
Web Services with Java EE 6: An Example Using
Planning in Reverse

Keith Ballantyne
University of Maryland Baltimore County, USA

kb12@umbc.edu

Abstract—This paper describes a Java-centric approach to
the development of a service-oriented architecture. It introduces
many of the technologies readily available within Java to realize
a Web service architecture, and explains some of the difficulty
encountered during the realization of specific Web services
necessary to implement a strategic planning process. Preliminary
results indicate that robust support of service-oriented architec-
ture is available using Java technologies, but efficiently meeting
non-functional requirements, such as security and platform-
independence, pose design challenges for the developer.

Keywords-Service-Oriented Architecture; J2EE; Web Services;
Information as a Service; Planning In Reverse.

I. INTRODUCTION

In the early part of 2011 this paper’s author was approached
by faculty members from Alvernia University for help in
the construction of an application that would assist the users
of a process they had developed. Concurrently, the author
had enrolled in a graduate level service-oriented architecture
(SOA) course intended to expose students to the utility of
constructing applications based on services. The nature of the
process defined by the Alvernia faculty lent itself well to a
service-oriented approach. Ballantyne, et al. [1] outlines the
need for a tool that actively incorporates all employees into
the planning process.

This book was written so that organizations –
large and small, private and public, for profit and
not for profit school systems or colleges and uni-
versities – can implement a process that includes all
stakeholders and employees in a meaningful role in
planning. It is designed so that all can be engaged
in the process and become part of the organization’s
long-term viability by providing short-term observa-
tions.

After reading the book and conferring with its authors,
several key features of the process became evident. Suc-
cessful implementation relies on gathering information that
is distributed among many stakeholders, resulting in a need
for different types of client-side interactions. Both small
and large organizations must be supported with equal utility,
making scalability a key non-functional requirement. As an
organization grows more adept at applying the process to its
unique needs, the tool must change to accommodate the new
knowledge. Finally, interaction must be ubiquitous, requiring
easy access from a diverse collection of client hardware.
Individually, each feature can be realized without giving much

consideration to the architecture, but when taken as a whole, a
service-oriented approach provides clear benefit. Adopting an
Information as a Service approach [2] to maintaining data, and
ensuring loose coupling between the client and business logic
[3] provide both scalability and ubiquity in the final solution.
A service-oriented approach also provides a path for future
growth as the process matures within the organization, both
through refinement and service composition [4].

The balance of this paper details the construction of the
resulting system and some of the challenges faced along
the way. It is organized as follows: Section 2 presents an
overview of the Planning In Reverse as outlined by its authors,
Section 3 provides an overview of Java Enterprise Edition 6
Web Services enabling technologies, Section 4 describes the
current progress on implementation and pitfalls encountered,
and finally conclusions and areas for future work are presented
in Section 5.

II. PLANNING IN REVERSE

Scott Ballantyne, brother of this paper’s author, along
with Beth Berrett and Mary Ellen Wells published a book
in 2011 titled Planning in Reverse: A viable approach to
organizational leadership [1]. Citing many examples of failed
strategic planning processes within organizations, the text
outlines an alternative approach to strategic planning aimed at
continuously updating an organization’s strategic plan based
on observation of current events. The process outlined in the
book begins with an employee recording an observation of
an event, and guides strategic planners in assessing the event,
developing a plan to respond to the event, and implementing
the developed plan. Planning In Reverse’s authors were inter-
ested in developing software that could support the collection
of information and assist strategic planners in keeping track
of the process flow.

A. Process Description

At its core, PIR is a tool to facilitate the adaptation of
long-term strategic plans to internal and external events that
may occur. It is a methodology based on active participation
of individual employees in the strategic planning process.
The methodology described in the text includes a process of
evaluation, implementation, and integration of the resulting
strategy into the operational environment of an organization.

The process consists of several basic process steps.

124

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

• The initial step starts when an employee observes some-
thing they deem significant. News stories, newly available
technologies, changes in world affairs, and even casual
conversations that an employee feels could potentially
impacting the organization are recorded as an implication
scan.

• Once recorded, these implication scans are evaluated by a
committee of strategic planners to determine their impact.
Impact can be significant or insignificant, and may also
be categorized as internal or external. Implications that
are deemed to have a material impact are advanced to the
next stage for further action.

• Itemized action plans are developed to address the impli-
cations. These itemized action plans define a sequence of
steps for the organization to undertake to actively manage
the impact. The plans include both steps to take and the
logistics necessary to ensure the plan is successful.

• Finally, the plan is rolled out and integrated into the
organization.

Fig. 1. Planning in Reverse, [1]
.

Figure 1 shows a more detailed view of the process outlined
within the text. Depending on the size organization, separate
committees may be formed to better meet demand. Also note
that implication scans can result in both positive (improve-
ments) and negative (impediments) that must be dealt with.

B. PIR Example

To better understand the process flow consider the following
example. An employee reads a news article that oil prices are
likely to rise over $100 a barrel for the next 12 months. The
employee submits an implication scan. The scan is entered into
the system, and the next time the impact evaluation committee
meets, they review it. They determine that higher energy
prices will increase the overhead rates for their factory. These
increased overhead rates will make the product they produce
more expensive. The additional expense means their product
will not be price competitive within the market. Realizing

that they are not going to meet their annual operating profit,
they develop an itemized action plan to increase the sales
of an alternate product that will remain price competitive
while reducing the energy usage throughout the factory. This
itemized action plan is subsequently developed into an imple-
mentation plan by considering the logistics needs and defining
the timeline. Finally, the implementation plan is integrated into
the organization, and they are ultimately able to meet their
annual operating targets.

III. WEB SERVICES

The term web services broadly refers to service-oriented
architectures where services are provided over transport mech-
anisms such as HTTP, and service clients are available as
webpages. As an architectural concept, SOA provides loose
coupling [5] between the implementation of business logic and
the consumers of those implementations. This loose coupling
also allows significant capacity for scaling, either through the
distribution of service endpoints across multiple platforms, or
through the scaling of business logic implementation using
multiple cores, distributed computation, or cloud computing.
Prolific use of Web services is largely the result of standards
that define the mechanisms of interface definition and service
invocation.

A. Web Services Definition Language

Web Services Definition Language (WSDL) [6] is the pri-
mary mechanism used to define the interface to Web services.
Written using the Extensible Markup Language (XML), WS-
DLs provide a complete encapsulation of the service interface
available to the client. WSDL XML documents contain a
complete description, including the methods available from
the service and the data types that are exchanged. The key
elements within a WSDL are defined below. The collection
of information is a complete interface specification, allowing
programmatic discovery and use of the service.
PortType defines operations and their associated Messages.
Types references an XML schema document used to define

datatype elements and the namespace.
Message defines a Web service method and Parts of the

message.
Parts identify parameters used in invoking the service

method.
Binding binds each Operation with its transport mechanism

and datatypes.
Service binds the service name to the port and the physical

location at which the service may be found.

B. Simple Object Access Protocol

Simple Object Access Protocol1 [7] (SOAP) is an XML
specification that defines the structure of information passed
to and from Web service endpoints. Specified by the W3C
organization, the protocol is both prolific and well understood.

1More recent versions of the specification have dropped the phrase, referring
only to the acryonym SOAP

125

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

SOAP messages provide client-initiated bidirectional commu-
nication with a service. A request is sent from the client to
the Web service endpoint, and a SOAP response containing the
information is returned from the Web service endpoint to the
client. Whereas WSDLs specify the interface to the service,
SOAP is used to transmit and receive service data.

C. Java support of Web Services

Traditionally, Web services have been developed using a
manual process. WSDLs were constructed by hand, requiring
a manual specification of each service endpoint and each oper-
ation. During development, the WSDL was manually updated
each time a change to an operation was made. Since the
resulting WSDL file is machine readable, a logical progression
was the development of tooling that generated these files
automatically and contained a mechanism to ease deployment.
Java provides a robust implementation of all of the necessary
components for Web service development.

D. Java 2 Enterprise Edition 6

The Java 2 Enterprise Edition 6 (J2EE 6) [8] specification
for enterprise-level Java ensures that the requisite facilities
for Web service development and deployment exist within
the platform. A comprehensive tutorial is available from the
Oracle website [9]. This tutorial includes information on nearly
every enterprise edition feature, including Web service devel-
opment. Enterprise edition 6 is more than a simple collection
of compiler tools. This standard specifies services, libraries,
and many other facilities that are useful for enterprise-level
service deployment. J2EE 6 is not a specific implementa-
tion, but rather a specification that certified implementations
comply with. Until recently, compliant implementations were
only available commercially. However, with the release of
GlassFish Version 3 [10], an open source J2EE 6 compliant
implementation became available.

Java enterprise edition Web services are defined in JSR-109
[11]. This specification includes detailed information about
developing and consuming Web services within Java code. The
specification details how WSDLs and the services themselves
are accessed. A related specification, JSR-172 [12], details the
same thing for J2ME devices.

1) GlassFish: The GlassFish server bundles all of the
necessary elements to deploy Java enterprise applications,
including Java Web services applications. GlassFish provides
administration utilities, application containers, extensive scal-
ability, database management and connection facilities, and
centralized user management. As a framework for deploying
large-scale enterprise applications, GlassFish contains all of
the necessary components in a single installation package. The
server itself may be deployed on both Windows and Linux
platforms, and is agnostic to the specific version or architecture
of the host operating system.

E. Java Architecture for XML Binding

Consumption of Web services in Java relies on the Java
Architecture for XML Binding (JAXB) client programming

model [13]. This model provides a realization for transmission
and reception of both Java Web service data and Java remote
procedure call invocation. Though Web services under Java
can be produced and consumed using Java remote procedure
calls, the implementation within PIR relies solely on the JAXB
Web services (JAX-WS) implementation.

JAXB exposes several core functions that are necessary in
any Web services realization using Java. First, it provides
annotation-driven binding that directly maps XML elements
into Java objects. This binding is extensible, allowing imple-
menters to alter both marshaling and un-marshaling of data
via callback methods. Second, JAXB provides intrinsic Java
type-to-XML mapping, combined with facilities to extend the
mapping as necessary. Finally, JAXB provides facilities that
allow customization of the XML schema to Java representa-
tion.

1) JAX-WS: As noted above, PIR relies solely on the JAX-
WS implementation specified in JSR-224 [14]. This implemen-
tation includes both client and service facilities to produce and
consume Web services. Typical usage involves annotating code
using a special syntax to define the Web service, operations
within the Web service, and the datatypes used in connection
with the web service. A code snippet showing a small portion
of the annotation is included below.

@WebMethod(operationName = "getLateImplications",
action="getLateImplications")

public List<Implications> getLateImplications(
@WebParam(name = "userID") int userID,
@WebParam(name = "daysLate") int daysLate) {

Note the @WebMethod and @WebParam annotations
above. These provide all of the information necessary for
the JAX-WS architecture to properly generate the operations
associated with the Web service. The annotations significantly
reduce the amount of effort required to define the WSDL and
SOAP interfaces for the service. Instead, the developer is free
to focus on implementing the appropriate logic required within
the service. At compile time, the annotations are parsed, and
proper WSDL, XSD, and SOAP envelopes are automatically
constructed.

Consuming a Web service is even easier. In either the
Eclipse [15] or NetBeans [16] integrated development environ-
ments, the Web service can be selected from the tree hierarchy
on the left pane and simply dropped into a Java class file.
In both cases the result of the operation is an automatically
generated stub that the developer can call directly. Both
integrated development environments are sophisticated enough
that a change to the service (WSDL) will be automatically
reflected when the IDE is updated. The developer need only
delete the prior stub and repeat the drag-and-drop operation.
Unlike earlier manual Web service development, modern tools
provide both simplicity and expediency when constructing
service-oriented architectures.

F. Java Persistance Application Programming Interface

Among its many features, the J2EE environment provides
several methods of connecting to a database. GlassFish is

126

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

equipped with Java Database Connectivity (JDBC) connectors
to many of the most popular databases. Even when the
connector is not present in the base installation (such as the
MySQL Connector/J [17]), installation is simply a matter of
copying a Java archive file (JAR) into the appropriate directory.
Once a JDBC driver is installed, the GlassFish server provides
several mechanisms of allowing applications within it to access
the database.

Though any application within GlassFish is capable of direct
connection to a database, the most popular mechanism is
the use of a connection pool. Connection pools allow any
application that shares the same data source to use a commonly
specified connection. An application requiring access to the
data is pointed at the connection pool rather than a specific
JDBC connection. In this way, server administrators can
update the entire installation to a new database by simply
updating the server’s connection pool settings. No change is
required to the service code.

JDBC connections allow direct queries of relational
databases. Though this is frequently sufficient for data manip-
ulation, it results in stronger coupling between the underlying
database query engine and the application. J2EE includes other
mechanisms to persist data within the database. The Java
persistence Application Programming Interface (JPA) [18] is
used throughout the PIR service implementation when possi-
ble. In addition to providing the functions typically necessary
when manipulating a relational database, JPA represents the
database rows as Java objects (called entities). Both Eclipse
and NetBeans allow automatic construction of these entity
objects by directly querying the database. The automatically
generated models include many-to-one and one-to-many object
relationships. Hence the object representation within Java is
identical to the relationship within the database. This enables
a cohesive, object-centric approach to data management within
a Java enterprise application.

G. Security

One of the most difficult aspects of Web service develop-
ment for PIR relates to securing the Web service. In 2004
the Web Services Security (WS-Security) specification was
produced by OASIS [19]. Subsequently updated in 2006, the
document details how SOAP messages may be secured. Most
Web services are still secured by using the security mechanism
built into the underlying web server. HTTP basic auth is
frequently used as the identity mechanism. With or without
secure socket layer (SSL) support, this basic mechanism
presents several problems for the realization of PIR. Most
notably, authentication to any service operation is cumbersome
to an operator. Without some form of persistence, each SOAP
request would require reentry of the username and password.
JAXB provides mechanisms that allow the client to specify
both username and password, but it still leaves several security
weaknesses in Web service deployment. The WS-Security
specification addresses these issues by standardizing several
newer mechanisms of security within Web services.

Within the PIR application it is important that any call to the
database via a Web service is secure. This means that the data
transmitted and received via the Internet must be secure from
a man-in-the-middle attack. The WS-Security specification
enables both X.509 certificates and Kerberos tickets to be used
for this purpose. When using security mechanisms such as
these, the entire body of the SOAP message is encrypted using
the ticket then decrypted by the client. Thus the certificate
mechanism provides acceptable security for the protection of
corporate strategic planning data.

IV. IMPLEMENTATION

In order for the PIR process to be successfully implemented,
two critical objectives must be met. First, it must be easy
for an employee to submit an implication scan. The PIR
authors desire a ubiquitous application, with broad availability
to every member of an organization. The intent is that an
employee, regardless of their location, can readily submit a
scan into the system. The second objective is that both the
employee and the organization’s committees are informed of
the information and given frequent feedback about progress.
PIR requires accountability for ensuring that every implication
scan is processed in a timely manner. The process authors
want every participant to be aware that their contribution is
being considered and acted upon, and that submitters know the
current status of their implication scans. These requirements,
along with others from alternate stakeholder perspectives, are
enumerated below.

A. Threshold Requirements

THR(1) The service(s) shall provide individual contributors
with rapid and ubiquitous capability to submit impli-
cation scans.

THR(2) The service(s) shall provide individual contributors
with routine updates on the progress of their impli-
cation scans throughout the process.

THR(3) The service(s) shall provide impact evaluators with
the facilities necessary to manage implication scan
evaluation.

THR(4) The service(s) shall provide impact evaluators dead-
line information for implication scan evaluation per
process temporal constraints.

THR(5) The service(s) shall provide the capability to develop
itemized action plans (IAP).

THR(6) The service(s) shall provide the capability to develop
implementation plans.

THR(7) The service(s) shall provide the capability to develop
initiation plans.

THR(8) The service(s) shall provide the capability to retrieve
and view the history of items from implication scan
through initiation.

THR(9) The service(s) shall provide the capability to tailor
the process to fit organizational needs.

B. Objective Requirements
In addition to the threshold requirements, the author identi-

fied a few objective requirements that the architecture should

127

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

support, even if the actual requirement was not supported in
the first-pass implementation. These requirements follow in
the list below.

OBJ(10) The service(s) shall provide search and retrieval ca-
pability of all historical data.

OBJ(11) The service(s) shall provide interfaces on portable
devices.

OBJ(12) The service(s) shall provide Implication Scan submit-
ters with the ability to interact with evaluators.

OBJ(13) The service(s) shall enable future capability growth.

C. Architecture

The requirements above specify an abstracted view of the
desired application. They touch on the need for ubiquity
and rapid feedback to stakeholders throughout the process.
Service-oriented architecture provides a convenient method of
enabling such ubiquity. Since the data repository itself can
be realized as a service [2], client implementations are free to
submit and retrieve data independently of the specific platform.
Furthermore, Java standard edition applications, Web applica-
tions, and Java micro edition applications can be developed
using the same service model, enabling the desired ubiquity.
Once these applications are constructed, additional logic can
be included in the service layer to monitor progress and
enable rapid feedback. Finally, by moving the business logic
into the services instead of the application, improvement and
automation are possible without requiring client application
upgrades.

The basic enabling technologies outlined above provide
significant capabilities to a service-oriented application de-
veloper. As a framework, these technologies expose a broad
collection of components that improve efficiency in adopting a
service-oriented approach to an application. However, like all
frameworks, their use requires design tradeoffs in the actual
realization of the application. What serves well as a broad
abstraction may limit what can be accomplished.

The PIR service-oriented architecture is shown in Figure
2. This architecture provides the capability to meet all of the
threshold and objective requirements outlined above. The PIR
Services process in the center represents the core collection of
services. Services such as scan submission, current status, and
backlog are realized through this interface. All consumers of
PIR services are directed through the PIR Services endpoint.
This includes both hand-held and desktop web services clients.
Users accessing the service through a web browser also
consume the PIR Services endpoint, but gain access through
a server-side application (noted as the PIR Web process) that
processes HTML requests.

The architecture accommodates a broad array of clients,
from strategic planners at their desktop to individual contribu-
tors using a handheld2. Pairing of client and device places
unique constraints on the realization of functionality. For
example, a key difference between an enterprise edition Web
service client (JSR-109) and a micro edition client (JSR-172

2Research In Motion’s Blackberry Bold was chosen as a target handheld.

Fig. 2. PIR Architecture.

[20]) is that serialization and deserialization of objects via
SOAP is limited under JSR-172. Hence, construction of the
handheld PIR client places constraints on the services them-
selves. Where JSR-109 provides robust data type serialization,
careful attention is required to ensure the service exposed
for use by a Blackberry (JSR-172) can safely communicate
with the device. The effect is handled in one of two ways:
either objects are carefully constructed to use atomic data
types that are supported by both standards; or custom logic is
written to decompose complex objects into atomic types and
reconstruct them after transmission. The PIR services require
a combination of both, depending on whether the object can
be cleanly represented as atomic types. As an example, textual
elements within the database can be used as-is, but date-time
stamps require special treatment.

D. Database Considerations

The PIR services themselves are straightforward implemen-
tations in Java. Since the services are predominantly about
exposing basic database functions, most service implementa-
tion code is trivial. JDBC provides an abstraction for many
database backends and JPA provides an object-centric view
of the database. When combined, basic storage and retrieval
operations are reduced to a few lines of code. As an example,
code for a prototype scan implementation is included below.
@WebMethod(operationName = "submitScan",

action="submitScan")
public int submitScan(@WebParam(name = "trigger")
String trigger, @WebParam(name = "description")
String description) {
EntityManagerFactory emf =
Persistence.createEntityManagerFactory("PIR");

128

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

EntityManager em = emf.createEntityManager();

em.getTransaction().begin();

People person = em.find(People.class, person);
Implications impl = new Implications(0,

new java.util.Date(), trigger, false);
impl.setDescription(description);
impl.setUserId(person);

em.persist(impl);

em.getTransaction().commit();

em.close();
emf.close();

return impl.getId();
}

The JPA has abstracted away any notion of table retrieval
or joins. Instead, table rows are object instances, and the
relationships established between them are expressed naturally
in the language. The API simplifies manipulations of the
database, but there are some caveats to using it. Frequently
tables within a database have a many-to-one or many-to-many
relationships. Unchecked, these relationships have the poten-
tial to recursively enumerate large portions of the database in
a single SOAP response. Frequently the solution is to identify
when the persistence manager should ignore the relationship
by annotating the relationship with the @XmlTransient tag.
Doing so prevents the entity manager from enumerating the
table rows specified by the relation.

JPA also raises a question about achieving the proper level
of abstraction. The database backend, whether it is MySQL,
Oracle, SQL Server, or some other implementation, is ab-
stracted in Java using JDBC. JPA adds another layer above
JDBC, providing an object-oriented view of the database and
its relationships. One can argue that this additional abstraction
is more of a hinderance to developers than a benefit [21].
Since SQL itself is intended to be an abstraction of the
implementation, layers above the query language may actually
obfuscate what is going on. Long term code maintainability by
someone familiar with database manipulation may be better
served by directly encoding the queries rather than relying
on the JPA abstraction. Since JDBC already accommodates
switching to a different backend with minimal impact, JPA’s
benefit may be minimal.

E. Security Considerations

Similar questions arise about security. While the WS-
Security specification standardizes the mechanisms for secur-
ing web services messages, there is not a comprehensive web
services security mechanism built into Java EE 6. Several
standards have evolved that may be combined in support
of a secure solution, but a comprehensive package for se-
curing them does not exist. For example, certificate-based
mechanisms incorporating timestamps provide the necessary
strength, but exchange and management of certificates is
difficult to administer [22]. The problem is compounded when

developing a system where centralized identity management
outside of the Java enterprise edition environment is essential.
As of this writing, the author is still seeking an elegant solution
to securing the web services that works well for both hand held
applications and desktop environments.

F. Application Design

Fig. 3. PIR Desktop Client
.

Two primary client interfaces are required in the PIR
implementation, one on a desktop the other on a handheld
device. Though both rely on the same set of PIR services,
their intended purposes are different. The handheld application
is primarily used for implication scan submission and as a
mechanism to track progress. As a result, the interface is quite
simple, providing minimalist facilities to login, submit a scan
(title and description), and check status. These three actions
are collected in the application’s menu.

The more complex application being developed allows
strategic planners to manage the PIR process. The author
elected to model the desktop-client user interaction as a
process flow that follows the PIR workflow. Figure 3 shows the
prototype desktop interface. The icons across the top represent
steps in the PIR process. Like the handheld client, the desktop
application uses the same core set of PIR services. Database
access and business logic is abstracted by the services to
provide a uniform interface.

G. Services

Below is a partial list of PIR functions decomposed into
services. These services are currently incomplete, but the list
provides insight into the basic functionality required. Perhaps
the most significant benefit of an SOA implementation is
the room for growth. As new functionality is identified that
will improve the organization, it can be incorporated into the
architecture with minimal impact.

submitScan: submit an Implication Scan for assessment.

129

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

getImplications: retrieve the contents of an Implication
Scan.
submitImpact: submit an Impact Assessment for one or
more Implication Scans.
getImpact: get an Impact Assessment.
getLateImplications: get Implication Scans that have
aged too long.
closeImplication: close out an Implication Scan.
openImplication: reopen an Implication Scan.
closeImpact: close an Impact Assessment.
authenticate: authenticate a user for a session.

V. CONCLUSION AND FUTURE WORK

The development of a Java-based Web services application
provided significant opportunity to understand the facilities
available under Java enterprise edition 6, and the progress
made in facilitating service-oriented architecture development.
It is clear that advances in technology, both from within
the platform, and external to it in the development en-
vironment, have simplified the complexity associated with
service-oriented architectures. Despite these advances, how-
ever, development of service-oriented architectures in Java still
present some challenges. Security issues, platform compati-
bility, and API abstractions require analysis beyond simple
design choices. Though the initial PIR application will remain
in development for several more months prior to commercial
use, this survey provided background in all of the technologies
necessary to develop and deploy the final application.

The development and publication of new Web services
provides ample opportunity for future expansion of the PIR
application. Though the initial goal was simply to develop an
information service that facilitated the use of the PIR process,
future development efforts are likely to incorporate capabilities
that become available as services. Both high-performance
and cloud computing environments provide processing power
necessary to perform complex artificial intelligence operations
that may assist businesses in improving their strategic plans.
The PIR Analytics box in Figure 2 encapsulates this expan-
sion. Though these services may be undefined right now, it is
clear that as computational capability increases, so too will its
application to computationally difficult problems. In the future,
strategic planning problems may be reduced to a specification
that is transmitted to a service, processed, and returned back
to PIR users. The elegance of a service-oriented architecture is
that it is well positioned to embrace these potential capabilities
without the need for substantial rework.

REFERENCES

[1] S. Ballantyne, B. Berret, and M. E. Wells, Planning In Reverse: A
Viable Approach to Organizational Leadership. New York: Rowman
and Littlefield Education, 2011.

[2] A. Dan, R. Johnson, and A. Arsanjani, “Information as a service: Mod-
eling and realization,” in Systems Development in SOA Environments,
2007., May 2007, p. 2.

[3] D. Kafzig, K. Banke, and D. Slama, Enterprise SOA: service-oriented
architecture best practices. Upper Saddle River, NJ: Pearson Education,
2005.

[4] S. Staab, W. van der Aalst, V. Benjamins, A. Sheth, J. Miller, C. Bussler,
A. Maedche, D. Fesnel, and D. Gannon, “Web services: been there, done
that?” Intelligent Systems, IEEE, vol. 18, no. 1, pp. 72–85, Jan-Feb 2003.

[5] T. Erl, “Service loose coupling,” 2009. [Online]. Available: http://www.
soaprinciples.com/service loose coupling.php [Accessed: September
10, 2011]

[6] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, “Web
services description language (wsdl) 1.1,” March 2001. [Online].
Available: http://www.w3.org/TR/wsdl [Accessed: September 10, 2011]

[7] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F.
Nielsen, A. Karmarkar, and Y. Lafon, “Soap version 1.2 part
1: Messaging framework,” April 2007. [Online]. Available: http:
//www.w3.org/TR/soap12-part1/ [Accessed: September 10, 2011]

[8] Oracle, “Your first cup: An introduction to the java ee platform,” March
2011. [Online]. Available: http://download.oracle.com/javaee/6/firstcup/
doc/ [Accessed: September 10, 2011]

[9] E. Jendrock, I. Evans, D. Gollapudi, K. Haase, and C. Srivathsa,
“The java ee 6 tutorial,” March 2011. [Online]. Available: http:
//download.oracle.com/javaee/6/tutorial/doc/ [Accessed: September 10,
2011]

[10] Oracle, “Glassfish server open source edition 3.1 application
development guide,” April 2011. [Online]. Available: http://download.
java.net/glassfish/3.1/release/glassfish-ose-3.1-docs-pdf.zip [Accessed:
September 10, 2011]

[11] J. Kotamraju, “Web services for java ee, version 1.3,” December 2009.
[Online]. Available: http://download.oracle.com/otn-pub/jcp/websvcs-1.
3-mrel2-evaluate-oth-JSpec/websvcs-1 3-final-spec.pdf [Accessed:
September 10, 2011]

[12] J. Ellis and M. Young, “J2me web services 1.0,” October 2003.
[Online]. Available: http://download.oracle.com/otn-pub/jcp/j2me web
services-1 0-fr-oth-JSpec/j2me web services-1 0-fr-spec.pdf [Ac-
cessed: September 10, 2011]

[13] K. Kawaguchi, S. Vajjhala, and J. Fialli, “The java
architecture for xml binding (jaxb),” December 2010.
[Online]. Available: http://download.oracle.com/otn-pub/jcp/jaxb-2.
2-mrel2a-oth-JSpec/jaxb-2 2-mrel2-spec1.zip [Accessed: September
10, 2011]

[14] J. Kotamraju, “The java api for xml-
based web services (jax-ws) 2.2,” December
2009. [Online]. Available: http://download.oracle.com/otn-pub/
jcp/jaxws-2.2-mrel3-evalu-oth-JSpec/jaxws-2 2-mrel3-spec.pdf [Ac-
cessed: September 10, 2011]

[15] D. Williams, “Eclipse web tools platform project,” 2011.
[Online]. Available: http://www.eclipse.org/projects/project\ summary.
php?projectid=webtools [Accessed: September 10, 2011]

[16] Oracle, “Netbeans ide 7.0 features: Web service development,” 2011.
[Online]. Available: http://netbeans.org/features/web/web-services.html
[Accessed: September 10, 2011]

[17] MySQL, “Mysql connectors,” 2011. [Online]. Available: http://www.
mysql.com/products/connector/ [Accessed: September 10, 2011]

[18] L. DeMichiel, “Java persistence 2.0,” November 2009. [On-
line]. Available: http://download.oracle.com/otndocs/jcp/persistence-2.
0-fr-eval-oth-JSpec/ [Accessed: September 10, 2011]

[19] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker, “Web
services security: Soap message security,” Feb 2006. [Online].
Available: http://www.oasis-open.org/committees/download.php/16790/
wss-v1.1-spec-os-SOAPMessageSecurity.pdf [Accessed: September 10,
2011]

[20] BlackBerry, “Blackberry java application version 5.0
fundamentals guide,” April 2010. [Online]. Avail-
able: http://docs.blackberry.com/en/developers/deliverables/9091/JDE
5.0 FundamentalsGuide Beta.pdf [Accessed: September 10, 2011]

[21] T. Neward, “The vietnam of compuer science,” Blog entry, June
2006. [Online]. Available: http://blogs.tedneward.com/2006/06/26/The+
Vietnam+Of+Computer+Science.aspx [Accessed: September 10, 2011]

[22] A. Singhal, T. Winograd, and K. Scarfone, “Guide to secure web
services: Recommendations of the national institute of standards and
technology,” National Institute of Standards and Technology, Tech. Rep.
800-96, 2007.

130

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

