
Using Service-oriented Architectures for Online Surveys in Coast

Thomas M. Prinz, Raphael Bernhardt, Linda Gräfe, Jan Plötner, and Anja Vetterlein
Course Evaluation Service

Friedrich Schiller University Jena
Jena, Germany

e-mail: {Thomas.Prinz, Raphael.Bernhardt, Linda.Graefe, Jan.Ploetner, Anja.Vetterlein}@uni-jena.de

Abstract—Electronic surveys are used in empirical sciences in
many cases to reach a large and global crowd. Such surveys
can be separated into five big phases (e. g., planning and data
collection), where each phase belongs to each other. Since the
interdependencies between the phases are sometimes complex,
it is helpful to have a software system, which supports each
phase of a survey. There already exist such systems, which
cover together all of the phases. However, the focus is on the
implementation of the survey rather than on its evaluation
and reporting. This was one reason to build a new survey
and report tool, Coast. The first version of Coast, however,
has some disadvantages regarding its monolithic architecture
— a new version of Coast had to be developed. This paper
presents the new version of Coast as a practical result and
example of service-oriented systems. The architecture of Coast
is built on concepts of service orientation and model-driven
software development. Furthermore, the paper explains the
big design decisions during development, describes parts of the
used meta-models, and shows some practical problems during
the development of service-oriented programs and how they
are solved in Coast.

Keywords–Service Orientation; Architecture; Coast; Survey;
Model-Driven Software Development.

I. INTRODUCTION
Surveys are indispensable in empirical sciences (for

example in psychology and sociology). In many cases, it
is profitable to use an electronic or online survey to reach a
large and locally dispersed crowd (e. g., [1]). An electronic
survey can be separated in different phases, e. g., survey
implementation, data collection, and reporting [2]. Each of
the phases is interwoven with the other. For example, the
reporting phase needs the specific questions asked in the
survey as well as the different variables and scales from the
implementation phase. In turn, the collected data can only be
interpreted by knowing the scales and variables they belong
to. So, it is very helpful to have a software system, which
supports each of the phases of a survey.

Such software tools are available on the market, e. g.,
EvaSys [3], Unipark [4], LimeSurvey [5], KwikSurveys [6],
and SurveyMonkey [7]. Most of them cover parts of all
phases of a survey. Almost all tools provide only a prede-
fined or simple evaluation and reporting, since the evaluation
and reporting phase are very individual processes and can
become quite complex. For further analyses (e. g., multi-
variate analyses) exceeding the standard repertoire, these
tools offer the download of the raw data instead. This,
however, disrupts the link between the data and the other
phases of a survey — the individual evaluation becomes a

time consuming and cumbersome task even when the link
to the other phases can be simulated with further provided
information.

This fact was one of the main reasons of the Course
Evaluation Center at the Friedrich Schiller University Jena
in the year 2009 to build its own survey and report tool,
called Coast. It focuses on the integration of the analysis
and report phases for advanced analyses. Although it is in
successful use for the evaluation of the university, the first
version of Coast has its disadvantages. The disadvantages
resulted from varying requirements, wrong design decisions,
and surveys, which getting complexer as the architecture can
handle. A monolithic architecture emerged [8], which makes
it hard and risky to implement changes on the business logic.

As a result, a new version of the Coast application is
currently under development. This new version removes the
disadvantages from the first version by clarifying the archi-
tecture and modules as well as the model of questionnaires
and reports. In this context, a questionnaire refers to all the
questions, scales, etc. being necessary to collect the data.

In this short paper, we present parts of our tool Coast
as an example of a service-oriented software. Furthermore,
we give a brief overview about the phases of an electronic
survey and already existing survey solutions in Section II.
In Section III, we show the architecture of our system as
a practical example and explain some design decisions as
well as the meta-model of questionnaires used by Coast.
Eventually, we conclude this paper with a short outlook into
future work in Section IV.

II. STATE OF THE ART
In the following, we explain the five big phases of an

electronic survey and give a brief overview about existing
solutions for creating and carrying out online surveys.

A. Phases of an Electronic Survey
A survey can be separated into five big phases [2]:
1) Planning, design, and implementation,
2) Data collection,
3) Data preparation,
4) Data analysis, and
5) Reporting.

The first phase, Planning, design, and implementation, in-
cludes planning on what you want to ask, deciding how
to ask these questions and how to measure concepts of
interest, and specifying who will be surveyed (the popu-
lation). Furthermore, the survey will be implemented. That

1Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

implementation is used in the second phase to survey the
population. This phase is called Data collection. Since the
collected data may comprise malformed, incomplete, or
obviously wrong records, the data has to be cleaned and
prepared (Data preparation phase) to be used in a Data
analysis, the fourth phase, afterwards. In this phase, the
collected data is analysed in order to answer the questions
from the first phase. The results of the evaluation as well as
general information about the survey are finally summarized
in detail in a report. The report is the outcome of the last
phase, Reporting.

B. Other Survey Tools
Obviously, Coast is not the only survey tool available

on the market supporting the phases of a survey. There are
well-established tools with a lot of features like EvaSys
[3], Unipark [4], LimeSurvey [5], KwikSurveys [6], and
SurveyMonkey [7]. All of them cover parts of the previously
introduced five phases of an electronic survey. They provide
an implementation of the questionnaire by simply drag and
drop the survey questions on a paper-like sheet in almost
all products. The resulting questionnaire can be used for
the data collection subsequently. In the case of EvaSys, it is
possible to produce paper-based questionnaires too and scan
them to collect the results.

The phases of data preparation, data analysis, and re-
porting are not clearly separated in most of the tools and,
therefore, merge smoothly. All the tools have the possibil-
ity to export the collected data for further investigations
in external tools (e.g., IBM SPSS [9], Excel [10], or R
[11]). Furthermore, they provide standardized reports, which
include the questions of the questionnaires, frequencies,
significance tests, and mean values, among other things.

III. THE SYSTEM ARCHITECTURE OF Coast
The tools mentioned above show a clear focus on the

development of the survey instead of its fine-granular and
complex data analysis and reporting. As mentioned before,
this was one reason to build an own survey tool Coast.

The first version of Coast had a monolithic software
architecture caused by historical growing and changing
requirements. Therefore, it showed the typical symptoms of
monolithic software systems, e. g., changes on the business
logic were difficult and risked the instability of the system.
It is well-known that such architectures are some of the
”worst” forms of architectures established in practice [8].

As the questionnaires handled by Coast became more
complex, the usage of the first Coast version was not longer
possible. However, the tools introduced in Section II-B
cannot handle our complex questionnaires without bigger
changes on the questionnaire structure (and questions asked
in the survey). Since we use longitudinal analyses [12]
(which require equal questionnaires during each data col-
lection), it is necessary to keep the existing structure intact.
Therefore, it is not possible to use a different survey tool.
This makes it necessary to transfer our tool Coast into a
different architecture. We explain our decisions for the main
architectural approaches in the following:

As mentioned in Section II-A, making an electronic
survey is an almost well-defined process. The same holds

true with the modelling of questionnaires. It is our goal for
Coast to offer a proper, controlled, and realistic modelling
and development of questionnaires, i. e., we want to provide
a domain-specific language (DSL) to model questionnaires.
As a result of this approach, the focus lies on the meta-model
of a questionnaire, whose instance is in turn the result of the
modelling. The focus on the meta-model of questionnaires
makes it possible to derive different kinds of surveys from
the same model: For example, surveys represented online on
PC, on paper, or on smart phones. Therefore, we follow a
Model driven software development (MDSD) approach [8].

By using a MDSD architecture, the models are trans-
ferred into, e. g., runnable surveys, by using different func-
tions. Since these functions could be long running and
computational expensive tasks, they should not affect, e. g.,
the data collection of a survey. That means, the functions
should scale and be physical separable. With Service-
oriented architectures (SOA) [8] such a separation and
scalability is easy and, therefore, a good choice.

In general, Coast is a typical enterprise application con-
sisting of a client-side, a database, and a server-side. Its ar-
chitecture is built around the meta-model for questionnaires
and reports (as illustrated in Figure 1). Furthermore, the
architecture can be separated into the five phases of a survey
(cf. Section II-A). Subsequently, the phase architecture of
Figure 1 will be explained.

The phase of planning, designing and implementing
surveys is solved with a Survey designer on the client-
side. It is a web tool, which communicates via services to
transmit changes on the model of the client- to the server-
side. Designer services help to commit these changes from
the designer to the model.

As mentioned before, different implementations of sur-
veys can be derived originating from the questionnaire
model via different Survey generator services. For example,
this could be paper-based surveys or online surveys. These
generated surveys can be used to collect the data subse-
quently. For the online surveys, there is also a database, in
which the collected data is stored.

Besides different derivable surveys, the report model
can be derived from the questionnaire model as well. This
is done by a Transformation service. It transforms the
questionnaire structures and transfers the texts (e. g., formu-
lations of questions) to a new report model. Furthermore,
the collected data from the surveys are verified based on
the questionnaire model by Preparation services. During
this verification process, malformed and incorrect data is
identified. Therefore, the preparation services belongs to the
data preparation phase.

The verified and collected data is used for the data
analysis. The data is analysed with the functionality of
the statistical programming language R via Analysis and
report services. Therefore, complex calculations, like tests
of significance, filters, or regressions, can be applied on the
data. To structure the report and use the evaluated data, an
Analysis and report designer is available. Since the report
exists as model, it can be also transformed to different kinds
of ”physical” reports, e. g., online or paper-based reports.
This is done by the use of different Report generator services

2Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Report

meta-model

Questionnaire

meta-model

Online survey

Database

Model

database

Report

generator

services

Report+

Planning, design,

and implementation

Data

collection

Data

preparation
Data analysis Reporting

Survey

designer

Paper-based

survey

...

Survey

generator

services

Designer

services

Transformation

service

Analysis/report

designer

Analysis/

report

services
Online report

...

Preparation

services

Figure 1. The architecture of the Coast system regarding the survey phases.

Designer and

Configurator

Survey Engine

(Virtual Machine)

Computational Evaluation Unit (CEU)

User Respondent

E
x
tern

al S
e
rv

ice
s

Figure 2. The component architecture of the Coast system.

and the inclusion of R and LaTeX.
Since the important parts of the architecture follow

ongoing research in the context of psychoinformatics and
compiler construction, they have to be flexible, simple,
and evolutionarily growable. These requirements are com-
plied by the use of the principles of service orientation
and microservices [13]. Using (micro)services requires the
componentization of the application into subsystems and
modules (services).

In general, Coast disintegrates into three bigger subsys-
tems: Designer and Configurator (in the following simply
referred to Designer), Survey Engine, and Computational
Evaluation Unit (CEU, illustrated in Figure 2). The Designer
is the main application, in which the surveys will be defined,
evaluated, and bundled in a report. In the Survey Engine, the
surveys are conducted and the collected data is stored. The
last subsystem CEU performs calculations for the analysis.

Each module of Coast is defined as a service with its own
interface. If the functionality of the service is shared with
other subsystems or a user, it will be provided as a RESTful
web interface. Otherwise, it is a simple programming in-
terface for reasons of performance. The arrows in Figure 2
explain how the subsystems interact with each other.

The CEU does not have a user interface as shown in
the figure. It is a fully computational service only used for
statistical calculations. It is based on the scripting language

R, which is perfect for analysing big data information and
to apply multivariate analysis methods. A Coast specific R
library is supplied by an openCPU [14] server as a RESTful
web service.

In contrast to the CEU, the subsystems Designer as
well as the Survey Engine have a user interface. In the
Designer, the user configures its surveys and transfers
them to the Survey Engine where a participant can fill in
the questionnaires — together, both subsystems follow an
old computer science principle: Compilation and execution.
Since the engine is separated from the designer, it is possible
to have multiple Survey Engine service instances on different
physical systems. As a result, the survey conduct becomes
scalable. For this, the compiler (Designer) stores the survey
in an intermediate representation (IR) called liQuid [15] and,
afterwards, this IR will be transferred to the Survey Engine,
which executes it. To guarantee equal data structures on both
subsystem, they share the same modules.

It has become best practice during the Coast develop-
ment to maintain each module (not only the subsystems)
as a separate project and to build up the subsystems based
on them. This approach helped us to generalize modules, to
define proper interfaces, to get loosely coupled functionality,
and to reuse code whenever possible.

For example, one module defines our meta-model for
questionnaires. It is natural to think about questionnaires as
sheets of paper with well-formulated questions. However,
electronic surveys offer more ways to think of questionnaires
than it is traditionally done in state-of-the-art tools. Instead,
Coast treats questionnaires as program-like constructs. That
means, in Coast, questionnaires have a well-defined start
point, they have questions (items), whose order can be de-
fined by acyclic graphs, and the order of these items depends
on different conditions. In other words, questionnaires are
acyclic control flow graphs.

Figure 3 shows the simplified meta-model of question-
naires used in Coast. It consists of the questionnaire with
edges and items. Each edge has one item as source and one

3Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

Questionnaire Edge

Item

Condition

1

1

0..*0..*

1

1

source

target

1

1

0..*

1..*

Figure 3. The meta-model of a questionnaire.

as target as well as a condition, which defines when this
edge should be followed during the data collection.

First benefits of using such a control flow graph-based
meta model of questionnaires were shown in previous work
[15]. For example, we have a questionnaire, which is used
to survey alumni of the university. Since all alumni have an
individual career, the questionnaire became very complex
with many so-called adaptive paths and variables. The
visualization of the questionnaire model as a graph helped
us to keep the overview of all paths and variables as well as
to maintain the central theme. Furthermore, it is possible, to
apply the complete palette of static and dynamic analyses of
compiler construction, e. g., asking the same item multiple
times on the same path.

The fine-grained meta-models for the definition of ques-
tionnaires and reports result in big models of sometimes
hundreds to thousands objects. If a user wants to modify
such a model within its web application, all those objects
have to be taken from the database and have to be sent
to the client. Sometimes, this took more than 30 seconds
— which is unacceptable. Therefore, the pattern of lazy
loading [16] objects was used. This was done by replacing
each association of objects with a symbolic link, e. g., with
an id and the corresponding object class. When the client
application tries to access an associated object, the system
loads the required object from the server automatically if
it was not already loaded before. Nevertheless, to allow a
straight forward modelling and programming, the concept of
promises [17] was extended to an ordinary if-then-construct
making the programming of asynchronous applications easy.

Certainly, there are some issues on Coast and its ar-
chitecture. For example, sometimes, the performance of the
system is slower than in the first monolithic application.
This comes from the increased overhead by using a service-
oriented architecture. Furthermore, there are sometimes a lot
of messages being transferred between the different services.
Especially, the communication between the client and the
server during the design of a questionnaire is verbose.
Although there are these weaknesses on the current design,
the chosen one has shown its benefits so far.

IV. CONCLUSION AND OUTLOOK
This short paper explained the benefits of having a

software in empirical sciences, which allows the control
of all survey phases. As an example of such a tool, we
introduced our tool Coast, which focuses on the analysis and
report phases of a survey. Using the example of Coast, we
explained our design decisions, why we used a model-driven

software and a service-oriented architecture. Furthermore,
parts of its architecture were presented as practical examples.

Since the Coast system is currently in an alpha version,
Coast is unpublished up to now. In future versions, it should
be available to everyone via the web. For this purpose, the
application has to reach a stable stage and some of the
concepts have to be extended.

REFERENCES
[1] V. M. Sue and L. A. Ritter, Conducting Online Surveys, 2nd ed.

Los Angeles, USA: SAGE Publications, 2012.
[2] J. Reinecke, Handbuch Methoden der empirischen Sozialforschung.

Wiesbaden, Germany: Springer, 2014, vol. 1, ch. Grundlagen der
standardisierten Befragung, pp. 601–617.

[3] Electric Paper Ltd., “Survey Automation Software - EvaSys and
EvaExam,” Website, available: http://en.evasys.de/main/home.html,
retrieved: January, 2018.

[4] QuestBack GmbH, “Startseite — Unipark,” Website, available:
https://www.unipark.com/en/, retrieved: January, 2018.

[5] LimeSurvey GmbH, “LimeSurvey: the online survey tool - open
source surveys,” Website, available: https://www.limesurvey.org/, re-
trieved: January, 2018.

[6] Problem Free Ltd., “KwikSurveys: Free online survey & question-
naire tool,” Website, available: https://kwiksurveys.com/, retrieved:
January, 2018.

[7] SurveyMonkey, “SurveyMonkey: The Worlds Most
Popular Free Online Survey Tool,” Website, available:
https://www.surveymonkey.com/, retrieved: January, 2018.

[8] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U. Mehlig,
and U. Zdun, Software-Architektur: Grundlagen - Konzepte - Praxis,
2nd ed. Heidelberg, Germany: Springer, 2009.

[9] IBM United Kingdom Limited, “IBM SPSS Statistics - Overview
- United Kingdom,” Website, available: https://www.ibm.com/uk-
en/marketplace/spss-statistics, retrieved: January, 2018.

[10] Microsoft, “Microsoft Excel 2016, Download Spreadsheet software
— XLS XLSX,” Website, available: https://products.office.com/en-
gb/excel, retrieved: January, 2018.

[11] The R Foundation, “R: The R Project for Statistical Computing,”
Website, available: https://www.r-project.org/, retrieved: January,
2018.

[12] T. Mika and M. Stegmann, Handbuch Methoden der empirischen
Sozialforschung. Wiesbaden, Germany: Springer, 2014, vol. 1, ch.
Längsschnittanalyse, pp. 1077–1087.

[13] J. Lewis and M. Fowler, “Microservices — A
definition of this new architectural term,” matin-
fowler.com, Online publication, Mar. 2014, available:
https://martinfowler.com/articles/microservices.html#footnote-
etymology, retrieved: January, 2018.

[14] J. Ooms, “The OpenCPU System: Towards a Universal Interface for
Scientific Computing through Separation of Concerns,” Computing
Research Repository (CoRR), vol. abs/1406.4806, 2014, pp. 1–23.

[15] T. M. Prinz, L. Gräfe, J. Plötner, and A. Vetterlein, “Statische
Aanalysen von Online-Befragungen mit der Programmiersprache
liQuid (Static Aanalysis of Online Surveys with the Help of the
Programming Language liQuid),” in Proceedings 19. Kolloquium
Programmiersprachen und Grundlagen der Programmierung, KPS
2017, Weimar, Germany, pp. 59–70, September 25–27, 2017.

[16] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,
Patterns of Enterprise Application Architecture, 1st ed., M. Fowler,
Ed. Boston, USA: Addison Wesley, 2003.

[17] B. Cavalier and D. Denicola, Promises/A+ Promise Specification,
Open Access, Promises/A+ organization Std. 1.1.1, 2014, available:
https://promisesaplus.com/, retrieved: January, 2018.

4Copyright (c) IARIA, 2018. ISBN: 978-1-61208-606-4

SERVICE COMPUTATION 2018 : The Tenth International Conference on Advanced Service Computing

