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Abstract— Getting "smarter" Energy by means of advanced 
electrical and computer engineering tools is the theme of our 
digital age. This paper presents a new concept for virtual data 
generation in the context of non-intrusive load monitoring, 
where the goal is to fill in the gap when aggregate measurements 
are needed along with individuals ones. We develop a method to 
generate aggregate measurements starting from single original 
measurements. The performance of standard NILM tools and 
algorithms on both original and "virtual" data is compared 
using own lab measurements. 

Keywords- Smart meters; Non-intrusive load monitoring; 
Event detection; feature exrtraction; classification; signal 
processing. 

I.  INTRODUCTION 
Self-healing reliable smart Grids are sought-after all over 

the world. Non-Intrusive load monitoring is one of the major 
tools for such ambition; as it delivers detailed information of 
the energy consumption in a certain facility/building, which 
can be very useful for various objectives. 

Ever since Hart's pioneering work[1] , several approaches 
were presented over the years [2]; but they were mostly 
tailored to specific measurements, be it self-collected or from 
publically available data sets; such measurements were made 
with a specific application in mind, making them not entirely 
suitable for extracting and processing of newly adapted 
features, e.g., harmonical properties in transient states of the 
current signal [3].  Machine learning algorithms  along with 
advanced signal processing techniques are ready to exploit 
such features  to deliver the best possible identification of 
electrical appliances. 

 While several datasets were made publically available in 
the last  decade, they were still not optimal for extracting 
important features such as harmonical properties. The 
majority of them were limited to aggregate measurements 
only or single measurements only, or lacking enough 
sampling rate in one of them, as shown in Table1.  

The question to be addressed in this work is: if only single 
measurements are available, can we use them for 
'synthesizing' whole measurements without actually measure 
again? it will suffice then for producers to provide interested 
customers with a list of stand-alone measurements of their 
device, enabling them to test many scenarios of consumption 
before actually putting any constellation of devices together,  

 

TABLE I.  PUBLIC DATASETS WITH MEASUREMENTS TYPES 

Dataset Type of measurements 
REDD whole-house measurements only [4] 

BLUED whole-house measurements only [5] 
PLAID individual  measurements only [6] 

UKDALE whole-house measurements, single  measurements 
with low sampling rate  [7] 

WHITED individual  measurements only [8] 
COOLL individual  measurements only [9] 

 
 
which is of high importance for big factories and sensitive 

facilities. 
This paper introduces a procedure to generate an 

approximately identical version of the real whole 
measurements using single measurements only. The similarity 
of the resulted signal to the original one will be judged  
according to the perspective of NILM algorithms.  

The remainder of the paper will be organized as follows; 
In section II, the general data-construction scheme is 
presented and basic concepts behind it are explained, Section 
III is devoted to numerical comparisons and tests. Finally, 
Section IV briefly presents the main conclusions of our study.  

II. GENERAL SCHEME AND BASIC CONCEPTS 
A flow chart for the proposed procedure is depicted in 

Figure 1. 

 
  

Figure 1. General scheme for virtual aggregation procedure 
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Figure 1 can be translated to a step-by-step plan for 

constructing the desired virtual aggregate signal out of real 
individual measurements: 

 
Step 1. Convert real single measurements to      " Frequency 

Invariant Transformation of Periodic Signals " 
representation (FIT-PS ) [10]. 

Step 2. Correct event indices. 

Step 3. Extract operational modes for each appliance. 

Step 4. Generate the targeted current signals according to the 
desired scenario, adding steady-state periods to meet 
the desired length, as in Figure 2. 

Step 5. Sum the generated current signals according to the 
desired scenario.  

In the following, we will clarify the concepts behind those 
steps: 

A. Phase preserving reconstruction 
The general model for reconstructed signal can be written 

as: 

I" = δ%I%

&

%'(

+ 𝑣	 1  

 
where   I"	is the aggregate current signal, 
     N is the number of the appliances, 
             I%, i = 1,⋯ , N  : are the current signals of the 

individual appliances 
            𝛿%, i = 1,⋯ , 𝑁  indicates the state of the 

corresponding appliance as: 
 

δ% =
1, if	the	i"7	appliance	is	′ON@

0, if	the	i"7	appliance	is	′OFF′
2  

 
𝑣 is the additive noise term, which will be assumed to be 

AWGN with zero mean and appropriate variance. 
the loads of the appliances are complex in general, which 

creates a phase shift between the current signal and the 
respective voltage signal, this shift can take different values 
for different appliances. 

 If we assume the total signal to be composed of two 
appliances only, and their current signals are given by: 

 
I( = AeEFG, 	IH = AeEFI	 3  

 
Then the total current signal will be obtained as: 
 

I = 2AeE
FGKFI
H cos

θ( − θH
2

4  

 
 

I = 2A cos
θ( − θH

2
5  

 

 Equation (5) shows the dependence of the total signal 
amplitude on the phase difference between the signals I( and 
IH, which implies that a simple addition as in (1) will not be 
correct unless all current signals are added with emphasis on 
their relative phase.   

Fortunately,  voltage signal stays almost intact and can be 
considered a reliable phase reference, so current signals of the 
individual appliances are converted to FIT-PS representation, 
which takes the zero-crossing point (from negative to positive) 
in the voltage signal as a phase reference[10].  

 

B. operational modes extraction 
Some appliances have more than one operational mode in 

general, where we define an operational mode as a distinctive 
subset of the current signal of a certain device; that can 
comprise both transient state and part of a steady state. An 
example is depicted in Figure 3 for a refrigerator. 

 These operational modes differ from each other and must 
be taken into account when constructing the virtual aggregate 
signal. Each operational mode has a different power level in 
its transient or steady state or both, which can be used to 
choose the most appropriate one in the construction 
procedure. Simple structure appliances have only one 
operational mode in general, e.g., Lamp. 

The individual measurements of a certain appliance 
should be long enough  to be able to extract all of their 
operational modes. The extraction is done as follows: 

 
• For each event, we take a window starting at the event 

index and containing both transient state and a part of 
the steady state. 

• The power level in the steady state of that window is 
calculated, then compared with the levels of the 
previously extracted operational modes of the 
appliance; it will be added as a new mode if it differs 
from those previously detected. 

•  a new sequence number is assigned to the new mode 
and will be checked again in other occurrences (as the 
current signal drawn by some appliances will change 
its operational modes in a sequential manner) . 

  

Input 1: Operational modes of appliances
Input 2: vector of events 

i = i + 1

!" = !" + !%

Virtual aggregate signal !"

Generate individual signal !% Init: i = 1

Init: !"= noise

Figure 2. Construction algorithm 
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C. Event indices correction 
Dealing with faulty reference data is an inevitable problem 

with the vast majority of datasets, so we need to be sure that 
all events are precise to avoid errors when extracting 
operational modes. 

To correct an event index: 
• A window around the possible inaccurate  index  is taken, 

it should contain only one event, and be long enough to 
account for the supposed maximum error (to be set 
according to training data if possible). 

 
• The event type is checked, if it is an ‘off’ event, it will be 

flipped to unify the correction procedure.  
 

• The average between the maximum amplitude of the first 
few periods in the window and its global maximum is 
calculated and set as new threshold (yielding better 
accuracy for low power appliances compared to 
averaging on the peaks of the last periods in the window).  

 
•  The precise event index is the first index in the window 

where the amplitude exceeds the calculated threshold. 

III. NUMERICAL EXAMPLES AND TESTS  
In this section, Numerical experiments are to be conducted 

to test the hypothesis of "suitability of the resulted virtual 
aggregate signal for training and testing NILM algorithms ". 

 
To do that, the performance of standard NILM algorithms 

on  such generated data will be compared against their 
performance on an original aggregate signal that has the same 
scenario of events and appliances. Figure 4 shows a classical 
chain of processes for typical NILM system. 

The comparison will be conducted between the results of 
standard event detection, feature extraction and classification 
algorithms on both original aggregate measurements and 
constructed aggregate measurements. we will use own 
measurements since the available public datasets are 
incomplete for our purpose,  and to avoid any internal source 
of error in their reference data. 

 

 

A. Collecting single & aggregate measurements 
The measurement system developed previously at our lab 

[11] was used to collect individual and aggregate 
measurements; as it enables us to define the set of switching 
events beforehand. The sampling frequency is set to 4 KHz 
for both current and voltage signals. Those measurements are 
part of a public Dataset to be made available in the near future.   

 
Tab. II  contains a list of all appliances considered for our 

tests,   this chosen group includes high and low power 
appliances. 
 
The real measurements were conducted as follows: 

§ Single measurements for each appliance were 
taken with 80 pairs of On-Off events, each active 
cycle was kept running 10 seconds to get 
transient state and part of the steady state. 

§ Aggregate measurements, where appliance were 
switched On and Off randomly, but only 4 
appliances can be active on the same time at 
most. 

§ A minimum temporal distance of 3 seconds was 
kept between events. 

 The virtual aggregate measurements were then generated 
according to the same scenarios of events followed in the real 
ones. In Figure 5, an example of those measurements is 
depicted. 

Now that both types of measurements are available, we 
move to testing NILM tools. 
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Figure 3. Example of 3 operational modes of a refrigerator 
 

Figure 5. Original and constructed signals together (top), with 2 magnified 
reigns where they were identical (middle), and most different (bottom) 

 

Figure 4. Typical sequence of processes in NILM system 
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TABLE II.  LIST OF APPLIANCES 

ID NAME NOMINAL POWER (W) 
1 Radio 6 
2 Heat gun (setting 1) 820 
3 Router 9 
4 Black desk lamp 20 
5 Light bulb box 20 
6 Kettle 2100 
7 Black hairdryer (setting 1) 500 
8 Fan 22 
9 Rotary tool (Dremel) 30 

10 LED lamp 1 
 
 
A. Event Detection 

Two different event detectors were used here, the first one 
is based on the work of Hart [1], while the second is an FBE 
Event detector [12]. they were applied on the original 
measurements as well as the constructed ones, and the results 
are given in the tables III and IV respectively 

 
the following performance metrics were used: 

𝑃RSTUVV =
𝑇𝑃

𝐹𝑁 + 𝑇𝑃
				,				𝑃YRSTZ[Z\] =

𝑇𝑃
𝐹𝑃 + 𝑇𝑃

	 (6) 
 
where    TP is the number of true detected events, 
       FN is the number of missed events, 
       FP is the number of false alarms. 
 
The threshold for Hart Event detector was set to 15W as 

going below that will result in detecting too many false events 
due to the high variations of the noise. 

 Appliances below the chosen threshold were treated as 
noise in all event-detection tests since the comparison is the 
main goal here. For FBE detector, several thresholds were 
chosen and the results are shown in Table IV.  

from the tables, both event detectors show a slightly better 
performance on the constructed measurements (less than 5%). 

TABLE III.  HART EVENT DETECTOR RESULTS 

Signal Type Thr 
(W) 

Total 
Event  

TP FN FP Precall 
% 

Pprecision 
% 

Original 1 1600 1411 189 3417 88.19 29.23 
Constructed 1 1600 1448 152 5542 90.50 20.72 

Original 15  1120 958 162 31 85.54 96.87 
Constructed 15 1120 959 161 0 85.62 100 

 

TABLE IV.  FBE-BASED EVENT DETECTOR RESULTS 

Signal Type Thr 
(W) 

Total 
Event  

TP FN FP Precall 
% 

Pprecision 
% 

Original 1 1600 1439 161 135 89.94 91.42 
Constructed 1 1600 1480 120 97 92.50 93.85 

Original 5  1440 1285 155 53 89.24 96.04 
Constructed 5 1440 1322 118 7 91.81 99.47 

Original 15 1120 1113 7 37 99.38 96.78 
Constructed 15 1120 1090 26 0 97.32 100 

 
 

B. Feature extraction 

we started with a set of steady state features at first, as in 
most classical NILM literature[2,3], active and reactive 
powers P and Q were chosen, along with the mean power of 
the harmonics. 

if multiple appliance are active at the same time, a 
subtraction procedure is done at each event to extract a steady 
state window suitable for calculating those features of interest, 
as shown in Figure 6.  

 
while taking the phase and the transient state length into 

account (assuming that events are well separated which is the 
case for these measurements). 

Apparent, active and reactive powers can then be 
calculated as:   

Pb = Vdef 	∗ Idef 7  
P = Pb ∗ cos θ 8  
Q = Pb ∗ sin θ 9  

 
where θ  is the phase difference between voltage and 

current signals. 
A band-pass filter is applied on the current signal for each 

harmonic component fl,m = nfn,  where n is the harmonic 
number, and fn is the fundamental frequency. Then the mean 
harmonic power is given by: 

 
Pm = V	def 	∗ Im,def 10  

 
In Figure 6, we compare the selected steady-state  features: 

Pb, P, Q, PH, Po, Pp for two different appliances, a kettle which 
consumes high power (~ 2 KW), and a Radio that consumes 6 
W only, where in each sub-plot, the horizontal axis is for event 
indices while the vertical is for the power. 

while the signals (features) are not identical, yet they are 
very close to each other, which will be reflected in 
classification results in the next section. 

  
C. classification 

Two standard classifiers [13] were implemented to 
compare their performance on both types of measurements, 
the first one is based on a feed-forward neural network 
(FFNN) while the other one is a support vector machine 
(SVM) classifier. 

both classifiers were trained using extracted features from 
individual measurements, then tested on the original and 
constructed virtual measurements respectively. 

To simplify the classification process, a power threshold 
of  25 W was applied to divide the appliances into 2 groups: 
high power appliances and low power appliances; the features 
are then fed to the corresponding FFNN subnet (or SVM sub-
classifier respectively). 

In Table V and VI, results of both classifiers are listed. 
Both classifiers delivered slightly better results when 

applied on constructed measurements, which can be attributed 
to the higher noise level in the original measurements and the 
fact that their steady-state features may have more variations 
and outliers.  
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TABLE V.  PERFORMANCE OF FFNN CLASSIFIER 

Classifier: FFNN 
% High power applinces Low power appliances 

Original  96.9 87.9 
Constructed 100 89.6 

 
 

TABLE VI.  PERFORMANCE OF SVM CLASSIFIER 

                   Classifier: SVM 
 High power applinces Low power appliances 

% RBF Linear Polynomial RBF Linear Polynomial 
Original 89.7 90.6 96.3 85.4 81.9 86.3 

Constructed 99.4 82.2 100 90.6 78.8 90.6 
 
 
 
 

 
 
 

 
 

 

 
In Figure 7, the detailed confusion matrices for FFNN 

classifier are also shown, where the two tables on the right side 
are for constructed measurements, and the tables on the left 
side are for original measurements. 

 
FFNN correctly classified nearly all of the samples in the 

test set on both types of measurements in the high power 
category. Although the overall accuracy rate is very close in 
low power category, yet a closer look yields differences in 
misclassification rate among the individual appliances, for 
example: the Radio (ID=1) was  misclassified as Router only 
once in the original measurements table, while it was 
misclassified 8 times as Router in the constructed 
measurements table. This can be attributed to the difference 
between the modeled additive noise and the real one. 

 
 
 
 

Figure 6. steady state features comparison for : a high power appliance (Kettle, left), a low power appliance (Radio, right) 
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IV. CONCLUSION AND FUTURE WORK 
This paper presents a promising approach for 

constructing virtual aggregate measurements from original 
single measurements, enabling better use of available NILM 
datasets for training and testing Disaggregation algorithms. 

Application of standard algorithms for event detection 
and classification on both types of measurements showed 
very similar performance. In the future, the noise model will 
be improved further and virtual single measurements will be 
tested in a similar manner. 

The concept of phase-preserving summation/subtraction 
will be also used in different disaggregation approaches, e.g., 
predictive maintenance. 
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