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Abstract—The presented paper deals with a stochastic 

simulation of snow cover. This study aims to find the best 

settings of a stochastic simulation to be able to determine the 

parameters of the snow cover for any point of a given territory. 

Next, basic statistical analyses of parameters are documented, 

including an analysis of relationships between the snow 

parameters and altitude, slope and aspect. Most current 

methods of spatial interpolation and multifactor evaluation are 

based on the weighted regression relationships. That leads to 

smooth results and degrades our ability to properly evaluate 

the existence and the probability of extreme situations and 

their impact on the research problem. Neither alternative 

techniques use neural networks to bring major improvements. 

This research is exploring the possibility of stochastic 

simulation to assess the development of values, evaluating the 

occurrence of extreme events, monitoring the probability of 

exceeding the set limits, compared with application kriging 

errors, the use of additional qualitative information. The 

variants of conditional stochastic simulation were tested in 

particular. The application area was chosen on data of snow 

cover, many land-bound factors and the results are the regular 

mapping of forest damage. The aim is to compare and 

determine the best method of interpolation of snow cover, 

which was succeeded.  
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I. INTRODUCTION 

Geostatistical simulation is a well-known approach for 
modeling spatial uncertainty of a regionalized variable 
[3][7][8], by generating a high number of plausible 
realizations of a random function, conditional to the 
experimental data. Most interpolation methods (including 
kriging) give smooth images of the spatial variable while a 
simulation tries to mimic the true variability described by 
second order functions like the covariance or the variogram 
[11].  

Snow is a dynamic natural element, the distribution of 
which is largely controlled by latitude and altitude. The 
regional extent of snow cover is an important variable in 
hydrology. In the hydrological cycle, snow represents 
seasonal water storage from where water is rapidly released 
during the melting period [12]. Prediction of snow cover is 
important for agriculture and flood prevention.  

One of the main factors governing the distribution of 
snow properties is topography [2][10]. Although snow 
property data such as snow-water equivalent are often 
available in considerable temporal detail from a single point, 

the spatial resolution of snow property data is poor [13]. 
Often, only a few point measurements are available in the 
catchment of interest. Because of the extreme spatial 
variability of snow properties, small samples of these point 
data may not be representative of spatial patterns and spatial 
averages [5][6]. 

 

II. METHODOLOGY 

Simulation is broadly defined as the process of 
replicating reality using a model. In geostatistics, simulation 
is the realization of a random function that has the same 
statistical features as the sample data used to generate it 
(measured by the mean, variance, and semivariogram). 
Gaussian geostatistical simulation (GGS), more specifically, 
is suitable for continuous data and assumes that the data, or 
a transformation of the data, has a normal (Gaussian) 
distribution. The main assumption behind GGS is that the 
data is stationary—the mean, variance, and spatial structure 
(semivariogram) do not change over the spatial domain of 
the data. Another key assumption of GGS is that the random 
function being modeled is a multivariate Gaussian random 
function [1]. 

Stochastic simulation differs from kriging in two ways, 
as follows: 

 Kriging provides the ―best‖, that is, minimum 
variance, local estimates without regard to the 
resulting statistics of those estimates. In 
simulation, however, the aim is to reproduce 
the global statistics and maintain the texture of 
the variation, and these take precedence over 
local accuracy. 

 A kriged estimate at any place has associated 
with it a variance, and hence an uncertainty, 
that is independent of estimates at all other 
places. Confidence about it is usually based on 
an assumed Gaussian distribution with the 
mean equal to the estimate and a cumulative 
distribution function [14]. 

Increased use of GGS follows a trend in geostatistical 
practice that emphasizes the characterization of uncertainty 
for decision and risk analysis, rather than producing the best 
unbiased prediction for each unsampled location (as is done 
with kriging), which is more suited to showing global trends 
in the data [4][5]. Simulation also overcomes the problem of 
conditional bias in kriged estimates (high-value areas are 
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typically underpredicted, while low-value areas are usually 
overpredicted). 

Geostatistical simulation (GS) generates multiple, 
equally probable representations of the spatial distribution 
of the attribute under study. These representations provide a 
way to measure uncertainty for the unsampled locations 
taken all together in space, rather than one by one (as 
measured by the kriging variance). Moreover, the kriging 
variance is usually independent of the data values and 
generally cannot be used as a measure of estimation 
accuracy. On the other hand, estimation accuracy can be 
measured by building distributions of estimated values for 
unsampled locations using multiple simulated realizations 
that are built from a Simple Kriging model using input data 
that is normally distributed (that is, data that either is 
normally distributed or has been transformed using a normal 
score or other type of transformation). These distributions of 
uncertainty are key to risk assessment and decision analysis 
that uses the estimated data values [1]. 

GS assumes that the data is normally distributed, which 
rarely occurs in practice. A normal score transformation is 
performed on the data so that it will follow a standard 
normal distribution. Simulations are then run on this 
normally distributed data, and the results are back-
transformed to obtain simulated output in the original units. 
When Simple kriging is performed on normally distributed 
data, it provides a kriging estimate and variance that fully 
define the conditional distribution at each location in the 
study area. This allows one to draw simulated realizations of 
the random function (the unknown, sampled surface) 
knowing only these two parameters at every location, and is 
the reason that GGS is based on a Simple kriging model and 
normally distributed data. 

Results from simulation studies should not depend on 
the number of realizations that were generated. One way to 
determine how many realizations to generate is to compare 
the statistics for different numbers of realizations in a small 
portion of the data domain (a subset is used to save time). 
The statistics tend toward a fixed value as the number of 
realizations increases. 

In conditional simulation, however, the generator must 
return the data values at places where we know them in 
addition to creating plausible values of Z(x) elsewhere. We 
condition the simulation on the sampled data, z(xi), 
i=1,2,...,N. Denote the conditionally simulated values by 
zC

*
(xj), j=1,2,...,T. Where we have data we want the 

simulated values to be the same: 
 

zC
*
(xi) = z(xi) for all i=1,2,...,N.  (1) 

 
Elsewhere, zC

*
(x) may depart from true but unknown 

values in accord with the model of spatial dependence 
adopted [14]. 

Consider what happens when we krige Z at x0 where we 
have no measurement. The true value, z(x0), is estimated by 
Ẑ(x0) with an error z(x0)- Ẑ(x0), which is unknown: 

 
z(x0) = Ẑ(x0) + { z(x0)- Ẑ(x0) }  (2) 

 
A characteristic of kriging is that the error is 

independent of the estimate, that is 
 

E[Ẑ(y){z(x)- Ẑ(x)}] = 0 for all x,y  (3) 
 

This feature is used to condition the simulation. 
We create a simulated field from the same covariance 

function or variogram as that of the conditioning data to 
give values zS

*
(xj), j=1,2,...,T, that include the sampling 

points, xi, i=1,2,...,N. When we krige at x0 from the 
simulated values at the sampling points to give an estimate 
ẐS

*
(x0). Its error, zS

*
(x0)- ẐS

*
(x0), comes from the same 

distribution as the kriging error in equation (2), yet the two 
are independent. We can use it to replace the kriging error to 
give our conditionally simulated value as 

 
zC

*
(x0) = Ẑ(x0) + { zS

*
(x0)- ẐS

*
(x0)}  (4) 

 
The result has the properties we desire, as below [14]. 
1. The simulated values are realizations of a random 

process with the same expectation as original: 
 

E[ẐS
*
(x)] = E[Z(x)] = µ for all x  (5) 

  
where µ is the mean. 

2. The simulated value should have the same 
variogram as the original. 

3. At the data points the kriging errors z(x0)- Ẑ(x0) and 
zS

*
(x0)- ẐS

*
(x0) are 0, and zC

*
(x0) = z(x0) 

 
Conditional simulation is more appropriate than kriging 

where our interest is in the local variability of the property 
and too much information would be lost by the smoothing 
effect of kriging. A suite of conditional simulations also 
provides a measure of uncertainty about the spatial 
distribution of the property of interest [14]. 

 

III. PILOT AREA 

The pilot area is defined by the Šance catchment. It is 
located in the Frýdek-Mistek district. Šance reservoir was 
constructed on the upper course of the river Ostravice. All 
water drains to the river Odra. 

The catchment network is defined by a regular grid of 2 
x 2 km oriented along the axes of the coordinate system S-
JTSK, which in total contains 52 squares. The grid is used 
for the systematic schema of sampling. Representative 
places are established inside each square cell. At least one 
place represents an open land and another place represents a 
forested land. A set of measurements (52) is performed in 
each representative place (around the point). The final 
sample data represents an average of all measured values 
(excluding outliers) in the location. A two kilometer step 
was selected. Treeless (open) and forested areas are carried 
out in one measurement in squares.  
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IV. EXPLORATORY DATA ANALYSIS 

It was decided on the basis of differences in the data (in 
the homogeneity file), and test consensus of the medians to 
obtain the corresponding results. It will be necessary to 
perform a statistical analysis for each area (open, forested) 
separately. Figure 2 demonstrates the systematic difference 
between average snow heights for two types of lands. The 
figure also depicts large differences in snow cover among 
years. It is therefore advisable to separate the processing of 
data from different measurement campaigns. 

Result of exploratory analysis is the statistical analysis of 
snow cover parameters. All results are largely influenced by 
time (a year and campaign measurements). Appraise: the 
snow covers were abundant in 2006; therefore parameters for 

each snow have good statistical significance. On the 
contrary, the snow covers were poor in 2008; therefore 
statistics of measured data do not have a very high predictive 
ability. Most data has a moderately leftward distribution. In 
four cases, the snow density parameter has of rightward 
distribution. The box plot is part of processing. It shows both 
the progress of time and also the count of extreme outliers 
during the campaign. Progress was the highest for height of 
snow in 2006, and then decreased in 2007. Variability of 
water parameters is similar to the snow height. It can also be 
seen at the extreme parameter values, whose occurrence is 
due to the fact that large amounts of snow and the current 
weather conditions, that especially the melting and 
recrystallization processes have a significant effect on the 
local density of snow. 

A further part of EDA investigates normality of data. 
Most interpolation methods are based on linear estimates 
and require a normal distribution of sample data. If data fails 
in normality testing it is necessary to make an appropriate 
data transformation to reach the normal distribution. The 
following methods of transformation were tested: natural 
logarithm transformation, the transformation of the square 
and power transformation using a linear interpolation 
coefficient of skewness, which approximates the optimal 
value of the constant transformation estimate based on 
linear interpolation [9]. The last method is chosen as the 
best transformation. 

During testing of the parameters of snow, it was found 
that altitude played the main role. This is particularly the 
existence of extreme outliers in Lysá Mountain and Smrk 
Mountain. The terrain factor in comparison with the 
individual characteristics of snow cover constitutes an 
important element in studying and evaluating the results.  

Furthermore correlation and regression analysis were 
performed of relations between local morphological 
characteristics (altitude, slope and orientation) and snow 

Fig. 1. Definition of network. 

Fig. 2. Average of snow cover in time series. 
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parameters. The results confirmed a clear dependence of the 
amount of snow on the altitude, and showed a partial 
dependence on slope and orientation. 

V. STOCHASTIC SIMULATION 

Interpolation is carried out separately for the open and 
forested areas, according to the results of exploratory 
statistics. We compared these methods: simple kriging, 
ordinary kriging, universal kriging, simple cokriging, 
ordinary cokriging and universal cokriging. Interpolation 
results visually compared the isolines. We examine 
development of the shapes of contour lines and their 
credibility, especially in border areas. Furthermore, the 
methods explored relationship of known (measured) values 
in the basin. 

We selected the stochastic simulation for height of snow. 
It was chosen due to its better local estimation ability than 
classical interpolation methods. This claim can prove the 
following figure (Fig.3), from which it is evident. 
Simulation provides better and more exact results than the 
methods of approximation, which leads to smoothing values 
even with a known value.  

The simulation was carried out with software products 
such as ArcGIS 10 and SGeMS. 

The stochastic simulation was performed with software 
ArcGIS 10. Gaussian geostatistical simulation was chosen 
as the stochastic simulation. These parameters (Table I.) 
configured for simple kriging. Simple kriging is a necessary 
condition for simulation.  

TABLE I.   PARAMETERS OF VARIOGRAM 

Parameter Value 

Lag 
542 m (according to the minimal 
distance Among locations)  

Nugget 0  

Number of lags 8  

Angle tolerance 22.5 °  

Minimal Range 2500 

Maximal range 4200 

Direction of maximum range 22° 

Direction of minimum range 112° 

 
 

The next step was another parameter directly for 
simulation.  

Settings:  
1. Simple kriging 
2. Number of realization: 300 (1000) 
3. Input feature: snow cover  
4. Conditional field: height of snow 
5. Cell size: 10 

 
 
 
 

Fig. 3. Interpolation methods. 
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TABLE II.   PREDICTION ERRORS OF SIMPLE KRIGING 

Parameter Value 

ME -1,646 

RMS 19,302 

ASE 18,961 

MS -0,065 

RMSS 1,021 

 
A stochastic simulation result follows in picture (Fig.6).  
 
Of course, the higher number of realizations is 

simulation results more accuracy and better reflects the 
trend in the area. The example simulations are compared 
with the number 300 and 1000 implementation. The 
simulation with the number 1000 is seen repeating the 
beginning smoothing interpolation, but in comparison with 
the spline or kriging method it is a negligible problem. 

We solve the stochastic simulation because of its good 
explanatory power at the measurement point.  

Stochastic simulation generally gives better results than 
the conventional interpolation method. This assertion is 
based on the comparison of interpolation methods to 
stochastic simulations. 

Stochastic simulation does not produce better results for 
the determination of the mean on the ground, but it provides 
the necessary opportunity to determine the probability of 
exceeding certain limits. These limits are important to the 
application area (for example, height of snow or water 
supply, causing a significant increase in crown fractures and 
fallen trees). 

 
Fig. 5. Graph of prediction. 

Fig. 4. Error plot. 

Fig. 6. Stochastic simulation in ArcGIS. 
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Fig. 7. Stochastic simulation in SGeMS. 

VI. CONCLUSION AND FUTURE WORK 

Majority users use standard interpolation methods and 
takes at face value and we want to show that there are other 
methods that can provide better results. Of course, depends 
on the user which method he chooses.  

When processing data, we should not forget the basic 
statistics of data. Some of these statistics are either 
completely omitted or performed it without important 
aspects such as testing the normality of data. This approach 
can completely distort the results and regardless of the 
choice of the best interpolation methods. 

Stochastic simulation claimed his good properties in 
compared with others interpolation methods. 

Future work will include the following enhancements to 
our approach: Creation conversion between two different 
programs for their simulation, finding the best way for 
compare resultant statistic with other interpolation methods 
and integrate information about damage of forest.  
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