Web

services composition Meta-model (M2 level) using Acme

style architecture. The checking of the structural and non-

functional properties of the composition models exploits the

AcmeStudio features of verifying invariants of an Acme

model. In our future works we are considering the following

perspectives:

 Using existing techniques developed by the
Semantic Web initiatives to promote the automation
of messages and the selection of mediator models.

 Using external analysis tools associated to
AcmeStudio environment in order to reason on Web
services composition structures: processing global
properties from local properties.

 Developing systematic translation rules of Web
service composition architecture through the M2
level provided in Acme style (WSM style) which
would call upon an MDE approach.

REFERENCES

[1] F. Curbera, I. Silva-Lepe, and S. Weerawarana: On the integration of
heterogeneous web service partners, IBM T. J. Watson Research
Center, August, 2001. [retrieved: June, 2010].
http://www.research.ibm.com/people/b/bth/OOWS2001/curbera.pdf

[2] R. Hamadi and B. Benatallah: A Petri Net-based Model for Web
Service Composition, in School of Computer Science and
Engineering, The University of New South Wales, In Proceedings of
the 14th Australasian Database Conference (ADC’03), CRPIT 17, pp.
191–200, Australian Computer Society, Adelaide, Australia,
February, 2003.

[3] D. Berardi, D. Calvanese, G. De Giacomo, M. Lenzerini, and M.
Mecella: Automatic Composition of e-Services, Proceedings of the
First International Conference on Service-Oriented Computing
(ICSOC), pp. 43–58, 2003.

[4] R. Heckel: Towards contract based testing of web service, in
Electronic Notes in Theoretical Computer Science 116, pp. 145–156,
2005.

[5] N. Medvidovic and N. R. Taylor: A classification and comparison
framework for software architecture description languages. IEEE
Transactions on Software Engineering, 26 (1): pp. 70–93, January
2000.

[6] M. Graiet: Contribution à une démarche de vérification formelle
d’architectures logicielles, thèse de doctorat, Université Joseph
Fourier, 25 Octobre 2007.

[7] M. Mrissa: Médiation Sémantique Orientée Contexte pour la
Composition de Services Web, thèse de doctorat, Université Claude
Bernard Lyon I UFR Informatique, pp. 15–36, 2007.

[8] M. Kmimech, M. Tahar Bhiri, M. Graiet, and P. Aniorté: Checking
component assembly in Acme: an approach applied on UML 2.0
components model, In 4nd IEEE International Conference on

Software Engineering Advances (ICSEA’2009), Portugal, IEEE
Computer SocietyPress, Septembre 2009.

[9] M. Rouachid: Une approche rigoureuse pour l’ingénierie de
compositions de services Web, thèse de doctorat, Université Henri
Poincaré, Nancy, pp. 31–34, 2008.

[10] OASIS (2008), Service component architecture assembly model
specification version 1.1. http://www.oasis-opencsa.org/. [retrieved:
August 10, 2010].

[11] OpenGroup (2009). Soa source book.
http://www.opengroup.org/projects/soa-book. [retrieved: June, 2010].

[12] M. Oussalah: Vers une meilleure compréhension de la composition de
services par Méta Modélisation d’un service composite, 4th
Francophone Conference on Software Architectures, CAL’2010, Pau-
Paris, March 2010.

[13] S. Bhiri, C. Godart and O. Perrin: Patrons transactionnels pour assurer
des compositions fiables de services web, Technique et Science
Informatiques 28(3): pp. 301–330, 2009.

[14] S. Bhiri: Reliable Web services composition using a transactional
approach, International Conference on e-Technology, e-Commerce
and e-Service (EEE’05): pp. 22–30, 2005.

[15] W. M. P. van der Aalst, A. P. Barros, A. H. M. ter Hofstede, and B.
Kiepuszewski: Advanced Workflow Patterns. In O. Etzion and Peter
Scheuermann, editors, 5th IFCIS Int. Conf. on Cooperative
Information Systems, number 190 in LNCS, pp. 18–29, Eilat, Israel,
September 6–8, 2000.

[16] J. Warmer and A. Kleppe: The Object Constraint Language: Precise
Modeling with UML, AddisonWesley, 1998.

[17] D. Garlan, R. T. Monroe, and D. Wile: Acme: An Architecture
Description Interchange Language, Proceedings of CASCON 97,
Toronto, Ontario, November, pp. 169–183, 1997.

[18] D. Garlan, R. T. Monroe, and D. Wile: Acme: Architectural
Description of Composed-Based Systems, Gary Leavens and Murali
Sitaraman, ed.s Kluwer, 2000.

[19] D. Garlan, R. Monroe, and D. Wile: Acme: Architectural Description
of Component-based. Capturing software architecture design
expertise with Armani. Technical Report CMU-CS, pp. 98–163,
Carnegie Mellon University School of Computer Science, 2001.

[20] Group 2006, http://www.cs.cmu.edu/~acme/Acme Studio/ [retrieved:
August 12, 2010].

[21] C. Gacek and C. Gamble: Mismatch Avoidance in Web Services
Software Architectures, Journal of Universal Computer Science, vol.
14, no. 8, pp. 1285–1313, 2008.

47

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

http://www.research.ibm.com/people/b/bth/OOWS2001/curbera.pdf
http://www.oasis-opencsa.org/
http://www.cs.cmu.edu/~acme/Acme

