
An Approach of Early Disease Detection using CEP and SOA

Juan Boubeta-Puig, Guadalupe Ortiz, and Inmaculada Medina-Bulo
UCASE Software Engineering Group

Department of Computer Languages and Systems, University of Cádiz
Cádiz, Spain

Email: {juan.boubeta, guadalupe.ortiz, inmaculada.medina}@uca.es

Abstract—Service-Oriented Architectures (SOAs) have
emerged as an efficient solution for modular system
implementation, allowing easy communications among
third-party applications; however, SOAs are not suitable
for those systems which require real-time detection of
significant or exceptional situations. In this regard, Complex
Event Processing (CEP) techniques continuously process and
correlate huge amounts of events allowing to detect and
respond to changing business processes. In this paper, we
propose the use of CEP in SOA scenarios to facilitate the
efficient detection of relevant situations in heterogeneous
information systems and we illustrate it through the
implementation of a case study for detecting early outbreaks
of avian influenza. Results confirm that CEP provides a
suitable solution for the case study problem statement,
significantly decreasing the amount of time taken to generate
a warning alarm from the occurrence of an avian influenza
outbreak and thus reducing disease impact.

Keywords-CEP; complex event patterns; SOA 2.0; ESB;
public health.

I. INTRODUCTION

In recent years, Service-Oriented Architectures (SOAs)
have emerged as an efficient solution for the implementa-
tion of systems in which modularity and communication
among third parties are key factors. This fact has led
to the increasing development of distributed applications
made up of reusable and sharable components (services).
These components have well-defined platform-independent
interfaces, which allow SOA-based systems to quickly and
easily adapt to changing business conditions. However, these
architectures are not suitable for environments where it
is necessary to continuously analyze all the information
flowing through the system, which might be a key factor
for an automatic and early detection of critical situations for
the business in question.

This limitation may be solved by the joint use of Com-
plex Event Processing (CEP) [1] together with SOA. CEP
provides a set of techniques for helping to make an efficient
use of Event-Driven Architecture (EDA), enabling it to react
to multiple events under multiple logical conditions [2]. In
this regard, CEP can process and analyze large amounts of
events and correlate them to detect and respond to critical
business situations in real time; in this scope event patterns
are used to infer new more complex and meaningful events.

These events will help to make decisions when necessary.
Currently, the integration of EDA and SOA is known as

event-driven SOA (ED-SOA) or SOA 2.0 [3], an extension
of SOA to respond to events that occur as a result of
business processes. SOA 2.0 will ensure that services do
not only exchange messages between them, but also publish
events and receive event notifications from others. For this
purpose, an Enterprise Service Bus (ESB) will be necessary
to process, enrich and route messages between services
of different applications. Thus, combining the use of CEP
and SOA, we may detect relevant events in complex and
heterogeneous systems, i.e., CEP will let us to analyze and
correlate events in real time SOA 2.0.

To our knowledge, no architecture providing an appro-
priate and efficient integration of SOA, EDA, CEP and
the detection of complex patterns has been proposed yet:
there are proposals that use non-standard approaches to
the integration of SOA and EDA [4], [5], while others
use rule engines [6]. Implementations using rule engines
are slower and less efficient in handling and receiving
notifications, compared to those using CEP engines. Also,
these approaches do not take into account that the system
may have to handle a mass of events at any given time,
causing a strong impact on system performance.

In this paper we propose an approach for the integration of
SOA 2.0 and CEP in order to ease complex events detection
in SOA scenarios. Showing the advantageous of using a
CEP engine to facilitate an efficient detection of relevant
situations is the main aim of this paper. Moreover, detection
will be more efficient if the ESB prioritizes events by type,
avoiding the bottleneck effect in the engine since CEP
engine will analyze, firstly, higher priority events received
at one particular point in time. In addition, this approach
differs from others in the use of NoSQL (Not only SQL)
databases [7], an emerging database management system
based on key-value relationships, which is easily horizontal
scalable and efficient for managing huge amounts of data.

In order to illustrate our proposal, a case study for detect-
ing early epidemic outbreaks of diseases is also described
in this paper. The case study will be implemented according
the proposed technologies and will be evaluated through a
simulation scenario.

The rest of the paper is organized as follows. In Section II

143

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

we describe the main features of CEP and compare them
with SOA’s, it is followed by the proposed solution for their
integration in Section III. Then, a case study for real-time
detection of epidemic and pandemic cases of influenza is
explained, implemented with the proposed technologies and
tested in Section IV. Afterwards, in Section V our approach
is discussed and in Section VI related approaches for the
integration of CEP and SOA are summarized and compared
to the one proposed in this paper. Finally, conclusions and
future work are presented in Section VII.

II. CEP BACKGROUND

CEP [1] is a technology that provides a set of techniques
for helping to discover complex events by analyzing and
correlating other basic and complex events. A basic event
ocurrs at a point in time and it is indivisible and atomic,
while a complex event can happen over a period of time,
it is aggregated from basic or other complex events and
contains more semantic meaning. Some of these techniques
are: detecting causality, membership or timing relation-
ships between events, abstracting event-driven processes and
detecting event patterns. Therefore, CEP allows detecting
complex and meaningful events, known as situations, and
inferring valuable knowledge for end users.

The main advantage of using CEP to process complex
events is that the latter can be identified and reported in
real time, unlike in traditional software for event analysis,
therefore reducing the latency in decision making.

Thus, CEP is a fundamental technology for applications
that (1) must respond quickly to situations that change
rapidly and asynchronously and where interactions do not
have to be transactional, (2) must support management by
exception, (3) must react rapidly to unusual situation and (4)
require loose coupling and adaptability [8].

CEP has some similarities and differences with SOA. The
main similarity is that both approaches provide modularity,
loose coupling and flexibility. Some of the main differences
are shown in the following lines:

• On the one hand, SOA interactions are based on
services (a user must know the service producer and
interface in advance in order to send requests to it).
On the contrary, event-driven CEP is reactive and more
decoupled since events are generated by event produc-
ers and consumers are responsible for intercepting and
processing them.

• On the other hand, while SOA processes use events to
drive control flow [9] (these processes can both send
and receive events), CEP engines continuously analyze
and correlate these events to assess if they meet the
conditions defined in any of the event patterns stored
in them.

III. OUR PROPOSAL IN A NUTSHELL

We propose a solution based on the integration of CEP
and SOA 2.0. A CEP engine is the key element of the
integration, which will facilitate the efficient detection of
relevant situations in heterogeneous information systems.

Event producers can be Web services, applications and
sensors. Some of these applications are Web applications
that allow users to interact with information management
systems and legacy applications. Sensors are devices that
monitor the environment to capture information (tempera-
ture, light, rain, etc.), which is then transmitted to the system
using the controller integrated into the mentioned sensors.

These events are then published in the ESB and stored in
a NoSQL database to be used as historical events.

Events are sent in parallel to the database management
system for their storage as well as they are sent to event
streams of a CEP engine. This engine will contain event
patterns specifying the conditions to identify relevant situa-
tions and the actions to be carried out. Some of its functions
are: filtering events (deleting irrelevant events from event
streams), correlating and merging events from different event
streams (complex events could be created) and aggregating
them (grouping events). The generated complex event will
be published immediately into the ESB.

Finally, these events will be notified to the event con-
sumers that have subscribed to them. These consumers
can be Web services, applications (such as dashboards for
displaying alarms) and/or actuators that perform some action
(switch on/off, open/close, etc.) on a specific device.

IV. CASE STUDY

In recent decades the globalization has caused a huge
increase of people movements between countries resulting
in a dramatic increase of the impact of emerging disease
epidemics. This situation is becoming a major threat to life,
safety and the world economy [10]. This fact motivated
the decision of implementing a case study to detect avian
influenza outbreaks in real time.

Thus, the objective of this case study is to demonstrate
that CEP is an effective solution for detecting epidemics
and pandemics in real time compared to most existent tools
that report these situations weekly: FluNet [11] presents
influenza information in all countries of the world and
Euroflu [12] presents it only in member states of the WHO
European region. The use of a CEP engine will allow health
officials to mitigate as soon as possible the impact of epi-
demics and global pandemics, rather than being exposed to
have a week delay on receiving the up-to-date information.

In the following subsections we describe the case study,
define the complex event patterns necessary to detect critical
situations in this scenario, enumerate the steps followed to
implement the case study and finally present the results
obtained after testing it.

144

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

A. Description of the Case Study

As previously mentioned this case study focuses on early
detection of avian influenza outbreaks using CEP in SOA
environments. In particular, this health system will launch
real-time alerts when some of the following avian influenza
cases are detected: (1) suspected cases of patients who may
be infected by this virus, (2) confirmed cases of suspected
patients, (3) epidemic cases (countries suffering outbreaks of
avian influenza) and (4) pandemic case (the epidemic affects
several countries). See WHO documentation [13] for further
information about the definition of these cases.

The event producers are:
• Hospitals: health workers, particularly physicians, will

diagnose symptoms and will get relevant information
about patients. They will issue events inserting patient
diagnoses in hospital information systems.

• Laboratories: laboratories will be able to detect con-
firmed cases of avian influenza by blood tests and other
techniques, and they will publish this information as
events within their information systems.

On the other hand, the event consumers are:
• WHO and other international organizations: these

organizations will subscribe to relevant events about
outbreaks of avian influenza and will be aware of
suspected, confirmed, epidemic and pandemic cases
that might have been detected worldwide.

• Hospitals: health workers will need to know which
cases have been identified in order to take measures
for relieving the situation, such as patient isolation
measures.

• Laboratories: they will be continuously informed of
the virus evolution and spread, facing the development
of new antidotes or drugs to help authorities to fight
the disease.

For example, hospital services may trigger a complex event
if a suspected case of avian influenza is detected. This
event will be received by the pharmacy and WHO services,
which will react immediately to this situation: pharmacies
automatically notify to suppliers an increased demand for
those drugs that help fighting the disease and WHO will
launch warning alarms to those laboratories and international
health agencies that are interested in this situation.

B. Complex Event Patterns for Detecting Avian Influenza
Outbreaks

In the following lines, we describe the definition of
complex event patterns for detecting suspected, confirmed,
epidemic and pandemic cases of avian influenza. To this end,
we have adapted Buschmann’s design patterns scheme [14]:
pattern name and a short summary, real-world example
demonstrating the existence of the problem and the need
for the pattern, context (situations) in which the pattern
may be applied), problem addressed by the pattern, solution

proposed by the pattern, detailed specification of the pattern
structural aspects, pattern implementation in a specific lan-
guage and consequences (benefits and drawbacks) provided
by the pattern. In this work we will describe the pattern name
and implementation, which are the main relevant parts of the
schema for the case study illustration.

According to real requirements for detecting avian in-
fluenza cases we defined the next complex event patterns:

• Suspected case: this pattern detects possible occur-
rences of avian influenza cases, when the following
conditions are met:

1) The patient has fever (above 38 ◦C) or cough or
headache or myalgia or conjunctivitis or pharyn-
gitis or encephalopathy or multiple organ failure
or pneumonia.

2) And, moreover, he/she presents a history of ex-
posure to known infection sources in infectious
period (7 days prior):
– Staying in an area where avian influenza human

cases have been reported.
– Having contact with a person already diagnosed

of avian influenza.
– Having contact with animals that could be

infected.
– Handling gases in a laboratory.

• Confirmed case: the laboratory confirms an avian in-
fluenza infection, based on the detection of a suspected
case and a biological sample of the patient.

• Epidemic case: there are 25 or more confirmed cases
of avian influenza in a particular country during a week.

• Pandemic case: there are 2 or more epidemic cases
during a week.

C. Implementation

The presented case study has been implemented using
Java and the Esper engine. Moreover, the complex event
patterns defined above have been implemented in the com-
plex event processing language of Esper [15], EPL (Event
Processing Language). Several reasons have motivated EPL
choice: firstly, the learning curve is not high because its
syntax is very close to SQL, widely known worldwide.
Besides, EPL natively supports multiple event format types:
Java/.NET objects, maps and XML documents what facil-
itates its use in multiple platforms. Even more, it is also
possible to customize not only the language but also Esper
engine, which is written in Java and is open source.

The steps followed to implement the case study are
enumerated and described below:

1) Configuration and initialization of
the Esper engine. An instance of
com.espertech.esper.client.Configuration represents
all configuration parameters. The Configuration is
used to build an EPServiceProvider, which provides
the administrative and runtime interfaces for an Esper

145

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

engine instance. A Configuration instance is then
obtained by instantiating it directly and adding or
setting values on it. The Configuration instance is
then passed to EPServiceProviderManager to obtain
a configured engine, as the following code shows:
Configuration conf = new Configuration();
config.addEventType("PatientState",

PatientState.class.getName());
config.addImport("es.uca.esper");
EPServiceProvider epService

= EPServiceProviderManager.getProvider(
"sample", conf);

2) Creation of an event generator to simulate patients
treated worldwide and their health state evolution;
the simulator will be directly connected to the CEP
engine. We will make use of this simulator to produce
patient state events randomly rather than using real
information from hospital and laboratory systems (due
to the access restrictions to official information in the
above mentioned systems). In this simulator there are
two types of objects:

• Patient: each patient in the simulation has a spec-
ified person id, date of birth, sex and country.

• PatientState: this object represents patient health
state evolution, which has the following attributes:
identification, registration time, current location
of the person, symptoms and dates in which the
patient has been exposed to infection sources.

3) Introduction of the generated events in Esper event
streams. The PatientState instance insertion in Esper
is implemented as follows:
epService.getEPRuntime().sendEvent(

PatientState);

4) Implementation and registration of complex event
patterns in Esper. The suspected case of avian in-
fluenza implemented using EPL is presented below:
String suspectedCase =
"insert into AvianInfluenzaSuspects
select avianInfluenzaSuspect.id,

avianInfluenzaSuspect.registrationTime,
avianInfluenzaSuspect.patient.sex,
avianInfluenzaSuspect.currentLocation

from pattern [every avianInfluenzaSuspect
= PatientState((cough or fever > 38
or headache or multipleOrganFailure
or myalgia or pharyngitis or pneumonia
or conjunctivitis or encephalopathy)
and ((PatientState.DayCounter(
registrationTime, infectionArea)<=7)
or (PatientState.DayCounter(
registrationTime, infectionPerson)<=7)
or (PatientState.DayCounter(
registrationTime, infectionAnimal)<=7)
or (PatientState.DayCounter(
registrationTime, laboratoryGases)<=7)

)]";
EPStatement suspectedCaseStatement =

epService.getEPAdministrator().

createEPL(suspectedCase);
suspectedCaseStatement.addListener(

new AvianInfluenzaSuspectListener());

Concerning the code, the complex event pattern illus-
trating suspected case implementation is defined by
the from pattern clause. PatientState events meeting
described conditions for suspect case are selected
from the Esper event stream. For this purpose, every
operator is applied to obtain all these events and the
avianInfluenzaSuspect alias is assigned to them.
DayCounter is a function to count days passed from
the date on which PatientState event was registered to
the date on which the patient was in contact with a
risk source, if there were any contact.
Afterwards, identification, registration time, sex and
current location attributes of the met avianInfluenza-
Suspect complex events are selected and inserted in
a new event stream called AvianInfluenzaSuspects, by
using an insert into clause.
A specific listener, known as AvianInfluenzaSus-
pectListener, will receive suspect patient event no-
tifications and will alert those interested to these
situations. These warning alarms could be used to
infer statistical data, e.g., the amount of suspected case
grouped by sex in a specific time for a given country.

5) Detection of complex events according to the reg-
istered patterns and notification of these events
to the listeners. The implementation of AvianInfluen-
zaSuspectListener, which receives events detected by
SuspectedCase pattern, is shown below:

public class AvianInfluenzaSuspectListener
implements UpdateListener {
@Override
public void update(EventBean[]

newEvents, EventBean[] oldEvents) {
String currentLocation =
(String) newEvents[0].

get("currentLocation");
System.out.println(
"\n***SUSPECTED CASE IN: " +
currentLocation + "***\n"); }}

6) Definition and implementation of test cases us-
ing the JUnit framework and validation of the
application. For example, the testGen test case is
presented below, which checks if our implemented
event generator creates the specific amount of events
and insert them in an event stream:

public void testGen() throws Exception {
final int EVENT_N = 100000;
PacientStateGenerator generator =

new PacientStateGenerator();
LinkedList stream = generator.

makeEventStream(EVENT_N);
assertEquals("The amount of events

generated randomly should be " +
EVENT_N, stream.size(), EVENT_N); }

146

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

D. Testing and Results

In this study, 100.000 - 600.000 patient states, from 119
countries, have been generate randomly, using the imple-
mented event generator.

In our simulations we have observed that up to 300.000
generated patient states no epidemic case has been alerted.
The reason is there are not enough patient states to detect
suspected cases, which are also confirmed, requiring at least
25 confirmed cases for the same country during a week.

Only 2 epidemic cases have been detected of 350.000
patient states. However, the amount of epidemic cases sig-
nificantly increased from 400.000 states. We can deduce that
the more patient states are generated the more epidemic
cases will be detected.

As a conclusion, we can assert that using CEP permits
an inmediate and efficient detection of complex patterns in
large amounts of flowing information.

V. DISCUSSION

Through the case study implementation and evaluation we
have seen that our proposal provides an efficient solution for
early detection of avian influenza outbreaks. Besides we can
stress the following additional advantageous characteristics:

The use of a CEP engine instead of a rule engine provides
substantial benefits, as discussed in this section. Accord-
ing to Chandy and Schulte [8] there are some differences
between CEP and rule engines: normally, rule engines are
request-driven, i.e., when an application needs to make a de-
cision it will invoke this engine to derive a conclusion from
a set of premises. The general model for a rule engine is If
“some condition” then “do action X”. In most applications,
a large number of rules will have to be analyzed before
making a decision, thus becoming a problem for real-time
decision making. However, CEP engines are event-driven
and run continuously, and according EDA principles, they
can process notification messages as soon as they arrive. In
this case, the general model for a CEP engine is a when-then
rule (known as a complex event pattern) When “something
happens or some condition is detected” then “do action X”,
instead of an if-then-else rule. The equivalence of the if-
else clause for a CEP engine is the one that specifies When
“something has not happened in a specific time frame” then
“do action Y”. Thus, event patterns use time as another
dimension. Moreover, CEP engines are faster and more
efficient in handling and receiving notifications since they
can directly manage inputs and outputs with messaging
systems, while rule engines behave as services used by input
and output systems.

Another improvement is our approach provides event
prioritization according to the order previously set for every
event type. Event prioritization will prevent the bottleneck
effect in the CEP engine, as it will serve firstly higher
priority events, thus avoiding the management of a huge
number of events at one particular point in time.

Finally, our proposal uses NoSQL databases. They pro-
vide the following adavantages [16]:

• NoSQL have asynchronous BASE (Basically Available,
Soft state, Eventual Consistency) updates rather than
synchronous ACID (Atomicity, Consistency, Isolation,
Durability).

• NoSQL databases are optimized to react to changes, not
to manage transactions, and they do not require neither
schemes nor data types definitions.

• They are also distributed, easily horizontal scalable and
very efficient for managing huge data amounts.

VI. RELATED WORK

Several works about CEP and SOA integration in different
domains can be found in the literature; in the following
paragraphs we summarize the most representative ones.

To start with, He et al. [4] implement an event-driven
system based on radio-frequency identification to monitor
gases emitted by vehicles and detect if vehicle’s emissions
are not standard, keeping those interested in protecting the
environment and quality air informed about this situation.
The authors claim that all events in the CEP engine are
represented by POJO (Plain Old Java Object); the language
used to process events is similar to SQL, however it is
not specified whether this language has been extended to
manipulate time windows, which is a relevant feature for a
CEP application. Besides, events are not represented in XML
(what would allow obtaining more readable and reusable
events) as the Esper engine [15] does. On the other hand,
they do not specify whether the motor and the language can
be customized and extended as Esper allows to.

On the other hand, Taher et al. [5] propose to adapt
interactions of Web service messages between incompatible
interfaces. In this regard, they develop an architecture that
integrates a CEP engine and input/output adapters for SOAP
messages. Input adapters receive messages sent by Web
services, transform them to the appropriate representation
to be manipulated by the CEP engine and send them to
the latter. Similarly, output adapters receive events from
the engine, transform them to SOAP messages and then
they are sent to Web services. This architecture has some
limitations regarding our proposal: firstly, services interact
with a framework that integrates both message adapters and
the CEP engine, instead of using an ESB directly connected
to the services and the engine. The bus would provide
a decoupled, flexible and reusable system. Secondly, the
proposed adapters do not provide additional functionalities
which an ESB usually provides, such as message routing
based on content and transformation protocols.

Sottara et al. [6] propose an architecture for the manage-
ment of waste water treatment plants, in which an ESB is
used to connect services distributed in different nodes in a
transparent way for end users. They integrate JBossESB so-
lution [17] and Drools rule engine [18], which is embedded

147

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

in the bus. Our proposal improves this one by using a CEP
engine instead of a rule-based one.

Finally, there are two projects funded under the EU 7th
Research Framework Programme that integrate CEP and
SOA: MASTER and COMPAS. MASTER [19] provides
an infrastructure that facilitates monitoring, enforcement,
and auditing of security compliance and COMPAS [20] de-
signs and implements an architectural framework to ensure
dynamic and on-going compliance of software services to
business regulations and stated user service-requirements.
However, while our solution allows to store event logs in
NoSQL databases, these projects do not consider it.

VII. CONCLUSION AND FUTURE WORK

We have proposed and discussed an approach for the
efficient use of CEP in SOA 2.0 scope. Thanks to this
approach, when relevant situations arise from the detection
of certain predefined event patterns, real-time alerts will be
sent to the interested parties. In this paper, we have mainly
focused on the use of a CEP engine to detect event patterns.

A case study illustrating this approach has also been de-
scribed and implemented. Our system can detect epidemics
and pandemics in real time, while most current tools report
these situations weekly. So, we can conclude that CEP
technology is suitable for this purpose. Although we have
taken the example of the avian influenza virus; once new
complex event patterns are defined, our system could be
used for the prevention of other diseases as well as for non-
medical fields, should it be necessary.

In our near future work we will approach a complete
architecture for the integration of SOA 2.0 and CEP making
use of an ESB. In this regard, the CEP engine will be
able to process real events that will be published into the
ESB by different event producers, replacing the random
event generator developed in this work to simulate patient
states. Moreover, both event producers and consumers will
be Web services, providing a loosely coupled more complex,
modular and flexible system.

ACKNOWLEDGEMENTS

We would like to specially thank Novayre [21] managers
for their fruitful comments and discussions on the topic
dealt with in this paper. The second author acknowledges
the support from TIN2008-02985 and FEDER.

REFERENCES

[1] D. Luckham, The Power of Events: An Introduction to
Complex Event Processing in Distributed Enterprise Systems.
MA, USA: Addison-Wesley, 2002.

[2] H. Taylor, A. Yochem, Les Phillips, and F. Martinez, Event-
Driven Architecture: How SOA Enables the Real-Time Enter-
prise. Indiana, USA: Addison-Wesley, Mar. 2009.

[3] B. Sosinsky, Cloud Computing Bible. Indiana, USA: Wiley,
Jan. 2011.

[4] M. He, Z. Zheng, G. Xue, and X. Du, “Event Driven
RFID Based Exhaust Gas Detection Services Oriented System
Research,” in Proc. 4th International Conference on Wireless
Communications, Networking and Mobile Computing, Dalian,
China, Oct. 2008, pp. 1–4.

[5] Y. Taher, M. Fauvet, M. Dumas, and D. Benslimane, “Using
CEP Technology to Adapt Messages Exchanged by Web
Services,” in Proc. 17th International Conference on World
Wide Web, Beijing, China, Apr. 2008, pp. 1231–1232.

[6] D. Sottara, A. Manservisi, P. Mello, G. Colombini, and
L. Luccarini, “A CEP-based SOA for the Management of
WasteWater Treatment Plants,” in Proc. IEEE Workshop on
Environmental, Energy, and Structural Monitoring Systems,
Crema, Italy, Sep. 2009, pp. 58–65.

[7] “NoSQL databases,” Mar. 2011. [Online]. Available: http:
//nosql-database.org/

[8] K. M. Chandy and W. R. Schulte, Event Processing: Design-
ing IT Systems for Agile Companies. USA: McGraw-Hill,
2010.

[9] M. Havey, “CEP and SOA: Six Letters Are Better than
Three,” Feb. 2011. [Online]. Available: http://www.packtpub.
com/article/

[10] “United Nations,” Mar. 2011. [Online]. Available: http:
//www.un.org/en/

[11] “FluNet,” Apr. 2011. [Online]. Available: http://www.who.
int/csr/disease/influenza/influenzanetwork/flunet/en/

[12] “EuroFlu,” Apr. 2011. [Online]. Available: http://www.
euroflu.org/index.php

[13] “World Health Organization,” Mar. 2011. [Online]. Available:
http://www.who.int/en/index.html

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and
M. Stal, Pattern-Oriented Software Architecture: A System of
Patterns. Chichester, UK: Wiley, 1996.

[15] “Esper,” Mar. 2011. [Online]. Available: http://esper.
codehaus.org

[16] E. Meijer and G. Bierman, “A co-Relational Model of Data
for Large Shared Data Banks,” ACM Queue, vol. 9, pp. 30–48,
Mar. 2011.

[17] “JBoss ESB,” Jan. 2011. [Online]. Available: http://jboss.
org/jbossesb

[18] “Drools,” Jan. 2011. [Online]. Available: http://www.jboss.
org/drools

[19] “MASTER,” May 2011. [Online]. Available: http://www.
master-fp7.eu/

[20] “COMPAS,” May 2011. [Online]. Available: http://www.
compas-ict.eu/

[21] “Novayre,” May 2011. [Online]. Available: http://www.
novayre.com/

148

SERVICE COMPUTATION 2011 : The Third International Conferences on Advanced Service Computing

Copyright (c) IARIA, 2011. ISBN: 978-1-61208-152-6

