
A Hybrid Instance Migration Approach for Composite Service Evolution

Jianing Zou, Hailong Sun, Xudong Liu, Kun Fang, Jingjing Lin

School of Computer Science and Engineering, Beihang University, Beijing, China

{zoujn, sunhl, liuxd, fangkun, linjj}@act.buaa.edu.cn

Abstract—Composite service evolution is one of the most

important challenges faced in the field of service composition.

And how to migrate running instances to the evolved definition

is a critical issue for correct service evolution. In this paper,

we proposed a hybrid instance migration approach in the aim

of both increasing migration efficiency and flexibility. Based on

Single Entry Single Exit fragments and process structure tre,

we reduce the change region calculation algorithm’s time

complexity from exponential time to linear time. Moreover,

our instance migration approach also includes data

dependence analysis to avoid data flow problems during

migration. This makes our approach more practical since data

flow correctness preservation is critical in real world

application. Finally, prototype system is given and experiments

are carried out to prove the feasibility of our approach.

Keywords- Instance migration; service composition;

composite service evolution

I. INTRODUCTION

Service composition is widely considered as an efficient
approach to building complex applications through
composing loosely coupled component services [1]. Due to
the highly dynamic network environment and ever-changing
user requirements, it is imperative to maintain the flexibility
of composite services. Thus, composite service evolution,
which provides an appropriate solution to enhancing
flexibility, has attracted many researchers’ attention in recent
years. Composite service evolution includes component
service changeability and structural adaptation of process
models [2]. In this paper, we focused on structural adaptation
issue in composite service evolution.

How to migrate running instance during composite
service evolution is an important challenge e.g., under the
scenario that imperative government policy or business law
changes happen. Besides, when the evolved composite
service has a long running lifecycle, it is not acceptable to
use other techniques such as version management to deal
with running instances’ evolution problem. For example, for
a mortgage composite service whose execution cycle lasts
several decades, it is unreasonable to maintain each
instance’s execution on its original version when the
composite service changes each month. This will result in
too many versions existing in the system, and make
management quite complicated. However, live instance
migration can be adopted to lower the complexity of runtime
management as well as enhance the composite service
flexibility in coping with changes. Therefore, instance
migration has attracted more and more researchers’ attention
in service computing.

Instance migration problem includes control flow and
data flow correctness preservation. The former one is the
main focus of most published research. As what is
mentioned in [9], control flow correctness mainly aims for
maintaining the soundness during migration i.e., migrated
instance won’t result in execution deadlock or improper
termination. Existing approaches solving this problem can be
classified into two streams: one based on change region
computation between old and new composite service models
[6][9]; The other based on compliance notion to find an
equivalent state of the instance on the evolved model [1][12].
Adopting the first approach will reduce the time of migration
determination, because all running instance of the same
composite service model will share the same change region
calculation result. However, it sacrifices migration flexibility
by forbidding any migration of an instance entering the
change region which may not break the soundness. The more
live instances are forbidden to get migrated, the bigger waste
of time is needed in dealing with composite service evolution,
because all instances should be rolled back and redone and
these work are not necessary if the migration approach is
flexible enough. Besides, the complexity of change region
calculation i.e., O(n

4
(n!)

2
) is quite high [9]. Thus the

calculation of the change region between original and
evolved composite service model restricts efficient instance
migration during evolution. The second approach based on
instance compliance determination is more flexible than the
first approach, such as tolerating changes in the loop or
deletion changes during migration. But the restriction of this
approach is that it inevitably faces the state explosion
problem when the composite service model grows complex.
When the nodes number of the model exceeds 50, it takes
minutes to determine whether valid instance migration exists.
Considering the possibility of existing large number of live
instances in a system whose underlining model is evolving,
the total migration time may become really long. Therefore,
we propose a hybrid instance migration approach by
combining the advantages of these two mainstream
approaches in order to increasing the migration efficiency as
well as its flexibility. We adopt the control flow analysis
approach of decomposing the composite service model into a
Single Entry Single Exit (SESE) fragment set and
constructing a process structure tree (PST) based on that set.
Chang region is calculated by identifying the changed SESE
fragments in the PST, thus reducing the algorithm
complexity to linear time [5]. Only instance running inside of
a change region need individual migration determination.
And its instance log is replayed on the local reachability
graph of the entered change region, thus reducing the

153

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

possibility of state explosion since the input model size of
reachability graph calculation algorithm is much smaller.

Data flow correctness preservation is another inevitable
aspect of instance migration problem. However its solution is
seldomly discussed until now. This makes current instance
migration solution fail to avoid the potential data flow flaws
such as data missing or data mismatch. Recent work [1]
points out that control flow change may also bring in data
flow change during composite service evolution. However it
does not illustrate the problem that dynamic instance
migration may also result in data flow problems. In this
paper, we elaborated the potential data flow problems during
instance migration and propose a solution of combining
change regions based on data dependence analysis. In this
way data flow problems during migration can be avoided.

System administrators are the users of this approach,
because when they are in charge of maintaining the whole
system, they have to deal with the model change problem.
This approach will greatly reduce their work of rolling back
running instances as well as redoing the existing work.
However, the data flow analysis in this paper is still not
sophisticated enough for real life application. Concrete data
structure analysis should be carried out in order to deal with
different types of application in different scenarios. However,
the data dependence analysis in this paper can effectively
help reducing data flow problems, such as data missing or
data mismatch. These problems are all critical problems in
applying instance migration into real world application.

The rest of the paper is organized as follows. In Section 2,
we discuss the motivation example of this paper. Section 3
introduces the preliminaries. In Section 4, we give the design
overview of our hybrid instance migration approach, which
is illustrated in detail in Section 5. Section 6 describes
prototype demo and experiments. Finally, we wrap up this
paper with some conclusions and future work in Section 7
and 8.

II. MOTIVATING EXAMPLE

To motivate our example, we refer to a real business loan
application demo cited from IBM company web page. The
application’s Business Process (BP) model described in
BPMN [2] is shown in Figure 1. a After the loan officer
receive an loan applicant’s detail information, including loan
amount, repay plan, personal information, income
information, and credit information, the process will split
according to the loan amount. If the amount is less than
10,000$, the application is directly passed by a fast track
approval. Otherwise, credit check and employment check
have to be done before the application is recommended to his
loan manager. Then the loan manager will firstly review
monthly loan sales activity (i.e., company’s current loan sale
activity) and then loan history (i.e., past loan sales activity)
to assess the bank company’s running situation. After that, a
loan approval decision will be made, based on the bank’s
business status as well as the applicant’s information. If
result gets passed, the notification and loan contract will be
generated. In the last step, a reply email will be sent to the
loan applicant. During loan composite service evolution, the

process model later generates a new version shown in Figure
1. b There are three changes carried out between the two
versions of loan model. Firstly, employment check and credit
check are now required to proceed in parallel to reduce
overall processing time. Secondly, a loan plan adjustment
activity is inserted, allowing the loan officer to modify
applicant’s loan amount or repayment plan during the loan
approval time after communicating with the applicant.
Thirdly, in order to lower repayment failure, a third party
risk check service is inserted before the loan manager
manually makes the loan approval decision.

The earlier an instance can be migrated to an evolved
composite service model, the more advantage of the new
model such as performance improvement and functional
adjustment it can enjoy in its future execution. However, not
every point in the process model is safe for instance
migration. For example, if transferring an instance on an
unsafe migration point in Figure 1.a, it will result in
execution deadlock after migration, whereas safe migration
points won’t cause this problem. Therefore, it is critical to
find as many as possible safe migration points to enhance
composite service flexibility while calculation complexity
should not be too high.

III. PRELIMINARIES

A. SESE Fragments and Process Structure Tree

In this paper, we used a process graph V = (N, E) to
represent the BP model. A process graph has a finite node set
N and control flow set E. N is classified in two types, action
nodes and control nodes. Action nodes are in charge of
concrete work implementation, such as Service Task in
BPMN; whereas control nodes control the execution flow,
such as Gateways or Start Event and End Event in BPMN

Process Graph, in general, can be decomposed into
Single Entry Single Exit fragments [5]. One decomposition
approach is to ensure all composed SESE fragments not
overlapping each other on the same hierarchical level. This
type of SESE fragment is called canonical fragment.
Canonical fragments can be organized in a hierarchical way,
i.e., a canonical fragment can be divided into child canonical
fragments or compose a higher level parent canonical
fragment. All Canonical fragments of process graphs in
Figure 1. a and Figure 1. b are visualized by a surrounding of
dotted lines.

In this way, a process graph can be represented by a
process structure tree (PST) [5]. The root of PST is the entire
process graph which contains all the canonical fragments.
We use parent(f) to denote the fragment in PST which
directly contain fragment f. Besides, fragments in the process
graph have order relation in position between one another.
Through a depth first graph searching algorithm, the
precedence relation of fragment positions is determined. We
use precede(fx,fy,BP) to denote that fx’s position is always
before fy’s position in the BP graph regardless of the
different depth first searching tree. And paths(fx,fy,BP)
denotes all possible control flow paths that connect fx and fy
in the BP graph.

154

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

L
o
an

 A
p
p
li

ca
ti

o
n

 P
ro

ce
ss

L
o
an

 M
an

ag
er

L
o
an

 O
ff

ic
er

<=10k

Review

Monthly Loan

Activity

Loan

Approval

Approval

Notification

Loan

Contract

Credit

Check

>
1
0
k

Employment

Check
Recommend

Reply

Pass

Fail

Fail

P
as

s

Pass

Fail

Receive

Application

fF

fB

fE
fG

fROOT

fH

Fast Track

Approval

fI

fDfC

fA

L
o
an

 A
p
p
li

ca
ti

o
n
 P

ro
ce

ss

L
o

an
 M

an
ag

er
L

o
an

 O
ff

ic
er

<=10k

Review

Monthly Loan

Activity

Loan

Approval

Approval

Notification

Loan

Contract

Fast Track

Approval

Credit

Check
>10k

Recommend

Reply
Pass

Fail

P
as

s

Fail

Employment

Check
Receive

Application

Adjust

Loan Plan

Risk

Check

fROOT

fH

fA

fB

fJ

fD

fI

fE fF fG

(b)

(a)

Canonical fragment

Safe Migration point

fROOT

fH

fEfA fB

fFReview

Monthly

Loan

Activity

Loan

Approval

Credit

Check

fCFast Track

Approval

Decision

Employment

Check

MergefD Decision

Approval

Notification

MergefG

Loan

Contract

Decision Merge

Recomend

fI

Decision Merge

(c)

Reply
Recive

Application

fROOT

Recive

Application
fH

fEfA fB

fFRecomend Review

Monthly

Loan

Activity
Credit

Check

Fast Track

Approval

Employment

Check

JoinfD

Decision

Approval

Notification

MergefG

Loan

Contract

Decision Merge

Adjust

Plan

fI

Decision Merge

fJFork Risk

Check

Reply

Loan

Approval

(d)

UnSafe Migration point
Figure 1. Versions V1 and V2 of bank loan business process modeled in BPMN and corresponding PST tree

B. Soundness of Process Graph and SESE Fragments

Similar to the soundness definition of a workflow graph,
a sound process graph can be easily defined [5]. Process
graph soundness ensures the execution correctness of the BP
model, including liveness criterion which says each
execution can be completed normally and safeness criterion
which says each completion of a run is terminated properly
with no tokens left inside the graph. Therefore sound process
graph is free of execution deadlock or lack of
synchronization. Soundness analysis of a process graph is
made easier by calculating its PST and component canonical
fragment set. According to the theorem 2 in [5], a process
(workflow) graph is sound if and only if all its child
fragments are sound and the process (workflow) graph that is
obtained by replacing each child fragment with an activity is
sound. And what’s more strictly, if a fragment that is of any
of the three types -- well-structured, unstructured concurrent
and unstructured sequential fragment -- is sound then all its
child fragments are sound. Therefore, we only decompose
the process graph in a way that all component fragments are
one of those three fragment types. In this way, every
component fragments in the PST is guaranteed to be sound.

IV. DESIGN OVERVIEW

Figure 1. shows an overall view of our hybrid instance
migration approach. Our approach is divided into two parts,
static analysis and runtime analysis. Static analysis generates
the changed region between two versions of process model,
and mainly includes three steps. Firstly, change operation set
is automatically calculated through comparison between the
versions of a process model, using the approach proposed in
[4]. Secondly, the change region set is calculated by
identifying the affected region by each change operation.
Thirdly, changed fragments in the changed region are
combined according to the data dependence relation among
them to avoid data flow flaws during migration.

After getting the change region set during evolution, we
enter the runtime analysis part. Every instance on the same
process model can use the same static analysis result, i.e., the
changed region set, to implement the first step in runtime
analysis. Firstly, instance state is collected from the instance
log repository. It is compared with the changed region to
decide whether the instance has entered a change region. If
not so, the instance can resume execution directly on the new
model. Otherwise it is required to carry out a compliance
determination step which is the second step. In this step, new
model’s reachability graph is generated (using the approach
mentioned in [10]) and a path which is identical with the

155

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

migrated instance’s log is searched on the reachability graph.
If search succeeds, then the instance’s state is transformed to
the new state where the search stops. This is the third step of
runtime analysis. Otherwise, it means the instance is not
compliant with the evolved model and will be postponed
migration until it steps out of the changed region. This is the
last step of runtime analysis

V. HYBRID INSTANCE MIGRATION APPROACH

Dynamic instance migration can easily break the
correctness of execution, such as the dynamic change
problems mentioned in [6] and data flow flaws mentioned
later in this paper. These problems are caused by transferring
an instance’s running state on one process model to a
different process model. From another point of view, this
equals to running an instance on a merged process model.
The merged model connects the old process faction which is
between its start point to the instance migration point and the
new process fraction which is between the instance
migration point and its end point together. Thus the migrated
instance’s underlying model correctness (including the
control flow and data flow correctness) is very vulnerable to
be broken if migration point selection is not controlled. In
this section, to ensure the merged process model’s
correctness, we propose a safe migration point selection
approach based on change region set between old and
evolved process models. Instances are only allowed to be
migrated on these safe points in the aim of avoiding any
error of live instance migration.

A. Soundness Preservation

If the merged process model with joints on a migration
point set between old and new process model is sound, then
migration on those points can avoid deadlock or lack of
synchronization problems. Analogous to what is mentioned
in [9], if migration points are outside the changed region
during evolution, then the soundness of merged process
model is guaranteed; otherwise migration is quite likely to
end in execution error. We propose in this paper that, the
changed region that guarantees control flow soundness
during migration is the changed canonical fragment set
during evolution. Because this approach does not need
instance runtime information, it facilitates valid migration
determination to be done once for all instances running on
the same process model to be migrated, thus saving a lot
migration time. When an instance is running outside the
changed region, its state can directly mapped onto the new
process model without any transformation, and continue
execution with the new model without breaking control flow
soundness.

The time to carry out migration thus is controlled with
the help of safe migration points which are outside the
changed region. If an instance’s running stage does not step
on safe migration points, it will continue execution until it is
on. Then, the instance will transfer to the new process model
and finish execution in the end.

Old Version BP Model New Version BP Model

Change Operation Set

Data Reliance Model

Combine Changed Region

Calculate

Changed Region

compare

Data Reliance Model

Static Analysis

Compliance

Determincation

Resume Execution on the

New Model

Runtime Log

Instance State In a

Changed Region?

YES

NO

Compliant with the New

Model?

Instance State Transform

YES

NO

Postpone Migration

Runtime Analysis

Figure 2. Overview of the hybrid instance migration approach.

B. Computation of Changed Region

Changed region calculation is implemented through
analyzing change operation set which converts the old
process model to the new one. To get the change operation
set during evolution, change log can be recorded
intentionally or automatically calculated through the
approach mentioned in [4]. Because each type of change
operation has a specified change effect area, the changed
region set between two versions of the process model can be
calculated by iterating each change operation in the change
log and determining its corresponding effect region.
According to what is mentioned in the previous section, the
effect region of each change operation will always be the set
of canonical fragments in order to guarantee control flow
soundness during migration.

In TABLE I. , we enumerate 7 basic types of change
operation (that is the same as what is mentioned in [4]) and
their corresponding effect region function. Most of the effect
region functions are straightforward to understand, such as
the insertAction operation will only affect the region on its
insertion point, though some may need more detailed
explanation. The moveAction(V,x,a,b) operation, for

156

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

TABLE I. CHANGE OPERATION AND ITS EFFECT REGION

Change Type Change Operation Explain
Effect

Region (ER)

Action-

oriented

InsertAction(V,x,a,b)
Serially insert a new fragment x between two
succeeding nodes a and b in process V. Changes effect

is restricted to the insertion point.

ER=paths(a,b)

DeleteAction(V,x)
Delete an existed action node x in V. Changes effect is

restricted to the deletion point.
ER=x

MoveAction(V,x,a,b)
Move an existing fragment x to the point between two
succeeding nodes a and b in V. Change affected region

is extended from x to x’s new position.

if x < a,

ER = paths(x,a)

If x > b, ER =
paths(b,x)

Fragment-

oriented

InsertFragment(V,f1,a,b,f2)

The generic operation InsertFragment is realized by:

•InsertParallelFragment
•InsertAlternativeFragment

•InsertSequentialFragment

•InsertCyclicFragment
•InsertUnstructuredConcurrentFragment

•InsertUnstructuredSequentialFragment

•InsertComplexFragment

Insert a new fragment f1 between two succeeding nodes

a and b in process model V, copying the structure of f2,
and reconnection of control flow. Insertion type can

vary according to fragment type of f2, such as parallel

insertion or sequential insertion. Change affected region
is f2 which is the parent fragment of f1 in the new

process model.

ER = f2

DeleteFragment(V,f1) Delete fragment f1 from process model V. ER = f1

MoveFragment(V,f1,a,b) Analogous to moveAction operation.

if f1 < a, ER =
paths(f1,a)

If f1 > b, ER =

paths(b, f1)

instance, has an effect region extended from the action x’s
original position to its new position between a and b. If x is
moved to a upstream position, then the ER function should
equals all the fragments on the path from b to x; otherwise
equals all the fragments on the path from x to a. Each change
operation and its change effect are elaborated in detail in
TABLE I. .

C. Data Flow Correctness Preservation

Uncontrolled instance migration can also bring in data
flow flaws, such as data missing, data mismatch. This is
because changed fragments may have data dependent
relations, like downstream actions reads data written by
upstream ones. If this data dependent relation is not
considered, migration outside the changed region may cause
data flow flaws. Action nodes in the merged model may read
data not written by any nodes nor initialized, resulting in a
missing data error. In other circumstances, data definition
may be changed in the new process model, causing a
mismatch between activities who write and read the same
data. Thus, in order to ensure data flow correctness during
migration, data dependent fragments in the change region set
should be combined, i.e., to include data dependent
fragments and the area between them in a larger changed
fragment. Migration is only allowed to be taken outside the
combined changed region in the aim of avoiding any data
flow flaw. Data dependence relation between fragments in
the changed fragment set is calculated by leveraging the data
flow analysis technique as described in [7].

D. State Transformation in Instance Migration

Our hybrid approach allows instance migration in a
change region if instance’s execution log is compliant with
the change region’s new process model. If there is one
execution path in the new process model that is equivalent

with the instance log, then the instance is called compliant
with the new model. Based on compliance, migration
flexibility is enhanced, thus reducing the cost of aborting and
redoing finished works. However, under this circumstance,
instance state cannot be directly mapped to the new model
and state transformation during migration is necessary [12].

VI. PROTOTYPE AND EXPERIMENT

First, a snapshot of our prototype tool is given in Figure 3.
It shows migrating a running instance of bank loan
composite service in Figure 1. from model V1 to a new
model version V2. First of all, the process structure trees of
two process models is calculated and shown in the PSTView
(in the bottom area) of the prototype tool. Then, change
region set is calculated and is depicted by the rectangle box
in the right middle of the prototype tool. After that, each
instance is determined whether it can be safely migrated with
the help of the change region set. For example, the state of
the instance in Figure 3. is currently executing exclusive
gateway of the process model. This instance is safe to be
directly migrated because its state is outside the change
regions (i.e., the red boxes). And its new state on the new
process model is correctly calculated.

We carried out simulation experiments to demonstrate
the performance of our algorithm in practice. In all
simulation, we assume that the old and the evolved
composite services are sound. The simulation experiment
shows the relationship of composite service model
complexity (represented by the number of action nodes in the
process model) and change region calculation time. We vary
the number of action node number in the composite serivce
from 12 to 54 with incremental step length of 7. The results
are depicted in Figure 4. It is shown that, when process
complexity is increased to around 50 action nodes, the

157

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

algorithm running time can still be counted by millisecond
unit. And the increasing trend is linear, which is consistent
with our change region calculation approach complexity.
However, we don’t give the comparison between change
region algorithm in [9] and our approach, because the time
complexity of their approach is too high, i.e., O(n

4
(n!)

2
) and

simple process model with only 19 action nodes cost around
0.5 second to compute its change region set. Our change
region calculation algorithm is, however, millisecond unit,
therefore much more efficient.

VII. RELATED WORK

Existing instance migration approaches focus more on
control flow correctness preservation, including change
region based approach [6][9] and instance compliance based
approach [1][12]. Change region calculation algorithm of
former approach is quite slow due to its exponential
complexity, thus is the bottleneck of this solution. Approach
based on compliance notion has to adopt the reachability
graph analysis so that instance log can be replayed and
corresponding state can be found on the new definition. But
when input model is complex, it will encounter state
explosion problem.

Few work until now takes data flow correctness into
consideration when dealing with instance migration.
Rinderle-Ma et al. give the pre-conditions [1] of each
dynamic change operations to protect data flow correctness
during composite service evolution. Their description of pre-
conditions, however, is too long-winded to express formally
and can be quite fault-prone due to manual definition. [13]
solves this problem by data dependence analysis, which is
similar to our method in this paper.

Change Region

Change Region

Change Region

Change Region

Before Migration

After Migration

Process

Structure Tree of

Original model

Process

Structure Tree of

Evolved model

Figure 3. Instance Migration Prototype Tool

10 20 30 40 50 60

2000

2500

3000

3500

4000

4500

5000

T
im

e
 o

f
E

x
e

c
u

ti
o

n
 (

u
s
)

Process Model Complexity (n)

 Change Region Calculation Algorithm

Figure 4. Time Complexity of Change Region Calculation Algorithm.

VIII. CONCLUSION

In this paper, we introduced a hybrid approach which
calculates change region set and implements state
transformation using reachability graph to solve the instance
migration problem in composite service evolution. First, we
introduce the SESE fragment and process structure tree
definition and propose a change region calculation approach
based on process structure tree comparison. This approach is
linear time complexity which is proved by experiment results.
Second, data flow problems that may occur during live
instance migration is elaborated and data dependence
analysis is adopted to solve the problem. Finally, we
prototype and experiments are performed to show our
approach’s feasibility and effectiveness. Our future work
includes instance migration in composite service protocol
evolution.

ACKNOWLEDGMENT

This work was supported by the National High
Technology Research and Development Program of China
(863 program) under grant 2007AA010301, 2006AA01A106
and 2009AA01Z419.

REFERENCES

[1] L.-J. Zhang, J. Zhang, and H. Cai, Services Computing. 2007:
Beijing : Tsinghua University Press.

[2] F-Q, Yang., Thinking on the Development of Software
Engineering Technology. Journal of Software, 2005. 16(1): pp. 1-7.

[3] Business Process Modeling Notation (BPMN) Specification, Final
Adopted Specification.Technical report, Object Management Group
(OMG), February 2009.http://www.bpmn.org/..

[4] J. Küster, C. Gerth, A. Förster, and G. Engels, Detecting and
resolving process model differences in the absence of a change log, in:
M. Dumas, M. Reichert, M.-C. Shan (Eds.), BPM 2008, LNCS, vol.
5240, Springer-Verlag, Berlin, Heidelberg, 2008, pp. 244–260.

[5] J. Vanhatalo, H. Völzer, and F. Leymann, Faster and more focused
control-flow analysis for business process models though SESE
decomposition, in: B.J.Krämer, K.-J. Lin, P. Narasimhan (Eds.),
ICSOC 2007, LNCS, vol. 4749, Springer, 2007, pp. 43–55.

158

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

[6] C Ellis, K Keddara, and G Rozenberg. Dynamic change within
workflow systems. Proceedings of the Conference on Organizational
Computing Systems, Milpitas, California. ACM SIGOIS. New York:
ACM Press, 1995:10–21..

[7] S. Moser, A. Martens, K. Gorlach, W. Amme, and A. Godlinski.
Advanced verification of distributed ws-bpel business processes
incorporating cssa-based data flow analysis. In SCC 2007, pages 98-
105, Salt Lake City, Utah, USA, 2007. IEEE Computer Society.

[8] S. Rinderle-Ma, M. Reichert, and B. Weber. Relaxed Compliance
Notions in Adapt ive Process Management Systems. in 27th Internat
ional Conference on Conceptual Modeling (ER). 2008.

[9] W.M.P. van der Aalst. Exterminat ing the Dynamic Change Bug: A
Concrete Approach to Support Workflow Change. Informat ion
Systems Front iers 2001, 3(3): pp. 297–317.

[10] X. Ye, J. Zhou, and X. Song, On reachability graphs of Petri
nets. Computers & Electrical Engineering, 2003. 29(2): pp.
263-272.

[11] M. Reichert, S. Rinderle-Ma, and P. Dadam: Flexibility in process-
aware informat ion systems. LNCS Transact ions on Petri Nets and
Other Models of Concurrency(ToPNoC) 2 (2009) 115-135

[12] J Zeng, JP Huai, HL Sun, T Deng, and X Li. LiveMig: An Approach
to Live Instance Migrat ion in Composit e Service Evolut ion. in
IEEE International Conference on Web Services. 2008.

[13] LH Lam, Q Tang, ZL Zou, L Fong, and D Frank. Identifying Data
Constrained Activities for Migration Planning. in IEEE International
Conference on Services Computing. 2009

159

SERVICE COMPUTATION 2010 : The Second International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2010 ISBN: 978-1-61208-105-2

