
The Experience of Software Reengineering by Using Haptics through Tangible
User Interface

Makoto Yoshida, Tomoya Okazaki
Department of Information & Computer Engineering

Okayama University of Science
Okayama, Japan

Email: yoshida@ice.ous.ac.jp

Noriyuki Iwane
Department of Information & Computer Science

Hiroshima City University
Hiroshima, Japan

Email: iwane@hiroshima-cu.ac.jp

Abstract—The need for software reengineering is ever
increasing. To satisfy the need, several metrics and tools are
developed. We developed the toolkit which reorganizes the
software programs using the haptics through tangible interface.
The toolkit decomposes the Java source programs into small
classes, and integrates them into the harmonized classes by
using the haptic device. The metrics analyzed are mapped to
the attributes of the virtual objects, and can be touched and
perceived by the haptics through tangible interface and
integrated into the harmonized object by coupling objects. This
paper describes the way that software programs are
reengineered by the toolkit. Software reengineering
methodology using the toolkit is proposed. Sound coupling and
cohesion coupling by using haptics through tangible interface
are introduced, and some experiments performed are
presented.

Keywords-Software Reengineering; Toolkit; Metrics;
Haptics; Tangible User Interface.

I. INTRODUCTION
Most of the programs are not newly written; they are

reused, and the systems are maintained. The objective of
reengineering is to produce a new maintainable system with
least efforts [8]. Many tools are developed [5]. Metrics
analysis and visualization help to reorganize programs [1][4].
The reorganized program must have adequate modularity;
modules with high cohesion and low coupling must be
maintained [2][3]. M. Lanza, etc. express the metrics of the
program by 3D visualization and by the metaphor of cities
[6][7].

We developed the software reengineering toolkit with
tangible user interface by using the haptic device [9]. The
program modules are visualized as 3D objects like spheres
and cubes; each objects having its tangible attributes,
mapped from the program metrics. The program module
structure is reorganized by decoupling and coupling modules
by using the tangible user interface. It supports two types of
interfaces, the active interface and the passive interface. In
this paper, we focus on the active interface. Especially, the
sound coupling interface and cohesion coupling interface are
presented. The toolkit was developed not only for software
reengineering but also for learning programming.
 In this paper we make the following contributions.

• We propose the metrics schema that integrates
objects into the harmonized programs and observe
its effectiveness.

• We present the tangible user interface that is easy to
manipulate, easy to evaluate and easy to undo the
coupling operations, adding the cohesion coupling to
the toolkit [9].

• We present some experimental results and observe
the effectiveness of the toolkit for software
reengineering.

The rest of the paper is organized as follows. Section II
presents the reengineering toolkit. Section III describes the
experiments of the sound and cohesion couplings. Finally,
Section IV concludes the paper with future works.

II. REENGINEERING SOFTWARE
Disharmonized programs, those are the programs that

may have intensive coupling, shotgun surgery, dispersed
coupling, god class, etc. [1], must be recognized and
reorganized on the point of software maintenance.

A. Toolkit
This section summarizes the toolkit we developed. More

detail of the toolkit is described in the reference [9].
The motivation of the toolkit developed can be

summarized as follows.
• Flexible and simple tool for software reengineering

is required, as the direct metrics manipulation is too
complex

• The operation of several module couplings and
decouplings must be performed easily , understood
easily, and undone easily

• Everybody, including software non-professionals,
can manipulate the module couplings and
decouplings easily

 Figure 1 shows the system structure of the toolkit. It
consists of three parts: the program analysis part, the object
perception part, and the code generation part. The program
analysis part analyzes the Java source programs, and
produces the metrics of the programs. Numbers of classes,
lines, methods, fields, dependency of classes, etc. are
analyzed. It can also decompose a class into smaller classes.
A class can be decomposed into more small classes.

8Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

Decomposed classes are represented as the objects in the
object perception part. The metrics of a class are mapped to
the attributes of the corresponding object. The haptic device,
shown in Figure 2, the physical device which provides the
tangible user interface to the toolkit, is used to manipulate
the object couplings. The toolkit provides several coupling
methods [9]. The sound coupling, color coupling, undo
coupling and cohesion coupling are provided. This paper
introduces the cohesion coupling. The other coupling are
described in the previous paper [9]. In the code generation
part, the Java source code is automatically generated from
the results of object integration manipulated either in the
object perception part or in the analysis part.

Figure 1 also shows the way that the program is
reengineered using the tangible user interface. There exists
three cycles in the Figure 1. The first cycle is depicted by
the arrows ① and ②. This cycle directly uses metrics to
reorganize the modules. In this cycle, the metrics such as
overviewPyramid, complexity, hotspots and blueprint [1]
are visualized, and the program is reorganized. The second
cycle is depicted by the arrows ③,⑤, ⑦ and ②. The third
cycle is depicted by the arrows ④,⑥ , ⑦ and ② .The
analyzed metrics are passed to the object perception part,
and those data are mapped to the attributes of the haptic
objects.

Figure 1. Toolkit Structure

Figure 2. Haptic Device

 (a) (b)

Figure 3. Object Integration Schema

B. Metrics Schema
The program must be reorganized to have the metrics to

be the appropriate value. The value of the metrics can be
normalized by decomposing and integrating the program
modules step by step.

Figure 3 shows the metrics schema for software
reengineering using the toolkit we developed. Two metrics,
metrics 1 and metrics 2, and their appropriate domains,
which is under the shadow area within the rectangular, are
shown in Figure 3. Figure 3(a) shows the way that both
metrics, metrics 1 and 2, are converging into the appropriate
values. Figure 3(b) shows that the metrics 1, which is out of
the appropriate domain and have higher value, is first
decreased by decomposing a module. And, second, the
decreased value is increasingly changed to the appropriate
value by coupling modules. This is performed by adjusting
the metrics 2 which must be also situated within the shadow
area.

Assuming that, the number of methods in a class is
assigned to the metrics 1, and the lines of code in a method is
assigned to the metrics 2. In this case, the schema adopted
for reorganizing the modules works as follows:

Operation1. Assign the metrics M1 to the modules of a
program. Decompose the program. The toolkit we
developed can analyze and decompose a class into
smaller units of module, and create the corresponding
objects. This operation always decreases the value of
M1, and it is repeated until the M1’s value becomes
lower than the threshold of the lower bound predefined.

Operation 2. Integrate the objects. Use the metrics M2 to
integrate the objects. The coupling operations provided
are performed to lead the M1 and M2’s value to
converge into the shadowed rectangular area.

C. Coupling & Decoupling in Java
It is possible to decompose the program into smaller

elements, to the subclasses or submodules in Java. One class
can be decomposed into several subclasses, and integrated
into one large class with the combination of different
modules. Figure 4 shows the decomposition of the Java
program. It shows that class 0 can be decomposed into two
classes: class 1 and class 2, because of the reason that the
method A and B only access the field a, and method c only
accesses the field b and c. Figure 4 also shows the
integration possibility of two classes, class 1 and class 2, into
a class 0. The basic policy for program decomposition is the
fact that the program can be decomposed into the smaller
unit if there exists no dependency among units, namely if no
units interaction occurs. Figure 5 shows an example of the
program coupling and decoupling in Java. These are
performed by using the toolkit we developed [9]. In Figure 5,
Program AB is decomposed into program Aa and Bb, and
Program CD is decomposed into program Cc and Dd. Then,
class Aa and Cc are coupled into one program AC, and Bb
and Dd are coupled into another program BD.

9Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

Figure 4. Class Decomposition & Integration

Figure 5. Program Integration Example

III. EXPERIENCES
This section describes the coupling methods of the

objects. The sound coupling and the cohesion coupling in the
toolkit are introduced, and some experiments using these
couplings are examined.

A. Metrics
The attributes of the object, visualized and touched by

the haptic device, are gravity, magnetism, spring, color,
transparency, etc. The metrics analyzed in program analysis
part are mapped to those of the attributes of the object.

Table I shows the metrics mapped to the object in the
experiment. Two metrics, metrics 1 and metrics 2, are used
in this experiment. The metrics 1, M1, is the average
number of lines per method in a class, and the metrics 2, M2,
is the number of methods per class. The metrics M1 is
mapped to the size of an object. In the sound coupling, M2
is mapped to the sound of the object. In the cohesion
coupling, M2 is mapped to the distance among the objects.
According to the metrics schema described, the metrics 2 is
used to decompose the modules, and metrics 1 is used to
integrate the modules.

TABLE I. METRICS MAPPING
Metrics Sound Coupling Cohesion Coupling

Number of classes Number of objects Number of objects
(M1) Average lines /method/class Size of the object Size of the object
(M2) Number of methods/class Sound of the object Distance among objects

 (a) Sound Objects (b) Sound Coupling

Figure 6. Sound Coupling

B. Sound Coupling and Cohesion Coupling
In the sound coupling, the metrics 2 (M2) is mapped to

the sound attribute of an object. Figure 6 shows an example
of the sound objects, Objects A, B and C have the sound ‘re’,
D has ‘mi’, E has ‘fa’, F has ‘so’, and G has sound ‘la’.
Touching and moving the objects, object A, B, C and G are
merged into one object, as is shown in Figure 6(b), and the
sound of the object changes to ‘mi’, that is assigned as the
average height of the objects merged.
 Cohesion refers to the degree of tightness to which
module components belong together [10][11]. Cohesion
coupling visualizes the class tightness by the distance of
classes. The class tightness is the dependency of the objects.
The number of run time accesses among objects, which
represents the class tightness, is measured and logged by
using ASPECT-J. And, the distance among the objects is
calculated by using the following formula (1) [10]:

dis(x,y)= 1-|b(x)∩b(y)|/|b(x)∪b(y)| (1)

with b(x):={Pi∈B| x possesses Pi , Pi is a method}
 and {b(x) is the set of methods accessed by an object x.}

The similarity of the two objects x, y with respect to a

property subset B is calculated from the similarity measure,
that is represented by |b(x)∩b(y)|/|b(x)∪b(y)|. The distance
calculated by formula (1) is visualized by the
multidimensional scaling method (MDS), which uses the
Young-Householder translation [12]. The detail of the MDS
is shown in the Appendix. Using MDS, the object are
situated into the similarity-based distance, where the tighter
objects be located closer. Figure 7 shows an example. The
Figure 7(a) shows that object 1 and 2 have the tighter
relation, and so is the 3, 4 and 5, and 6 and 7. Figure 7(b)
shows the cohesion coupling. Object 1 and 2 are coupled
into one module, and the object 3, 4 and 5 are merged into

10Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

one module, because they have the close distance. Object 6
and 7 are also merged into one module with the same reason.

When the control of the toolkit is passed to the code
generation part, the code of the merged objects is
automatically integrated into the one class, and it is
reformed into the one object. Figure 8 shows the example of
several couplings performed sequentially. Figure 8(a) is the
original structure of the program. Figure 8(b) shows the
sound coupling, where the object A, B, and C are merged
into one module, and the other modules are also merged.
And, the structure of the program changed to be shown in
Figure 8(c) when the program is reorganized. Nineteen
modules are reorganized into the seven modules, as shown
in Figure 8(b), and the structure of the program is changed
to be shown in Figure 8(c). Then again, another coupling,
color coupling, is performed, as is shown in Figure 8(d).
These coupling can be performed repeatedly any time with
any operations including decoupling operation [9].

 (a) Before the Coupling (b) After the Coupling

Figure 7. Cohesion Coupling

(a) Before the Coupling (b) After the Sound Coupling

 (c) Reformed Objects (d) After the Color Coupling

Figure 8. Several Coupling Repeated

 (a) Before the Coupling (b) After the Sound Coupling

Figure 9. Sound Coupling Visualized

TABLE II. RESULT OF THE SOUND COUPLINGS
(a) BEFORE THE COUPLING (b) AFTER THE COUPLING

Class name Metrics M1 Lines Metrics M2
Bullet 6 48 6
Enemy 7 109 13
Game 2 21 9
GameObject 2 9 1
KeyInput 6 91 13
Level 3 18 4
MyBullet 4 23 4
Mycanvas 7 101 11
Objectpool 12 149 10
Particle 4 41 7
Player 4 33 6
Score 8 43 3
Title 3 29 7
Average 5.2 55 7.2

Class name Metrics M1 Lines Metrics M2
Bullet 8 48 6
EnemyMy 11 132 8.5
Game 2 21 9
GameObjKe 8 100 7
Level 3 18 4
MycanSco 15 144 7
Objectpool 12 149 10
Particle 4 41 7
Player 4 33 6
Title 3 29 7
Average 7 71.5 7.2

C. Experimental Results
 The sound coupling and the cohesion coupling are
examined, and the results are presented.

Figure 9 shows the before and the after of the structure
of the modules of the reengineering program. Figure 9(a)
shows the original program structure, and (b) shows the
structure of after the sound couplings. The cube in Figure 9
shows the object that has the typical sound in which the
coupled object to be met. In the experiment, we assumed the
appropriate value for M1 is 10, and M2 is 7, taking the
experimental values from the reference [1]. Table II shows
the metrics of the before and the after of the sound coupling.
The program that has 13 classes has changed to the 10
classes. The metrics M2, which is the number of methods
per class, did not change. On the other hand, the metrics M1,
which is the number of lines per method, changed from 5.2
to 7. This means the reengineering performed by sound
coupling has been succeeded.
 The second experiment, which is the cohesion coupling,
was performed using the same program as the sound
coupling. Figure 10 and Table III show the experimental
results performed. Figure 10(a) shows the original program
structure. The location of the objects is calculated using the
cohesion distance formula (1) and the MDS. The detail of the
MDS is shown in the Appendix. The metrics M1 has
changed from 5.2 to 7.5, and metrics M2 has changed from
7.2 to 7.6. This means that the M1 is improved, and the
structure is well organized.

11Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

(a) Before the Cohesion Coupling (b) After the Cohesion Coupling

Figure 10. Cohesion Coupling Visualized

TABLE III. RESULT OF THE COHESION COUPLINGS

Class name Metrics M1 Lines Metrics M2
Bullet 6 48 6
Enemy 7 109 13
Game 2 21 9
GameObject 2 9 1
KeyInputTi 9 120 10
LevelSco 11 61 3.5
MyBulletOb 18 172 7
Mycanvas 7 101 11
Objectpool 12 149 10
Particle 4 41 7
Player 4 33 6
Average 7.5 78.5 7.6

IV. CONCLUSION
This paper described the experiences of the software

reengineering using the toolkit we developed. The sound
coupling and the cohesion coupling for reorganizing the
program were introduced. And, some experiments for
software reengineering for using these coupling were
presented. The results showed that the reengineering was
performed well by the couplings using the haptics through
tangible interface.

The toolkit was built on the concepts of easy to
understand, easy to use, and being use not only for the
professionals but also for every person who is unfamiliar
with the software metrics. Therefore, the tool can be used not
only for the software professionals but also for everybody,
for the student who is learning the programming, and for the
children who likes to operate the computer just for fun.

The toolkit we developed can be used by the following
procedures.

• Metrics are selected according to the metric schema
described in section II-B. At least, two metrics are
selected.

• The typical values of the metrics for the application
are settled.

• Program is analyzed by the toolkit, and the modules
that have disharmonized and large metrics value are
found. Then, these modules are decomposed into
small modules.

• Looking at the two metrics, several modules are
coupled together.

The above procedures are repeated until both of the
metrics stabilize into the appropriate values.

We are testing more cases for software programs using
the toolkit. Reengineering the software depends a lot on the
program properties. We need more experiences for the
validation of the toolkit to be useful. The other aspect of the
toolkit, the programming toolkit for education, is our next
concern.

ACKNOWLEDGMENT
 This work is supported by JSPS KAKENHI Grant
Number 15K12174.

REFERENCES

[1] M. Lanza and R. Marinescu, Object oriented metrics in
practice, Springer-Verlag Berlin Heidelberg, 2006.

[2] L. C. Briand, J. W. Daly, and J. K. Wust, ”A Unified
Framework for Coupling Measurement in Object-Orientd
Systems,” IEEE Transactions on Software Engineering,
Vol.25, No.1, January/February 1999, pp.91-121.

[3] F. B . e Abren, G. Pereira, and P. Sousa, “A Coupling-Guided
Cluster Analysis Approach to Reengineering the Modularity
to Object-Oriented Systems,” Proc. of the Fourth European
Conference on Software Maintenance and Reengineering
(CMMR), 2000, pp.13-22.

[4] S. Demeyer, S. Ducasse, and O. Nierstrasz, “Finding
refactorings via change metrics,” OOPSLA ’00, 2000,
pp.166-177.

[5] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-Oriented
Reengineering Patterns, free download from
http:/scg.unibe.ch/oorp/ , 2013, [retrieved: 01, 2016].

[6] R. Wettel, M. Lanza, and R. Robbes, 2011, “Software System
as Cities: A Controlled Experiment,” Proc. of the 33rd
International Conference on Software Engineering (ICSE’11),
2011, pp.551-560.

[7] O. Greevy, M. Lanza, and C. Wysseier, “Visualizing Live
Software Systems in 3D,” Proc. of the 2006 ACM
Symposium on Software Visualization(SoftVis06), 2006,
pp.47-56.

[8] S. R. Schach, From Modules to Object-Oriented & Classical
Software Engineering, McGRAW-Hill Onternational Edition,
2007.

[9] M. Yoshida, S. Okumura, and N. Iwane, “Software
Reengineering Toolkit with Tangible Interface by Haptics,”
Proc. of the 9th International Conference on Software
Engineering and Applications (ICSOFT-EA), Aug. 2014,
pp.351-356.

[10] F. Simon, S. Loffer, and C. Lewerentz, ” Distance Based
Cohesion Measuring,” Proc. of the 2nd European Software
Measurement Conference (FESMA), 1999, pp.69-83.

[11] J. M. Bieman and B. Kang, ” Meaduring Design-Level
Cohesion, “ IEEE Transactions on Software Engineering, Vol
24,No.2, February, 1998, pp.111-124.

[12] S. Nishisato, Y. Baba, H. Bozdogan, and K. Kanefuji,
Measurement and Multivarite Analysis, Springer, pp.27, 2001.

12Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

APPENDIX

①
Shooting

④Missile
maneger

⑤Missile

⑥Missile
maneger

⑦Missile
maneger

②
Background

③
UFO

Similarity 1 2 3 4 5 6 7
1 0.00 0.90 0.80 0.79 1.00 0.91 1.00
2 0.90 0.00 1.00 1.00 1.00 1.00 1.00
3 0.80 1.00 0.00 1.00 1.00 1.00 1.00
4 0.79 1.00 1.00 0.00 0.63 0.79 1.00
5 1.00 1.00 1.00 0.63 0.00 1.00 1.00
6 0.91 1.00 1.00 0.79 1.00 0.00 0.57
7 1.00 1.00 1.00 1.00 1.00 0.57 0.00

(a) Class Dependency (b) A Similarity Matrix among Classes

In.P. 1 2 3 4 5 6 7
1 0.329 -0.015 0.061 -0.003 -0.136 -0.094 -0.141
2 -0.015 0.459 -0.054 -0.125 -0.071 -0.116 -0.077
3 0.061 -0.054 0.433 -0.138 -0.084 -0.129 -0.089
4 -0.003 -0.125 -0.138 0.291 0.143 -0.009 -0.160
5 -0.136 -0.071 -0.084 0.143 0.399 -0.146 -0.106
6 -0.094 -0.116 -0.129 -0.009 -0.146 0.309 0.185
7 -0.141 -0.077 -0.089 -0.160 -0.106 0.185 0.389

Eigenvector x y
1 -0.263 0.292
2 -0.157 0.34
3 -0.249 0.478
4 -0.208 -0.49
5 -0.306 -0.566
6 0.539 -0.092
7 0.645 0.037

 (c) An Matrix of the Inner Product (d) Eigenvector

The class dependency of the program, shown in Figure (a), is transformed to the similarity matrix, shown in Table (b).
The inner product, Table (c), is calculated from the similarity matrix by using the Young-Householder translation theorem
[12].
The eigenvalue and eigenvector, Table (d), are calculated from the inner product. Two eigenvalues are selected. The
eigenvalues selected are 0.756 and 0.690.
Table (e) shows the x and y coordinate of the objects calculated from the eigenvector. Finally, the distance of the similarity is
visualized as the program structure, as is shown in Figure (f).

Coordinate x y
1 -0.23 0.243
2 -0.137 0.283
3 -0.217 0.397
4 -0.181 -0.407
5 -0.266 -0.47
6 0.47 -0.077
7 0.561 0.031

１
７

６

３

２

４

５

(e) Location of the objects (f) Program Structure Visualized by cohesion

Figure 11. Multidimensional Scaling Method (MDS) based on the Similarity Matrix

13Copyright (c) IARIA, 2016. ISBN: 978-1-61208-459-6

SERVICE COMPUTATION 2016 : The Eighth International Conferences on Advanced Service Computing

