
A Domain-driven Approach for Designing Management Services

Ingo Pansa1, Felix Palmen2, Sebastian Abeck1
Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

1{pansa, abeck}@kit.edu
2felix.palmen@cm-tm.uni-karlsruhe.de

Klaus Scheibenberger
IT Infrastructure and Services

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{scheibenberger}@kit.edu

Abstract— A service-oriented software solution to flexibly
support changing business environments requires the existence
of an adaptable management support system. Decoupling
management processes from concrete tools by encapsulating
needed management functionality into management services
can help meet this requirement. However, creating
management solutions is a difficult and challenging task. Due
to the complexity of domain management, a formal approach
based on a domain model and assorted design rules would help
to increase the stability of engineered solutions. Existing
approaches tend to gather only at the tools level, while
neglecting process requirements, which result in solutions that
are hard to adapt. In this paper, we discuss the value of
domain modeling to address this situation and demonstrate
how designing management services by using a set of assorted
design rules can be achieved. This approach is exemplified
within a concrete incident management scenario.

Keywords- domain-driven design; service design;
management service; incident management

I. INTRODUCTION

With the shift towards service-oriented computing, a
decoupling of needed functionality and enabling
implementation has been reached. While the functionality
that is needed today is derived from business requirements,
enabling implementation is bound to technology. This has
led to a decoupling of technology-independent business
processes and technology-dependent IT systems. Business
processes can now be adapted to changing requirements
more easily. For instance, adding a refined debit check to
typical invoice processing can now be formulated in terms of
financial semantics rather than in terms of technological
attributes, because needed functionality can be added by
searching for debit services rather than technology-bound
debit calculating software components.

Considering these extended possibilities, operational
support of these services has to be adaptable as well. The
challenges in realizing this are numerous [2, 15, 23]. From
an IT infrastructure perspective, IT services are often created
using a vast number of different computing systems running
various different applications, which are interconnected by
using different networking technologies. It seems all but
impossible to use or create one single management tool
considering all the different vendor technologies or fulfilling
the special requirements that IT organizations typically have.
From the perspective of a management tools supplier, it

seems like it is difficult for them to ship their tools with open
and generically applicable information and function models
to operate the various different component technologies,
because several different approaches for describing
management information exist.

To increase the complexity even further, IT organizations
have now started to restructure their management activities
to align with best practices or standard proposals that can be
derived from approaches such as ITIL [17] or ISO20000 [3].
While integration problems on the technical level within the
domain of IT management always existed due to
heterogeneous environments, the alignment with
management processes that has been adopted lately requires
the introduction of completely new tools – or at least to
extend the ones that exist with the functionality to support
the adoption of process requirements. Applying service-
orientation in solving these issues seems to be a pragmatic,
yet powerful way to both integrate existing tools and
management infrastructures, as well as to align with
management processes. Therefore service-orientation not
only promotes adapting to new requirements more easily, but
also the ability to reuse existing components.

In order to utilize the principles of service-oriented
computing and service-oriented architecture to solve these
challenges in managing IT services, a clearly defined
development approach is needed. This development
approach has to consider today’s standards and best
practices, as well as how to integrate existing management
tools . Although some work that uses the application of
service-orientation to construct management systems that are
based on loosely coupled management services exists [4, 5,
6, 7, 8, 9, 10, 11, 12, 13, 14, 15], little has been done to
tackle this challenge on a conceptual level by focusing on the
reusability and adaptability of future management systems.

This paper proposes an improved meta-model for the
domain of process-oriented IT Management and an approach
to applying the meta-model for the purpose of constructing
reusable and adaptable management services. The approach
is presented in the form of rules that allow a repeatable
development method. Focusing on a domain meta-model that
is built on the requirements of process-oriented standards
enables constructing services that are aligned with the
processes that the services are intended to support.
Furthermore, these services serve as a central point for
constructing integrative adapters to existing management
tools. A formalized model enables the construction of

132

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

development supporting tools, therefore the design of the
management services system can be performed based on
computational support. In our opinion, understanding the
semantics of the terms the domain IT management is faced
with is crucial in the construction of such a service-oriented
management system. Therefore, having modeled the
structure of the domain IT management for the purpose of
deriving management services is a fundamental part.

The remaining parts of this paper are structured as
followed: Section 2 introduces related work and provides the
background for constructing a management platform that is
built on service-oriented principles. In Section 3, we discuss
the value of modeling the domain for a proposed solution
and present an extension to the domain meta-model
presented in [1]. Section 4 presents the benefits of this paper:
We embed a domain-driven and rule-based development
method into a typical software development process,
demonstrate domain modeling applied to a typical
management activity performed within incident management
and introduce an assorted set of rules to support the domain-
driven derivation of management services. Section 5
describes our experience with a prototypical implementation,
where we applied the proposed method within a real world
scenario. Finally, Section 6 concludes this paper and gives an
overview of the work that is currently being done within our
research group.

II. BACKGROUND AND RELATED WORK

The efforts of recent years to structure and tackle the
complexity that management solutions are faced with have
led to standard specifications for the definition of IT service
management processes. The most prominent representative is
ISO20000-1:2005 [29]. This particular standard definition
presents a taxonomy introducing minimum functional
requirements that implementations of different management
solutions have to fulfill. While ISO20000-1:2005 is mainly
based on the best practice suggestions presented by the
Information Technology Infrastructure Library (ITIL, [16]),
a clear and formal representation of the proposed entities,
activities or participants, is still missing. Nevertheless, since
[29] introduces the elements of the domain, our aim is to
construct software solutions, where the standard definition
serves as one input for the creation of a commonly accepted
ontology, with which a formalized meta-model could be
developed.

Applying service-orientation to solve integration issues
(adaptability, reusability) is assumed to be one feasible
approach [2, 17, 22]. Based on the suggested best practices
of the ITIL [16], much research focusing on the construction
of service-oriented management solutions has been done.
Tamm and Zarnekow [12] derive web services from a typical
definition of an incident management process, but neglect
the domain as part of this process. It seems difficult to give
any statement regarding the adaptability or reusability of the
solution that they present.

Mayerl and Abeck et al. focus the integration of existing
management tools along process-oriented management
scenarios [14, 15]. Although a systematic development
method is proposed, neither domain modeling nor specific

rules for designing management services are discussed. The
approaches presented in [14, 15] are rather general and do
not consider formal aspects. Furthermore, standard
requirements are neglected. In [13], an automated
management process is implemented based on web services,
but both a structural analysis, and a systematic method are
missing.

Aschemann and Hasselmeyer deal with the principles of
a service-oriented architecture in supporting management
systems [4]. While both domain modeling and systematic
development methods are missing, at least some architectural
guidelines can be concluded from their work. For instance,
different components enabling communication between
management services are needed. Furthermore, some
functionality enabling the location and lookup of existing
management services is also needed. Anerousis discusses an
architecture for building scalable management services [5],
however it lacks formalization of the given domain. Lu et al.
examine management services on the managed resource
level [7, 8, 9], but not a systematic and overall development
method, which integrates both process and resource
requirements. Standard specifications such as WS-
Management [10] or WSDM-MUWS [11] only deal with the
managed resource level.

Different approaches for introducing a service taxonomy
have been suggested [18, 19]. Based on these ideas, we have
observed that it is possibile to clearly distinguish different
types of management services, which is why we refer to
management basic services and management process
services when clarifying different characteristics of these
services.

Our proposed design method of applying some assorted
rules for deriving services is similar to the one presented in
[20], but extends it by capturing not only elements of
business process models, but also model instances of an
overall domain analysis model. A good overview of different
approaches for domain analysis can be found in [21]. The
authors argue that although many different approaches for
constructing domain models exist, software systems that
support different problem domains differ in many aspects,
which is why there is no existing modeling approach that is
suitable for every kind of scenario. Based on their evaluation
results, our approach is based on functional decomposition
using rule support for creating both domain models and
designs for management services.

III. A DOMAIN MET- MODEL FOR IT MANAGEMENT

Describing the semantics of the elements of a domain
serves as a building block for developing a software solution
that is tightly aligned to its requirements. In this section, we
give a summary of our motivation for using domain
modeling and present initial and ongoing work in the area of
development tool support for creating standardized and
formalized models for services within the domain IT Service
Management.

A. The value of domain modeling in IT Management

As the process of creating software systems becomes
more complex, formal descriptions are required to engineer

133

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

these systems. This can be saidfor any of the disciplines,
from eliciting the requirements that a solution has to fulfill to
creating detailed models describing the structure of the
software architecture or aspects concerning control flow.
However, formal descriptions are hard to achieve. One
building block is the description of the semantics of the
single elements of the domain that the desired solution will
use. Identifying this information in relation to similar
problems leads to a classification schema, which can easily
be reused. This is referred to as domain modeling. Domain
modeling is a pragmatic approach utilizing modeling
techniques that are well understood. Creating a domain
model has several advantages, one of the most important
ones might be the fact that software systems derived from
domain models show a higher degree of reusability if
extensions to these software systems are created from the
same domain models.

Nevertheless, a domain model has to be abstracted in
some way to really be adaptable. Therefore, we decided to
create a domain model that is based on ISO20000-1:2005
[29], which was enriched with some of the typical patterns of
the Information Technology Infrastructure Library [16] best
practices and existing process modeling approaches, for
instance a separation of atomic and composed activities can
be found in the Workflow Management Coalition Meta-
Model [30]. Using such a domain model allows designing
management services that are tightly aligned with the
domain that the services are intended for. Furthermore,
automated design evaluators can be constructed measuring
the overlap of domain model instances and the instances of
service models, thereby allowing for automated design
decision support.

Management

Area

Management
Activity

Management
Participant

Management
Entity Structure Policy

Management
Entity Access Policy

Management
Entity

1..*

1..*

1..*

1..*

1

0..1

1..*

1..*

1..*

0

Composed
Management Activity

Management Policy

Figure 1. Conceptual Meta model of the Domain IT Management

A domain analysis method always consist of two things
[21]: an ontology along with a taxonomy of this ontology
defining a meta-model of the domain, and a process that
allows the construction of model instances of this domain.
The concepts of the Domain Meta-Model have been
introduced in [1]. (see Figure 1). A Management Area
contains Management Participants, Management Activities,
Management Entities and also Management Policies, which
can be refined to policies to define access to specific entities

or policies to define the structure of entities. Management
Activities can be refined to Composed Management
Activities, e.g. a Management Area defines one single
functional area such as Incident Management. Aiming at
defining services aligned with models instantiated from this
meta–model. Both the modeling element Management
Activities and Management Area can be considered to offer
capabilities which are independent of concrete realizations.
These capabilities are later used to derive management
services. To capture this aspect within the meta-model, the
meta-model is simply extended as depicted in Figure 2.

Management
Activity

Management
Area

Management
Capability

Management
Service

provides

realizes

1..*

1..*

1..*

1

1..*

Management
Activity

Management
Area

Management
Activity

Management
Area

Management
Capability

Management
Service

provides

realizes

1..*

1..*

1..*

1

1..*

Figure 2. Extension for Deriving Management Services

Based on this domain meta-model and its extension, an
assorted set of rules underpinning our development method
is presented within the next section.

B. Rule-based derivation of management services

Focusing a refined derivation of management services by
considering design decisions dedicated to the domain of IT
management, a discussion of specific elements of the meta-
model is necessary. The meta-model used so far provides
elements for modeling management capabilities and the
conceptual management services providing them. Those
services are needed as part of the domain model because by
considering them as elements of the domain, a clear semantic
relation to the management capabilities and management
activities is possible.

Of course, the sources used to model the domain do not
mention management services because these are not part of
the plain management view, but added to the domain by the
decision to support management processes with a service-
oriented architecture. Therefore, since adding management
activities, management areas, management participants, etc.
to the model directly from the text of e.g. ISO20000-1:2005
is a straightforward process, modeling management
capabilities and management services involve design
decisions. Therefore, in order to achieve reproducible results
when modeling the domain, derivation rules are needed for
naming and coupling management capabilities with
management services. This repeatability is needed to
preserve the value of the domain model, such as the
increased degree of reusability in the resulting service
design.

The conceptual management services given in the
domain model do not yet support an implementation of a
service-oriented architecture. We still need a service model
that describes the services in detail with all service
operations and their signatures. For such a service model, a
specialized UML-derived modeling language like SoaML

134

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

[22] is a natural choice. Again, a requirement for the service
model is repeatability, so we will introduce more derivation
rules for the transition from the domain model to a SoaML
model of the final service interfaces.

In order to maximize the benefit of our approach, these
rules must be defined carefully. One important factor is
consistent naming, so that the semantics of a service and its
operations can be understood by looking at the domain
model. Therefore, rules for naming are strict and do not leave
room for individual decisions. Another aspect to keep in
mind is reusability of individual management services. By
defining rules that result in the modeling of exactly one
service per management entity, the resulting services have
few interdependencies and a single service can easily be
exchanged, for example by using an adapter for an existing
management tool.

IV. APPLYING DOMAIN MODELING FOR DESIGING

MANAGEMENT SERVICES

For demonstrating the value of domain modeling, a
concrete scenario is presented. The next sections address a
typical incident management process that serves as an input
artifact for deriving adaptable yet business-aligned services.
Although our approach refers to the term management
process, a structural analysis of the domain is performed that
not only take the dynamic parts of a process into account, but
also the static relationship of domain elements involved
within this process. Following this approach, the derived
services can be reused in further development efforts if
extensions to an existing system are necessary.

A. Overall development method

Since structured development methods for the purpose of
deriving and designing a service-oriented software solution
are common today, we briefly describe the necessary steps to
perform in order to create a set of management services that
are aligned with a model of the domain.

First of all, an analysis of the standard specification for
process-oriented IT Service Management ISO20000 leads to
an overview of the activities, entities and participants that
constitute the management capabilities of one management
area, for instance incident management. Adding policies
(entity structure policies and entity access policies), the
elements of an overall domain model are given.

Within the next step, these domain elements are modeled.
To avoid misconceptions of the relationships of these
elements with each other, a formal meta-model is needed
that clearly defines the syntax and semantics of each single
domain element. Such a meta-model can be found in [1].

As an improvement to the approach presented in [1], the
derivation of services is performed using an assorted set of
rules. These rules take several aspects of a model-to-model
transformation of an instance of the domain model to an
instance of a model of management services into account.
Since the design of services is a highly complex task, in
which several design decisions have to be made, we propose
a two-step approach, stemming from domain models to a
model of service candidates and finally a model of
technology-independent service interface descriptions.

Introducing such a two-fold step enables grouping several
service candidate operations into combined service
definitions if a service within a given management system
already exists.

B. The Incident Management Process

The Incident Management Process is one of the critical
processes dealing with service disruptions. Incident
Management is established in nearly each service provider’s
organization offering defined IT services to customers
utilizing IT services for supporting IT-based business
processes. Since customers are directly faced with incident
management for service failures, providers are interested in
controllable execution of this process. As business
requirements change requirements for supporting services
management support and flexible management components
are needed. According to [24], the Incident Management
Process has a high recurrence rate and a high organizational
structure. This process is mostly well suited to workflow
support, which we intend to realize using a service-oriented
architecture.

ISO20000:1-2005 defines the objective of the incident
management process as the ability "to restore agreed upon
services as fast as possible or to respond to service requests"
[3]. In analyzing the definition of incident management, the
following elements of the domain model can be identified:

Entities: Incident Record, Workaround Record,
Participants: First Level Support, Second Level Support
Activities: manage impact, record incidents, prioritize,

determine business impact, classify, update, escalate,
resolution and formal closure of all incidents.

Policies: Incident Entity Structure Policy, Incident Entity
Access Policy

Having identified these elements, a formal model of the

domain can now be constructed. For the sake of simplicity,
we will look at the assorted management activity Prioritize
Incident that is used to determine the impact of a service
failure and to add a priority value to the related incident
record.

C. Modeling one Management Activity

Modeling of a management activity in the ITSM domain
model is done in several steps. First, sub-activities are
identified from the ISO20000-1:2005 text. The definitions of
other management processes are also looked at in order to
pick up interconnections with other processes. In the second
step, known patterns and principles of management
architectures, such as OSI management [25], WBEM [26],
etc., are considered in order to find matching sub-activities
that directly model the usage of functionality provided by
existing components. Finally, the management capabilities
needed to perform these management activities are modeled
and the conceptual management services providing these
capabilities are defined.

135

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

 «ComposedActivity»
PrioritizeIncident

«ManagementActivity»
DetermineSLAViolation

«ManagementActivity»
SetPriority

«ManagementCapability»
ReadSLA

«ManagementCapability»
UpdateIncidentRecord

«Entity»
ServiceLevelAgreement

«Entity»
IncidentRecord

«ManagementBasicService»
IncidentRecordService

«ManagementBasicService»
SLAService

Figure 3. Management Activity PrioritizeIncident with process-related

sub activities

In order to achieve a consistent model, rules are applied.
The notation [Entity] in these rules puts the name of the
entity instance here.

 (Rule 1) Management capabilities that create, read or

update an entity are named as follows: Create[Entity],
Read[Entity] and Update[Entity].

(Rule 2) All management capabilities operating on an

entity are provided by a single management service called
[Entity]Service.

(Rule 3) Management capabilities that communicate an

entity to another participant are named Send[Entity] and
Receive[Entity].

(Rule 4) All management capabilities communicating an

entity are provided by a management service called
[Entity]TransferService.

(Rule 5) For all management capabilities that are not

provided by a service after applying rules (Rule 2) and (Rule
4), a management service is introduced per management
activity and named [ManagementActivity]Service.

«ComposedActivity»

DetermineSLAViolation

«ManagementActivity»
ReadSLAParameters

«ManagementActivity»
CompareWithMeasurements

«ManagementCapability»
ReadMonitoringData

«ManagementBasicService»
MonitoringDataService

«Entity»
MonitoringData

Figure 4. PrioritizeIncident - technically motivated sub activities

Figure 3 illustrates how these rules are applied to the
management activity prioritize incident. The two sub-
activities are both process motivated, found from the
requirements given in ISO20000-1:2005. The management
capabilities and services are named according to rules (Rule
1) and (Rule 2).

In Figure 4, one sub-activity is further extended,
exploiting the fact that all major management architectures
provide methods to read measurement data of managed
components. The naming of the management capability and
the management service is again done using the rules (Rule
1) and (Rule 2).

D. Designing management services

After the domain model was used to identify the
conceptual management services needed and the
management capabilities they should provide, the services
can be modeled using SoaML. This is done by using some
more transformation rules.

(Rule 6) Each conceptual management service in the

domain model translates to a SoaML Capability of the same
name.

(Rule 7) A management service found by applying rule

(Rule 2) is given “CRU” (Create, Read, Update) operations
named Create[Entity], Read[Entity] and Update[Entity]. A
delete operation is intentionally left out because deletion of
entities is never done according to ISO20000-1:2005.

(Rule 8) A management service found by applying rule

(Rule 4) is given to the operations Receive[Entity] and
Send[Entity].

«ManagementBasicService»

IncidentRecordService

«ManagementCapability»
CreateIncidentRecord

«ManagementCapability»
ReadIncidentRecord

«ManagementCapability»
UpdateIncidentRecord

<Capability>
IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

<Capability>
IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

(R6)

(R9)

(R9)

(R9)

Figure 5. From the domain model to the SoaML Capability

(Rule 9) Operations are added to each SoaML Capability,
according to the management capabilities this service should
provide, as long as they are not already present after
applying rules (R7) and (R8). The operations are given the
same names as the management capabilities they should
support.

(Rule 10) A SoaML ServiceInterface is created for each

management service that exposes the corresponding SoaML
Capability.

136

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

(Rule 11) A SoaML DataType is created for each Entity
with the data fields given by the corresponding entity
structure policy.

(Rule 12) The operations Update[Entity] and

Send[Entity] are given an input parameter of type [Entity]
(the SoaML DataType).

(Rule 13) Operations Create[Entity], Read[Entity] and
Receive[Entity] are given an output parameter of type
[Entity].

(Rule14) The operations Read[Entity] are given an input

parameter of type String, named [Entity]ID. The [Entity]ID
is the unique identifier for an entity.

<Capability>
IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

<Capability>
IncidentRecordService

CreateIncidentRecord()
ReadIncidentRecord()
UpdateIncidentRecord()

<ServiceInterface>
IncidentRecordService

CreateIncidentRecord() :
IncidentRecord

ReadIncidentRecord(
IncidentRecordID: String) :
IncidentRecord

UpdateIncidentRecord(
Record: IncidentRecord)

<ServiceInterface>
IncidentRecordService

CreateIncidentRecord() :
IncidentRecord

ReadIncidentRecord(
IncidentRecordID: String) :
IncidentRecord

UpdateIncidentRecord(
Record: IncidentRecord)(R12)

(R13), (R14)

(R13)

Figure 6. Designing the ServiceInterface

Figure 5 illustrates rules (Rule 7) to (Rule 9) as applied to
the IncidentRecordService. In Figure 6, rules (Rule 10) to
(Rule 14) are applied in order to model the final
ServiceInterface for the IncidentRecordService.

E. Integrating existing tools

In the previous sections, the integration of existing
management tools was prepared by introducing management
activities motivated from common concepts of management
architectures. Therefore, to actually integrate an existing
tool, all that has to be done is that the appropriate
management basic service that exposes the capabilities
provided by this tool has to be found.

For example, a tool like Nagios, which focuses on the
technical management of components, provides everything
needed for the “MonitoringDataService” shown in Figure 4.
In order to integrate this tool, development of a webservice
adapter is needed, so that the tool exposes its functionality
according to the service interface modelled following the
rules given in the previous section. Different methods for the
development of webservice adapters were suggested before,
e.g., in [27], where the authors introduce the concept of
mismatched patterns between an existing and a needed
service interface. It will be up to the implementing
organization to choose the method that best suits their
existing tools and requirements.

V. IMPLEMENTATION EXPERIENCE

A discussion of the applicability of our approach includes
both a presentation of the achieved results and a generic
estimation of the benefit of our method. To address this, in
this chapter we briefly present the artifacts that where
created along an integration project we currently run at the
ATIS, a mid-sized service provider that operates the IT

infrastructure in responsible for the faculty of informatics at
the Karlsruhe Institute of Technology.

One major goal of this project is to create an integrated
management platform that enables both users of the provided
IT services and the operators of these services to access
relevant management information in one web portal.
Furthermore, interfaces to provide management functionality
should be created that can be used by external providers
connected to the network of the ATIS. During the analysis of
the actual situation it became obvious that in order to fulfill
these three integrative requirements, a supporting
architecture needs to be flexibly adaptable thus architectural
elements that are highly reusable had to be engineered. As
indicated by some internal examinations, the handling of
service disruptions was one of the most urgent use cases that
should be implemented at first.

According to ISO20000-1:2005, handling of service
disruptions is performed by the Incident Management and
Problem Management Process, which in turn is supported by
Configuration, Change and Release Management Processes.
While the Incident Management deals with restoring
disrupted services as fast as possible Problem Management
concerns itself with investigation of the root causes leading
to recurring service failures. In orderto reduce complexity,
we decided to first implement the Incident Management
Process, followed by an implementation of Problem
Management that can be realized based on the services we
identified during the design phase for Incident Management.

«ComposedActivity»

RecordIncident

«ManagementActivity»
CreateIncidentRecord

«ManagementCapability»
CreateIncidentRecord

«Entity»
IncidentRecord

«ManagementBasicService»
IncidentRecordService

Figure 7. Domain Model for IncidentRecordService

Figure 7 shows an excerpt of the domain model that
serve as a starting point for designing management services
for the Incident Management Process. As mentioned in
Section IV.B, the elements of the domain model can be
identified using the definition of Incident Management given
in [29].

While the construction of the domain model is fairly
straightforward, applying the transformation rules to design
the service models currently requires detailed knowledge of
the semantics of the modeling elements. Tool support would
be highly desirable in this step in order to minimize failures
due to semantical misunderstandings. Nevertheless, it turned
out to be useful to reflect on the derived service models by
both the supporting analyst and the developers alike.

137

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

In Figure 8, the results of the transformation applying the
rules given in section IV.C and IV.D to the domain model of
the IncidentRecordService is given. For instance, applying
rule 7 extends the capabilities of the identified operation
CreateIncidentRecord with the respective Read and Update
operations. As the initial milestone of the development
project was rolled out and the additional requirement to
implement the Problem Management Process came up, we
could reuse the models designed so far and further use
service functionality that was already considered during the
design phase of the Incident Management services.

Figure 8. Domain-driven Design of a Management Service for Incident

Management

Finally, these designed service interfaces can be
implemented using Web Service Definition Language, as
shown in Figure 9.

Figure 9. Implementation of the IncidentRecordService using WSDL

In reviewing the lessons learned this small excerpt of the
development project shows that application of the method
leads to a standardized vocabulary thereby enabling reuse of
existing design models when extending systems to support
further requirements. The long-term benefit is grounded in
the fact that the more the processes will be implemented, the
higher the degree of reusability of existing services will be.
In order to estimate complexity, we are currently
investigating an approach for creating a domain meta-model-
based reference model, which includes relations of
management functions of different management services for
different management processes. This would allow
determination of the best starting point for a concrete
development project if requirements are clearly given. Figure
9 outlines an early result that served as a basis for our

decision to initially implement Problem Management
followed by Incident Management.

To sum up the additional overhead of introducing formal
domain modeling fairly, we feel that at least basic skills in
structural modeling are needed. As the domain meta-model
and the related specific instances only make use of classes
and their relationships and the fact that the transformation
rules were given in natural language, acceptance by the
developers involved was surprisingly high. This was because
we could show the benefit of formal domain models when
extension of given systems was focused. Since the example
shows that some of the management basic services needed to
implement Problem Management were already identified
during analysis of the Incident Management Process, we
expect that the implementation of further requirements
(Release Management Process, Change Management
Process, and Configuration Management Process) will take
even less time in terms of c reated design models.

VI. CONCLUSION AND OUTLOOK

In this paper, we motivate the advantages of applying a
structured and well-founded development approach in the
design of adaptable management services. Since business
requirements are constantly changing, the support of
management systems for operating IT services has to be able
to keep step with this development. Therefore, we promote
organized management functionality in terms of loosely
coupled management services to enable both a controllable
execution of management processes and to adapt to changing
requirements.

One of the most critical questions regarding the design of
services is to ensure that certain design principles are met.
For instance, services are expected to be technology
independent, reusable, accessible with defined interfaces and
protocols or aligned with business requirements. A major
goal of our approach is to support developers of management
systems to be supported with some typical engineering
instruments enabling evaluation of their management
services design against these typical service principles. To
reach this goal, we introduced a development approach that
is driven by a sound understanding of the domain IT
Management. While key concepts of a meta-model for the
domain were already introduced in [1], in this paper these
key concepts have been revisited in order to integrate an
automated verification of derived management services.
Furthermore, we extended the development approach in [1]
by applying a model-driven approach for designing concrete
interfaces for management services. These interfaces can be
used to both implement new management services or in
scenarios where an integration of existing management tools
is necessary, to create integrative adapters to legacy
applications. A concrete outcome of our work is a defined set
of management services that are needed to execute a typical
incident management process. This set of services is aligned
with the domain and fulfills several critical service
principles, therefore we expect that not only can our
conceptual contribution be applied in further scenarios, but
also vendors of concrete management tools capture can

138

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

verify the capabilities of their tools to evaluate the alignment
with standard requirements.

Some of the aspects that are presented in this paper need
to be discussed further. For instance, a formalized meta-
model would allow creating development supporting tools,
and simplifying the derivation of services as model-driven
techniques could be used. Currently we are exploring
approaches to formalizing the presented derivation rules,
such as using Object Constraint Language (OCL) [28]. This
would be integrated with a formalized meta-model to support
a model-driven approach enabling the automated derivation
of management services. Furthermore, we are currently
considering the integration of existing management tools that
would serve as implementation for some management
services. For instance, in a typical provider scenario, it is
very likely that at least trouble ticket tools exist to coordinate
the execution of the incident management process. Creating
integrative service adapters in a bottom-up driven way would
allow both reuse of existing tools and thecreation of flexible
support for workflow support of the management process.
We expect that our concept of a combination of domain
modeling and rule-based derivation of services can be
applied in domains other than IT management.

REFERENCES
[1] I. Pansa, P. Walter, K. Scheibenberger, and S. Abeck, “Model-based

Integration of Tools Supporting Automatable ITSM Processes”,
Network Operations and Management Symposium Workshops
(NOMS Wksps), 2010 IEEE/IFIP, Page(s): 99 - 102

[2] V. Machiraju, C. Bartolini, and F. Casati, "Technologies for
Business-Driven IT-Management", Proc. Extending Web Services
Technologies: the Use of Multi-Agent Approaches“, edited by
Cavedon, L., Maamar, Z., Martin, D. and Benatallah, B., Kluwer
Academic

[3] G. Aschemann and P. Hasselmeyer, "A Loosely Coupled Federation
of Distributed Management Services", Journal of Network and
Systems Management, Vol 9, No. 1, 2001, pp. 51-65

[4] N. Anerousis, "An Architecture for Building Scalable, Web-Based
Management Services", Journal of Network and System
Management, Vol. 7, No 1., 1999, pp. 73-104

[5] C. Xiao, Z. Lv, and S. Zhang, "WS-CHMA: A Composite-Pattern
Based Hierarchical WS-Management Architecture", Services - I,
2009 World Conference on (2009) pp. 773 – 780

[6] Z. Lu, Y. Wu, C. Xiao, S. Zhang, and Y. Zhong, "WSDSNM3: A
Web Services-based Distributed System and Network Management
Middleware Model and Scheme", The 9th International Conference
for Young Computer Scientists, ICYCS 2008, 2008, pp. 392-397

[7] Z. Lu, J. Wang, Y. Wu, J. Wu, and Y. Zhong, "MWS-MCS: A Novel
Multi-agent-assisted and WS-Management-based Composite Service
Management Scheme", IEEE International Conference on Web
Services, ICWS 2009, 2009, pp. 1041 - 1042.

[8] Z. Lu, J. Wu, S. Zhang, and Y. Zhong, "Research on WS-
Management-based System and Network Resource Management
Middleware Model", IEEE International Conference on Web
Services, ICWS 2009, 2009, pp. 1051 - 1053.

[9] World Wide Web Consortium (W3C), "Web Services for
Management (WS-Management)", Version 1.1.0

[10] Organization for the Advancement of Structured Information
Standards (OASIS): Web Services Distributed Management (WSDM)
- Management Using Web Services

[11] G. Tamm and R. Zarnekow, "Umsetzung eines ITIL-konformen IT-
Service-Support auf der Grundlage von Web-Services", 7.

Internationale Tagung Wirtschaftsinformatik 2005 (Bamberg), 2005,
pp. 647-666

[12] A. Brown and A. Keller, "A Best Practice Approach for Automating
IT Management Processes", Management of Integrated End-to-End
Communications and Services, Proceedings of the 10th IEEE/IFIP
Network Operations and Management Symposium, NOMS 2006,
Vancouver, Canada, April 3-7, 2006, pp. 33-44

[13] C. Mayerl, T. Vogel, and S. Abeck, "SOA-based Integration of IT
Service Management Applications", Proceedings IEEE International
Conference on Web Services 2005, pp. 785-787.

[14] C. Mayerl, T. Tröscher, and S. Abeck "Process-oriented Integration of
Applications for a Service-oriented IT Management", The First
International Workshop on Business-Driven IT Management, 2006,
pp. 29-36

[15] J. Sauve, A. Moura, M. Sampaio, J. Jornada, and E. Radziuk, "An
Introductory Overview and Survey of Business-Driven IT
Management", BDIM '06. The First IEEE/IFIP International
Workshop on Business-Driven IT Management, 2006, pp. 1-10.

[16] Office of Government Commerce (OCG): IT Infrastructure Library
(ITIL) – Service Support (ISBN 0113300158), 2000; Service
Delivery (ISBN 0113300174), 2001; Planning to Implement Service
Management (ISBN 0113308779), 2002; Application Management
(ISBN 0113308663), 2002.

[17] V. Tosic, "The 5 C Challenges of Business-Driven IT Management
and the 5 A Approaches to Addressing Them", Business-Driven IT
Management, 2006. BDIM'06. The First IEEE/IFIP International
Workshop on Buisness-Driven IT-Management, 2006, pp. 11-18.

[18] T. Erl: SOA Principles of Service Design. Prentice Hall Service-
Oriented Computing Series, 2008.

[19] S. Cohen, "Ontology and Taxonomy of Services in a Service-
Oriented Architecture", The Architecture Journal, Volume 11, 2007

[20] M. Gebhart and S. Abeck, “Rule-based service modeling”, Fourth
International Conference on Software Engineering Advances, 2009.
ICSEA '09. , 2009, pp. 271 - 276

[21] X. Ferré and S.Vegas, "An Evaluation of Domain Analysis Methods",
In 4th CAiSE/IFIP8.1 International Workshop in Evaluation of
Modeling Methods in Systems Analysis and Design (EMMSAD99)

[22] Object Management Group, “Service oriented architecture Modeling
Language”, http://www.omg.org/spec/SoaML/1.0/Beta2/, 04/2009
(last visited 08/10/2010)

[23] V .Machiraju, C. Bartolini, and F. Casati "Technologies for Business-
Driven IT Management", In: Extending Web Services Technologies:
The Use of Multi-Agent Approaches (Multiagent Systems, Artificial
Societies and Simulated Organizations), Springer, 2005, pp. 1-27.

[24] M. Brenner, "Classifying ITIL Processes – A Taxonomy under Tool
Support Aspects", Proceedings of First IEEE/IFIP International
Workshop on Business–Driven IT Management (BDIM 06), pp. 19–
28, April, 2006.

[25] International Standards Organization, “Open Systems Interconnection
– Basic Reference Model – Part 4: Management framework”,
ISO/IEC 7498-4, 1998

[26] Distributed Management Task Force: Web-Based Enterprise
Management (WBEM), http://www.dmtf.org/standards/wbem/ (last
visited 08/10/2010)

[27] B. Boualem, F. Casati, D. Grigori, M. Nezhad, and F. Toumani,
“Developing Adapters for Web Services Integration”, In Proceedings
of the International Conference on Advanced Information Systems
Engineering (CAiSE), Porto,Portugal CAiSE, 2003, pp. 415-429

[28] OMG, “Object constraint language”, Version 2.0, 2006.

[29] International Standards Organization, "Information technology —
Service management —Part 1:Specification, ISO/IEC 20000-1, 2005

[30] The Workflow Management Coalition, "Workflow Management
Coalition Terminology & Glossary", 1999

139

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

