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Abstract—Sensing Matrix Optimization (SMO) in Compressed
Sensing (CS) systems allows improved performance in the un-
derlying signal decoding. Data-driven methods based on deep
learning algorithms have opened a new horizon for SMO. The
matrix is designed jointly with a decoder network that performs
compressed learning tasks. This design paradigm, named End-
to-End (E2E) optimization, comprises two parts: the sensing
layer that models the acquisition system and the computational
decoder. However, SMO in the E2E network has two main
issues: i) it suffers from the vanishing of the gradient since
the sensing matrix is the first layer of the network, and ii)
there is no interpretability in the SMO, resulting in poorly
compressed acquisition. To address these issues, we proposed
a regularization function that gives some interpretability to
the designed matrix and adds an inductive bias in the SMO.
The regularization function is based on the Kullback-Leiber
Divergence (KLD), which aims to approximate the distribution
of the compressed measurements to a prior distribution. Thus,
the sensing matrix can concentrate or spread the distribution
of the compressed measurements according to the chosen prior
distribution. We obtained optimal performance by concentrating
the distribution in the recovery task, while in the classification
task, the improvement was obtained by increasing the variance
of the distribution. We validate the proposed regularized E2E
method in general CS scenarios, such as in the Coded Aperture
(CA) design for the Single-Pixel Camera (SPC) and Compressive
Seismic Acquisition (CSA) geometry design.

Index Terms—Sensing Matrix Optimization; End-to-End op-
timization; Compressive Sensing; Compressive Imaging; Com-
pressive Seismic Acquisition.

I. INTRODUCTION

Compressive Sensing (CS) [1] states that a signal x ∈ Rn

can be recovered from a small set of observations y ∈ Rm

such that m ≪ n as y = Hϕx + w, where Hϕ ∈ Rm×n

is the measurement matrix, ϕ denotes the free-parameters of
the system, and w ∈ Rm is additive noise in the acquisition.
Decoding the measurements to obtain the underlying signal x

requires additional knowledge to solve this ill-posed problem.
While a plethora of decoding algorithms have been proposed,
such as those based on sparsity-promoting solution [2] [3],
dictionary learning [4], low-rank priors [5], or recent data-
driven methods based on deep learning [6] [7]. Comple-
mentary to algorithm development, Sensing Matrix Optimiza-
tion (SMO) has remarkably improved decoding performance
[8]. Traditional design methods are based on improving the
mutual coherence of the sensing matrix as well as the the
representation basis [9], for block-sparse signals [10], joint
dictionary and sensing optimization [11] or the restricted
isometry property [12]. These designs are mostly based on
sparse representations of the desired signal x, which in practice
might not be sufficient to describe the signal [13]. Thus, recent
data-driven methods have enabled SMO based on data priors,
i.e., the SMO is performed depending on the training dataset.
The End-to-End (E2E) learning of the sensing matrix and
the decoding process by a Deep Neural Network (DNN) has
significantly improved the decoding performance. Here, the
free parameters of the sensing matrix ϕ are trainable variables
jointly optimized with the parameters of DNN that perform the
decoding task. This E2E optimization has been successfully
applied in CS [14]–[16], computational imaging where the
free-parameters are optical coding elements such as Coded
Aperture (CA) [17]–[19], diffractive optical elements [20]–
[22] or in compressive seismic acquisition geometries, where
the design is performed over the receivers or sensors [23].
However, the SMO in the E2E method has the following
issues. i) Vanishing of the gradient: Since the sensing is
performed in the first layer of the network, the gradient in
that layer is smaller than the decoding network. Thus, the
performance relies more on the decoder network parameters
than the trained sensing matrix. ii) Lack of interpretability:
traditional SMO results in interpretable optimization in terms
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of the mutual incoherence [24] or the eigenvalues concentra-
tion [25]. However, the resulting sensing matrix in the E2E
methods does not have an interpretation other than the one
adapted to the training data.

In this work, we propose to address these issues by in-
cluding a regularization in the loss function of the E2E
network. Here, we propose a regularization based on the
Kullback-Leiber Divergence (KLD) over the distribution of the
compressed measurements. The KLD is employed to measure
the difference between two probability distributions. Here, we
employed the KLD to approximate the distribution of the
measurements to a chosen prior distribution. This function has
been widely used in DNN to regularize latent representation
distribution of the data, as in variational autoencoders [26] or
in generative models [27]. One of the reasons for the wide
use of this function in DNN regularization is the closed-form
solution of the divergence for Gaussian distributions [26] and
Laplacian distributions [28], which depends on the mean and
variance of the data and prior distribution. We study the effect
of the prior distribution for two computational tasks, recovery
and classification. We found that smaller variance, i.e., the
sensing matrix represents the data in a concentrated distri-
bution, gives better reconstruction performance. While higher
variance produces more accurate classification predictions.
Thus, the regularizer can be set to obtain optimal performance
in different computational tasks. The main interpretation for
the recovery case comes from contractive autoencoders [29],
which states that the original data is better represented in
an invariant low-dimensional manifold. The intuition of the
second behavior is that more separated measurements allow
better identification of the classes by the decoding network.
Preliminary results on this regularizer applied to compressive
imaging were presented in [30].

We evaluate the proposed regularized E2E method in three
cases. In a general CS setting where Hϕ is a dense matrix,
and ϕ are all the entries of the sensing matrix. The second
case is the Single-Pixel Camera (SPC) [31], which is one of
the most common CS systems of imaging applications. Here
the sensing matrix entries are binary values representing a CA.
The last setting is a Compressive Seismic Acquisition (CSA)
model, where the sensing matrix is a diagonal matrix in which
entries are binary values denoting the removed receivers.

The rest of the paper is organized as follows. In section
II the E2E model is established, III presents the proposed
divergence-based regularizers for the E2E training. Section IV
shows the mathematical models of the CS systems used to
validate the proposed method. Section V contains the numeri-
cal simulations of the proposed method and comparisons with
non-regularized models. Finally, in section VI the conclusions
of this work are presented.

II. END-TO-END OPTIMIZATION

With new developments in data-driven algorithms and deep
learning, a method called End-to-End optimization (E2E) has
been developed to optimize the sensing procedure and the
decoding process jointly. In this approach, the sensing model

Hϕ is cast into a differentiable neural network layer, where
the free parameters ϕ are the weights of this layer, named
Sensing Layer (SL). The SL is coupled to a neural network
that receives as input the compressive measurements and
performs the decoding operator, which is called Computational
Decoder (CD), denoted by the operator Nθ where θ are the
trainable parameters of the network. Considering the dataset
{xk,dk}Kk=1 where dk is the ground-truth, e.g., in the recovery
case dk is the same input image xk and in classification dk

is the image label. Then, the E2E optimization problem is the
following

{ϕ̂, θ̂} = argmin
ϕ,θ

1

K

K∑
k=1

L(Nθ(Hϕxk),dk), (1)

where L is the loss function of the computational task. The
main goal is to update the sensing matrix and the decoder
parameters according to the loss function task. Particularly,
following the chain rule, the gradient of the loss function with
respect to the SL trainable parameters is

∂L
∂ϕ

=
1

K

K∑
k=1

∂L
∂θ

∂Nθ

∂yk

∂yk

∂ϕ
, (2)

where yk = Hϕxk. While the network is training, the
gradient of the loss function with respect to the CD parameters
∂L
∂θ is reduced due to the gradient descent optimizer of the
network. Consequently, the gradient of the SL parameters
decreases even more; thus, the optimization relies more on
the CD than on the SL.

III. PROPOSED REGULARIZATION FUNCTION

We propose a regularization function for E2E optimization
based on KLD to approximate the distribution of the mea-
surements to a prior distribution. First, define the matrices
X ∈ RK×N and Y ∈ RK×M containing the set of the
high-dimensional signal and compressed measurements, re-
spectively, i.e., X = [xT

1 , . . . ,x
T
K ]T and Y = [yT

1 , . . . ,y
T
K ]T .

The regularized optimization problem is given by

{θ⋆,ϕ⋆} =argmin
θ,ϕ

1

K

K∑
k=1

L (Nθ(Hϕxk),dk) +R(Y). (3)

This type of regularization function is based on the idea
behind variational auto-encoders [26]. Particularly, this reg-
ularization aims to approximate the probability distribution
of the measurements set denoted by the posterior distribution
qϕ(Y|X), to a prior distribution pβ(Y) where β is the set of
parameters defining the distribution. This regularizer is defined
as

RD(Y) = D (qϕ(Y|X)∥pβ(Y)) , (4)

where D denotes the divergence function. Several divergences
have been used as loss functions in neural network train-
ing. The most common is the Kullback-Leiber Divergence
(KLD), employed in variational-autoencoders [26], genera-
tive adversarial networks [27], self-supervised learning [32]
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among others. Particularly, the KLD is defined as follows,
given two probability distributions P (x) and Q(x), we have
DKL(P∥Q) =

∫
P (x) log

(
P (x)
Q(x)

)
dx. One of the main rea-

sons the KLD is widely used is that it has a closed-form
solution when P (x) and Q(x) are Gaussian or Laplacian
distributions [26] [28]. In these cases, the parameters for the
prior distribution pβ(Y) are β = {µp, σp}, where µp is the
mean value and σp is the variance of the distribution. For
the distribution of the measurements qϕ(Y∥X) we compute
statistics of the measurements, where the mean µY ∈ Rm

and variance σY ∈ Rm
+ are computed pixel-wise across the

measurements training batch. For the Gaussian case, the KLD-
based regularizer is defined as

RKL−G(Y) = log

(
σY

σp

)
− σ2

Y + (µY − µp)
2

2σ2
p

+
1

2
, (5)

and for the Laplacian assumption, the KLD-based regularizer
is given by

RKL−L(Y) = log

(
σY

σp

)
−σp + e

(
−|µp−µY|

σp

)
+ |µp − µY|

σp
−1.

(6)
The mean and variance of the prior distribution are hyper-

parameters that control the effect of the regularizers. There-
fore, those hyperparameters must be tuned to obtain the
desired goal. The computational complexity of employing
these regularization functions in the E2E optimization relies
only on computing element-wise logarithm and its correspond-
ing derivative; thus, they do not increase the computational
complexity significantly with respect to the baseline E2E

IV. COMPRESSIVE SENSING SYSTEM MODELS

In this section, we present the compressive sensing system
models to validate the proposed coding design in the E2E
framework.

A. Single Pixel Camera

The SPC uses a set of CA ϕ = {ϕp}Pp=1 that spatially
modulate all the information of the scene, where the index p
denotes each captured snapshot. In particular, it is a binary pat-
tern in which we employ values {−1, 1} as suggested in [33].
Mathematically, the sensing matrix is built as the concatena-
tion of the vectorized CA of each shot Hϕ = [ϕT

1 , . . . ,ϕ
T
P ]

T

where P denotes the total number of snapshots. Then, the
sensing model is given by

y = Hϕx+w, (7)

where y ∈ RP is the compressed SPC measurements. An
important factor in the SPC is the compression ratio γ defined
as γ = P

N . Here, the optimized parameters are the CA. Since
its entries are binary-valued, we add the regularization term
proposed in [17] in the optimization problem in (3), which

promotes this physical constraint. The E2E optimization for
this case is the following

{θ⋆, ϕ⋆} =argmin
θ,ϕ

1

K

K∑
k=1

L (Nθ(Hϕxk),dk) +R(Y)+

ρRi(ϕ), (8)

where ρ is a regularization parameter and the regularization
Ri(ϕ) =

∑
ij(1− ϕij)

2(1 + ϕij)
2.

Fig. 1. Recovery performance for the general CS scenario employing the
KLD regularizers with the Gaussian (left) and Laplacian (right) cases.

B. Compressive seismic acquisition

The cross-spread is a fundamental seismic acquisition ge-
ometry involving one linear arrangement of shot points and
receivers perpendicular to each other [34] [35]. To math-
ematically represent the seismic data acquired by a cross-
spread, let X ∈ RI1×I2×I3 be a data cube where each
dimension represents I1 time samples, I2 receivers, and I3
number of shots. However, due to different reasons, such
as economic limitations and environmental constraints, the
observed seismic field data is irregular and incomplete along
the receiver dimension, leading to a recovery task. To simulate
the undersampled data, let ϕ ∈ {0, 1}I2 be a sampling
vector with dimensions equal to the number of receivers. The
entries of ϕ, denoted as ϕi, define whether the information is
acquired. If ϕi = 0, the receiver is removed; otherwise, ϕi = 1,
and it is acquired. The diagonalization of the sampling vector
derives the diagonal sampling matrix as Hϕ = diag(ϕ). Once
Hϕ is built, the undersampled measurements are obtained via
n-mode product(×n) defined in [36]

Y = X ×2 Hϕ, (9)

where Eq. 9 represents the 2-mode product between the
full data X and Hϕ. The undersampled measurements Y ∈
RI1×I2×I3 contains the removed receivers as columns in zero
for each shot.

A conventional relation that determines the number of
acquired receivers by the sensing matrix is the transmittance,
calculated as

δϕ =
M∑
i=1

ϕi

I2
. (10)

For instance, when δϕ = 0.7, the 70% of the total receivers are
acquired. The E2E optimization is mathematically expressed
as
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{ϕ̂, θ̂} = argmin
ϕ,θ

L (Nθ (X ×2 Hϕ) ,X ) + ρR (ϕ) , (11)

where the regularization R (ϕ) = (δ0 − δϕ)
2 controls the

transmittance to converge to a desired value δ0, and ρ rep-
resents a weight parameter.

V. SIMULATIONS AND RESULTS

The implementation of the method was performed on Ten-
sorflow and Keras libraries [37]. We trained the E2E network
for 100 epochs for all the experiments, halving the learning
rate every 40 epochs. The Adam optimizer [38] was employed,
setting its hyperparameter with the default values. The input of
each network was the transpose operation of the sensing matrix
to the measurements, i.e., HT

ϕyk. To evaluate the performance
on the classification task, we employ the accuracy metric
defined as

A =
1

C

C∑
c=1

TPc

Totalc
,

where C is the number of the classes and TP are the True
Positive. For the recovery task, we employ the Peak-Signal-
to-Noise-Ratio (PSNR) defined as

PSNR = 10 log10

(
max(x)

MSE(x, x̂)

)
,

where max returns the maximum value of x and MSE(·, ·) is
the mean squared error.

A. General compressive sensing case

In the first experiment to validate the performance of
the proposed regularized E2E network, we study a general
compressive imaging scenario, not imposing any physical and
structural meaning on the sensing matrix Hϕ. Here we use a
compression ratio of 10%. The MNIST dataset of handwritten
digits was employed. This dataset contains 60000 training
examples and 10000 for testing. We upscale the image to
32 × 32. For the CD model, we employed a fully connected
layer.

We analyze the effect of the prior distribution’s mean and
variance (µp, σp) on the network performance. Here, we vary
µp from -2 to 2, and σp was changed from 0.1 to 2.0, taking
five equispaced values. The results of this experiment are
shown in Figure 1 where the test set reconstruction PSNR
is plotted in terms of µp and σp. The optimal reconstruction
PSNR values are obtained at variances close to 1.0 and for
means close to 0. These results suggest better reconstruction
performance is obtained by concentrating on the measure-
ment distribution. The main interpretation is that reducing the
representation space can improve the CD performance since
the variability of the data is reduced. Some visual results of
the reconstructions test set examples are shown in Figure 2
employing the best models for each regularization function,
where an improvement is presented in regularized models
compared with the non-regularized ones.

27.84 [dB]PSNR [dB]
Ground-Truth Baseline KL-Gaussian KL-Laplacian

31.08 [dB] 30.55 [dB]

27.84 [dB]PSNR [dB] 30.48 [dB] 30.95 [dB]

Fig. 2. Visual results of two reconstructed MNIST test images for the
non-regularized model and the models trained with the KL-Gaussian and

KL-Laplacian regularizers.

Fig. 3. Recovery performance for the SPC system the KLD regularizers
with the Gaussian (left) and Laplacian (right) cases.

B. Single Pixel Camera Setting

For the SPC, we performed experiments on classification
and recovery tasks. The classification is performed directly
from the compressed measurements without reconstructing the
underlying scene. During the training of the E2E network, the
parameter of the physical constraint regularizer ρ was dynam-
ically updated during training as suggested in [17], which in
the first epochs the ρ is very low, thus not constraining the
training of the SL and it is increased to obtain a binary CA.
For both the recovery and classification tasks, we employed
the Fashion MNIST dataset with 60000 images for training
and 10000 for testing. All images were resized to 32×32.

Recovery experiments: For this experiment, we vary the
values of µp from -2 to 2, and σp was changed from 0.1 to
2.0, taking five equispaced values. The CD in this experiment
is a UNET [39] with five downsampling and five upsampling
blocks. The results of this experiment are shown in Figure 3.
Here, the performance obtained is similar to that obtained in
the CS case, where lower variance yields better reconstruction
performance. Also, similar to the results in Figure 1, the
optimal performance is obtained in µp = 0, following the
concept of batch normalization where the centered output
distribution yields more stable training and better performance
[40]. Figure 4 presents visual results of two reconstructed test
images where the regularized models outperform the baseline
model.

Classification experiments: Here, we evaluate the proposed
regularization functions on the classification high-level task.
The CD is a Mobilnet-V2 [41], which is a lightweight classi-
fication network. The same values in the experiment of Figure

75Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing



TABLE I. OVERALL TEST PERFORMANCE FOR EVERY SETTING. IN BOLD AND UNDERLINED ARE SHOWN THE BEST RESULTS OF EACH EXPERIMENT.

System Dataset Task Metric Model
No Regularized KL-Gaussian KL-Laplacian

General Compressive Sensing MNIST Recovery PSNR 31.87 32.56 32.42

SPC Fashion MNIST Recovery PSNR 28.35 29.49 28.60
Fashion MNIST Classification Accuracy 0.866 0.886 0.881

CSA SEAM Phase II Recovery PSNR 34.27 37.38 41.22

Ground-Truth Baseline KL-Gaussian KL-Laplacian
30.95 [dB]27.77 [dB]PSNR [dB]

PSNR [dB] 26.61 [dB] 25.87 [dB]

25.57 [dB]

24.64 [dB]

Fig. 4. Visual results of the reconstructed image of the Fashion MNIST
dataset in SPC setting for the non-regularized model and the models trained

with the KL-Gaussian and KL-Laplacian regularizers.

Fig. 5. Classification performance for the SPC system the KLD regularizers
with the Gaussian (left) and Laplacian (right) cases.

3 of µp and σp were used in this scenario. The results are
shown in Figure 5, where an opposite performance is obtained
compared to the recovery case. Higher variance gives better
classification performance.

C. Compressive seismic acquisition setting

For the compressive seismic acquisition, we employed the
synthetic dataset SEAM Phase II built by the SEG Advanced
Modeling Program (SEAM) during its second project, named
“SEAM Phase II–Land Seismic Challenges”. The Foothills
model is focused on mountainous regions with sharp to-
pography at the surface and high geological complexity at
depth, which makes this data set a challenge for seismic data
reconstruction [42]. The seismic survey covers a rectangular
patch of 1.5 × 1.2 km with a total sampled depth of 4100
ms. The training and testing datasets comprise 381 images
of 128×128. The transmittance value was set to δ0 = 0.6.
The CD network is a convolutional neural network with
5 convolutional layers with 128 filters each. Here we set
for both regularizers µp = 0.5 and σp = 1.6. Figure 6
shows the reconstruction of two seismic test data, where the
best results are obtained by the KL-Laplacian regularization.
Nevertheless, the KL-Guassian model outperforms the non-

Ground-Truth
Baseline KL-Gaussian KL-Laplacian

PSNR [dB] 34.32 [dB]34.73 [dB] 37.27[dB]33.86 [dB]

PSNR [dB] 33.67 [dB] 36.58[dB]32.73 [dB]

Fig. 6. Visual results of the reconstructed seismic data for the
non-regularized model and the models trained with the KL-Gaussian and

KL-Laplacian regularizers.

regularized model. Also, it is shown the subsampling vector
for each model.

Finally, summarizing the performance of the aforemen-
tioned experiments, for the general CS scenario, the SPC and
the CSA, Table I presents the test set performance for every
experiment. In the CS case, the KL-Gaussian performs better
at obtaining almost 1 dB than the non-regularized training.
Both regularizers improve the baseline model for the SPC
in the recovery task. Similarly, in classification, the optimal
performance was obtained by the KL-Gaussian, gaining up
to 2% respect to the base E2E model. Finally, in CSA, the
KL-Lapacian significantly improved up to 7 [dB] in recovery
performance.

VI. CONCLUSION AND FUTURE WORK

We proposed two regularizations based on the KLD end-
to-end joint sensing matrix optimization and decoding. The
proposed regularizations approximate the distribution of the
measurements set to a prior distribution. We show that the
low-variance and zero-mean prior distributions yield optimal
recovery since they concentrate the training data in the low-
dimensional space, thus easing the decoding process. While
for the classification task, high-variance and zero-mean priors
provide improved classification performance since spreading
the distribution allows easier class identification by the de-
coding network. We validate the performance of the proposed
design in a general compressed-sensing case (unconstrained
and unstructured sensing matrix), in the single-pixel camera,
obtaining up to 1 [dB] and 2% gain in recovery and clas-
sification, and for compressive seismic acquisition showing
improvements of up to 7 [dB].

76Copyright (c) IARIA, 2023.     ISBN:  978-1-68558-057-5

SIGNAL 2023 : The Eighth International Conference on Advances in Signal, Image and Video Processing



ACKNOWLEDGMENT

This work was supported by project 110287780575 through
the agreement 785-2019 between the Agencia Nacional de
Hidrocarburos and the Ministerio de Ciencia, Tecnologı́a e
Innovacion and Fondo Nacional de Financiamiento para la
Ciencia, la Tecnologı́a y la Innovacion Francisco José de
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