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Abstract—We propose the use of the material flow simulation 

to evaluate the robustness of a production plan, which was 

created and optimized with no respect to unforeseen 

derivations. Since the necessary probabilities for machine 

failures and similar operational events on the floor can easily 

be integrated in the simulation model, in order to analyze, how 

initial plan performs in these situations. The influence of 

unforeseen events in daily production cannot be modeled 

within mathematical optimization without consuming large 

amounts of computation time. We show a possible way to use 

simulation to evaluate and enhance a production plan. We 

illustrate the developed process using a real-world use-case of 

medium complexity and can show, that simulation is able to 

evaluate the robustness of a given pro-optimizes production 

plan. 

Keywords: material flow simulation; robustness; production 

planning; mathematical optimization 

I. MOTIVATION 

Even after overcoming the global economic crisis 
tremendous requirements exist within the daily operation of 
a production facility and its supply chain. Fluctuating 
demands are leading to less adaequate forecast data and the 
need to lower capital commitment is leading to the 
necessarily of designing robust production planning models 
[1],[5],[6]. It is always the intention to be able to serve all 
demands in due time while causing minimal costs. 

Several uncertainties exist within the production 
planning process. On the one hand, many unforeseen events 
can take place: machine failures, missing materials, changed 
sales demands or ill employees are only a small subset of 
possible examples. On the other hand, it is simply 
impossible to include all factors that might occur into the 
planning process in the first place. Therefore, planning 
methods are always based on different models of a 
production structure, which are an abstraction of reality 
themselves.  It is the responsibility of the production planner 
to decide which factors he wants to take into the account 
when creating his models. He always has to find a 
compromise between the detail level of the model (and 
therefore its significance) and the solvability of the 
optimization problem which is created on its basis. The lot 
sizing and scheduling problems that are used within 
production planning are usually already np-complete even in 
their simplest form [15]. Therefore, one cannot guarantee to 

be able to find acceptable solutions in a timely manner 
while using modern operation research techniques. Thus, we 
have to find a solution to include the aforementioned 
uncertainties within the production planning process without 
limiting its solvability significantly. We connect a 
mathematical optimization model with a down streamed 
material flow simulation for this purpose. While we always 
assume optimal conditions within the mathematical 
optimization model, we are including the uncertainties in the 
simulation process. This allows us to analyze whether a 
production plan is able to perform well creating an 
acceptable monetary solution under these changed 
conditions or not. We create a sensible scheduling using 
rule-based machine controls within the simulation. In 
addition, we are able to create automatic or manual 
modifications of the plan and can evaluate these as well 
using additional simulations. It is easily possible to develop 
a more robust production plan with these tools. 

Simulations usually are used to verify the solutions of an 
optimization problem. However, the aim of our research is to 
replace parts of the optimization process with simulation 
methods to receive solutions with an acceptable quality on a 
timely matter. First, we solve a mathematical optimization 
problem with standard solver software like IBM ILOG 
CPLEX [17]. Figure 1 shows the general optimization and 
simulation process.  

After regarding the necessary State-of-the-Art in Section 

II, we describe the production model and the corresponding 

optimization models in Section III. It is possible to include 

uncertainties in the planning phase within the mathematical 

optimization process. We briefly discuss these methods in 

Section IV. To generate a more robust production plan 

based upon a given near optimal plan we propose a 

procedure which generates and evaluates a number of 

scenarios with the help of off-line simulations to create a 

new plan. We explain the transfer of the optimization 

solutions into the simulation process in Section V. To cover 

a broad spectrum of stochastically possible scenarios; 

several replications of the stochastic simulation based upon 

the production structure are performed. This way we are 

able to cover a wide field of possible scenarios for machine 

failures and other events. 
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Figure 1: General Structure of presented concept 

 

The production schedules are logged and afterwards 

evaluated on the base of costs and robustness. A rule-based 

machine control is used, to try to reduce possible production 

losses when intermediate products were not assembled in 

due time. An additional post-processing can be used to 

maintain further robustness increasing actions. The effect of 

these actions can be evaluated using further simulations. We 

present these processes in Section VI. We finally evaluate 

the outcome of our work using a case study. Additionally, 

we give a conclusion (Section VII) and an outlook towards 

further possibilities and improvements for this approach.  

II. STATE OF THE ART 

An ideal environment, free from external influences as 

used in most scheduling approaches is normally not given 

when processing a production plan. Production settings are 

subject to influences from human and machine failures. 

Additional resources and materials might not be available in 

due time and new demands often have to be taken into 

account on a short-term notice. A comprehensive overview 

about the execution of production plans under uncertainties 

is given by Aytug et al. [2]. They develop a taxonomy to 

classify uncertainties, to be able to classify numerous facets 

of disturbances within operational procedures. These are 

characterized by four dimensions: 

• Cause (e.g., machine failure) 

• Context (e.g., materials have not been delivered) 

• Effect (postponed starting times) 

• Inclusion (reaction upon interruptions, either  

predictive or reactive) [2] 

These aspects illustrate uncertainties within the 

production planning process. The effect of disturbances and 

interruptions depends upon the robustness of the scheduling. 

Schneeweiß [15] gives a basic definition of a robust plan: A 

plan is robust, when it is insensitive against random 

environmental influences. Based on this expression one 

cannot find any quantitative measurements however. Scholl 

[16] expanded upon this definition. We mainly consider two 

of the criteria he developed: If a plan is always valid, no 

matter what environmental influences may effect it, it is 

called “total validity robust”. One cannot assume to reach 

this level in practical applications though. Therefore, one is 

able to analyze the validity robustness in greater detail 

instead of using a binary value.  One could analyze the 

amount of broken model restrictions or also weight them 

after their importance. Within production planning, it is 

especially important to stay within the machine capacities 

and to adhere to given deadlines. We can consider the 

objective function of the planning models as the result of a 

production planning process. Therefore, one can define the 

criteria of result robustness: A plan is result robust, when its 

result only differs in a minimal way from the original plan 

when random environmental influences occur. However, a 

good result for one scenario may often lead towards a bad 

result for another scenario. Additionally result and validity 

robustness conflict with each other: a higher validity often 

causes higher costs. 

Simulations can fulfill two roles within robust 

production planning: on the one hand, one can use a 

simulation to simply assess and evaluate the robustness of a 

plan to confirm the validity of other approaches to create 

robust production plans. On the other hand they can be used 

to create robust production plans to include uncertainties. 

Aytug et. al [2] identified three main approaches in prior 

literature to create robust production plans: completely 

reactive procedures, robust scheduling and predictive-

reactive scheduling. Completely reactive procedures only 

take action when disturbances in the production process 

already occurred. They sort and filter all jobs given to the 

current machine and continue with the job that appears to be 

the best based on this evaluation. 

Robust scheduling approaches instead are creating plans, 

which minimize the effects of disturbances within the 

production procedure. Therefore, a plan for a worst-case 

scenario is created. Such a plan aims to be able to be 

processed in many different scenarios without greater 

difficulties. Both of these approaches share the issue, that 

available capacities will not be used to their full extend. 

A large amount of research happens within the area of 

predictive-reactive scheduling. First, a plan for the whole 

planning horizon is created. This plan will be adapted later 

on. This can happen in a periodic fashion, on the occurrence 

of new events or in combination of both methods. In 

practice, these hybrid approaches are mostly used [12], [7]. 

Simulations are a standard tool to evaluate the 

robustness of production plans. This can be done based 

upon different target measures. Honkomp et al. [10] 

compare a basic deterministic simulation with multiple 

stochastic replications. To measure the robustness they use 

metrics that either compute the relation between the average 
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objctive function of the stochastic simulations and the 

deterministic objective function or calculate the standard 

deviation of the stochastic simulations towards the best 

deterministic objective function. Apart from cost analysis, 

Pfeiffer et al. [13] also consider the plan efficiency and 

stability. This is also done in the overview about 

rescheduling approaches. Usually one obtains simple 

efficiency measurements (e.g., delays, backlogging amounts 

and production times). One can also evaluate these values 

visually [8]. Plan changes caused by stochastic events are 

processed to optimize the efficiency values. However, 

effects of changes within the scheduling are not taken into 

account within these approaches. Instead of optimizing the 

efficiency values one might also aim to create plans that 

only differ minimal from the original plan. A framework to 

evaluate different techniques to generate robust production 

plans has been developed by Rasconi et al. [14]. 

III. PRODUCTION MODEL 

To receive meaningful results we base our work on a 

close to reality production model with a corresponding 

complexity. Leaned upon a company in the supply industry 

of average size the model contains 21 machines with a 

general production structure, meaning that converging, 

diverging and linear substructures appear. Some of the 44 

products can be produced on several machines in a parallel 

matter. This may possibly lead to different production and 

setup times as well as costs. 11 products with external 

consumer demands exist in total. Based on this assumption, 

a high degree of freedom exists, when a concrete production 

plan shall be created. Figure 2 shows the overall machine 

plan and material flow of the production model. 

Typically, two different optimization models are used to 

create a production plan. Initially we calculate the lot sizes 

using a Multilevel Capacitated Lotsizing Problems 

(MLCLSP) based upon macro periods. Subsequently one 

creates a plan based upon micro periods using a Discrete 

Lotsizing and Scheduling Problem (DLSP) to determine 

exact production timings. As a result, the order in which the 

machines process their corresponding lots is decided.  

A. Lotsizing  

To determine the production amounts for each given 

period we use a MLCLSP in this paper. The basic version of 

the MLCLSP, as described by Tempelmeier and Helber [9] 

develops a cost optimal multiperiod production plan based 

on given demands, production costs, setup costs, inventory 

costs and machine capacities. For this purpose the 

optimization problem tries to take advantage of possible 

synergy effects that occur when production lots for several 

demands are combined, creating less need for setup 

processes. In contrast, this might create capital commitment 

and inventory costs when products are created in an earlier 

period. Therefore, a compromise between these factors has 

to be found. The model considers machine capacities in 

particular. Each machine can only be operated for a limited 

amount of time per period, for example for one or several 

working shifts. This does force an inventory increase. 

The MLCLSP is a model based on macro periods. 

Therefor it only determines which amounts of which 

products are produced on which machine in every given 

period. The model explicitly does not determine a lot 

scheduling. To reproduce dependencies between different 

products lead times are used. If a product needs another 

product from an earlier production level as an input, it has to 

be produced in an earlier period. A production of 

intermediate products is triggered whenever a final product 

is created. A bill of materials is used to determine the 

needed amounts.  

The MLCLSP we are using contains several 

enhancements over the basic models used in most literature. 

Several additional constraints are used to comply with the 

complexity of real production planning. Additionally to the 

standard model, we allow backlogging for products that 

have a direct external demand. Products can be 

manufactured on several machines in a parallel matter. We 

include transport lots and the machine capacities are 

determined upon a flexible work shift model. The 

mathematical formulation of the used model is as follows: 

Model MLCLSP: 
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In the objective function the sum of setup-, stock-, 

production-, backlog and personal costs are minimized. The 

following constraints enforce the creation of a valid 

production plan which fulfills external demands in due time 

whenever possible. 
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Figure 2: Machine Plan 

 

Constraint 4.1.1. creates a balance between external 

demands on one side and production- stock and backlog 

amounts as well as secondary demands on the other side. To 

be sure that intermediate products are assembled before the 

final product is created, products must be created a day 

before the secondary demand takes place. Machine 

capacities are taken into account in constraint 4.1.2. It is 

only possible to perform a limited amount of production and 

setup activities within a single period. Using constraint 

4.1.3. ensures that one can only produce a product on a 

machine when a machine is was set up for that product. 
Additionally constraint 4.1.6. ensures that machines can 

only produce products that they can be set up for. Constraint 
4.1.8 expresses that production lots always have to be a 
multiple of transport lots. Within constraint 4.1.9, maximum 
backlog amounts for each product are defined. This way we 
can ensure that demands for intermediate products cannot be 
backlogged. The constraint 4.1.10 and 4.1.11 determine the 
amount of working shifts used for a machine in a certain 
period. The other constraints are used to design meaningful 
bounds to the variables, for example, stock amounts always 
have to have a positive value. 
 

Variables and constants meanings: 
    Direct demand coefficient of products k and i 

    Available capacity of resource j in period t 

    Primary demand for product k in period t 

     Personal costs for resource j in period t 

   Stock expense ratio for product k 

   Penalty costs for backlogging of product k 

J Amount of Resources (j= 1,2,…,J) 

   Index set of operations performed by resource j 

M Big number 

   Index set of followers of product k 

    production costs of product k in period t 

     
Production amount of product k on resource j in 

period t 

     
Amount of containers of product k processed by 

resource j in period t  

      Container size/Transport lot size for product k 

    Setup costs for product k on resource j 

T 
Length of planning horizon measured in periods 

(t=1,2,…,T) 

     Production time for product k on resource j 

     Setup time for product k on resource j 

    Stock for product k at the end of period t 

     
Binary setup variable for product k on resource j in 

period t 

     Backlog variable for product k in period t 

       
Maximal backlog amount for product k (always 0 for 

intermediate products) 

   
     

     
  

Binary variables used to calculate the amount of used 

working shifts 

B. Scheduling 

Using a DLSP one can assess a plan based upon micro 
periods to determine exact production timings. The 
solutions of the MLCLSP can be used as parameters for the 
DLSP. This way one can create a complete machine 
scheduling plan. A basic version of the DLSP can be found 
at Fleischmann [11]. The production amounts within a 
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period that have been determined using the MLCLSP can be 
used as external demands for the DLSP. Periods within the 
DLSP are chosen as the smallest meaningful unit, for 
example the smallest common denominator of setup- and 
production times. The MLCLSP includes lead times; 
therefore, it is not needed to take dependencies between 
production levels into account. Hence, we can solve the 
DLSP for each machine individually. This means that the 
solution times are rather short. The problem complexity is 
appropriately low. We do however not include a DLSP 
within our work, as we use a rule-based machine control to 
create a scheduling plan within the simulation in an even 
shorter amount of time.   

IV. FUZZY PARAMETERS IN THE MODEL CREATION 

Fuzzy parameters and uncertain information can be 
reproduced using stochastic methods inside the model 
classes we described earlier. Ideally, we already know exact 
probabilities for possible events in advance. Where 
applicable we can use appropriate prognosis methods to 
estimate this probabilities. Otherwise, we can only use a 
normal or similar distribution. 

The stochastic optimization tries to find a solution that is 
the best for all possible combinations of parameters. Finding 
a solution for these models already is an np-hard problem 
for sharp levels of information. Finding a solution for a 
stochastic problem is an extremely time consuming task. 
Fuzzy parameters might even lead to a state explosion, 
meaning that an exponentially rising amounts of possible 
parameter combinations exist. The overwhelming amount of 
combinations cannot be used to create a valid solution. This 
situation gets even more complicated, as we use a 
multiperiod, multilevel production structure. A problem in 
early periods or on a low level can lead to even more 
problems in later periods or levels. In many situations, one 
cannot find a solution that is applicable for all possible 
situations. Therefore, one cannot assume that that it is 
practical to include uncertainties in the planning process 
using stochastic optimization methods. Even when such a 
solution exists, it is unlikely that it can be found within a 
reasonable amount of time.  

Most stochastic optimization approaches are based on 
three different methods. Multilevel stochastic models with 
compensation are based upon Dantzig [6]. Decisions on one 
level are made at an early point of time and fixed for all 
following levels. We consider a huge amount of possible 
events; therefore, we would have to model a corresponding 
amount of model levels. Stochastic programs with 
probabilistic constraints date back to Charles and Cooper 
[4]. Within these models, the breach of constraints is 
permitted for certain parameter combinations. One can only 
find proper solutions for this type of models when it is 
possible to transform the models into an equal deterministic 
model. Additionally, the expressive value of the model can 
be reduced due to the loosened constraints. Bellman [3] 
introduced stochastic dynamic programming. Based upon a 
decision tree a backward chaining is used to conclude the 
ideal choice at the decision situation. All this approaches 

share the issue that they can only be solved efficiently, if the 
amount of possible scenarios can be reduced to a certain 
amount. However, when looking at a real production 
problem many decisions are possible. Therefor we have to 
find different methods to include uncertainties within the 
production planning process.   

V. INTERFACES TO THE OPTIMIZATION SOFTWARE 

To be able to simulate the results of an optimization, the 
solution data has to be preprocessed in order to prepare the 
data for the simulation model. CPLEX can export a XML-
based file-format, which contains the mathematical 
programming solution for all variables of the problem. The 
Converter module reads the file line by line, whereas each 
line represents a variable. We mainly need two decision 
variables to be able to simulate the plan: The production 
variable      determines the products that are produced on a 

certain machine in a given time period. Additional data like 
production- and setup times as well as costs can be read 
from the database based on this production lots. Because a 
work shift model has been included in the mathematical 
optimization, every machine can have a different capacity in 
each period. Therefore, we also have to take the variable 
    into account, which describes these capacities. As we 

included lead times within the MLCLSP, all needed 
intermediate products should be available at the beginning 
of a new period. This means that there are no special 
requirements for the machine scheduling. We are able to 
schedule the lots in the same order as they appear within the 
exported XML file. The real scheduling and date 
safeguarding will be done within the simulation process. 
Based upon the given data we are able to calculate all 
needed information in a deterministic fashion. For example, 
we are able to calculate the stock or backlog amounts via a 
difference of production amounts, demands and secondary 
demands. Thus, we have all information needed to control 
the simulation procedure. These calculations are also needed 
to evaluate the simulation results. Therefore, it is a sensible 
approach to calculate these values for the original plan 
instead of importing every information from the 
mathematical model. 

C. Simulation 

The simulation model is implemented using the discrete 
event simulator d³FACT developed by our workgroup, 
Business Computing, esp. CIM. The extensible Java API 
provides a high-performance, petri-net-based material flow 
component [1]. 

The production plan information is first transferred 
towards the simulation logic. During the initialization of the 
simulation model, all machines are loading their fixed 
schedules for the complete planning period. It holds for each 
machine, which products in what amount have to be 
produced in each period. Furthermore, it holds the planned 
durations for the maintenance, production and setup 
processes. The lot release order is fixed and stays so, even in 
the case of blocked lots due, to late secondary demands. All 
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released lots are stored in a FIFO-Queue, to be processed in 
their incoming order. At the beginning of each new period, 
all planned lots are enqueued and the production cycle 
starts. Prior to nearly any lot, a setup is intended for rigging 
the machine. If planned, a routine maintenance of the unit is 
performed after a given amount of work pieces. 

If multiple products or machines demand the same 
intermediate product, a Fork is needed to control the 
material flow. It stores and routes the tokens as needed 
towards the point of consumption. The built-in buffer stores 
the tokens until a machine starts a job and signals its 
demand. The fork uses a FIFO-Queue to handle the 
incoming requests and to minimize the mean waiting time 
for supply. The machine uses a strict FIFO-Queue for lots to 
dispatch. In this naïve version, even a blocked lot with 
unfulfilled secondary demands waits until its demands are 
met. If all lots for a period are finished, the shift ends and 
the next jobs are dispatched in the next period. 

Under certain circumstances, it is possible that in case of 
unmet secondary demands and fully loaded periods, lots are 
pushed into the following period. In this case, the moved 
lots are scheduled prior to the regular lots to dispatch the 
longer waiting jobs first. Because the planning methods 
calculates with one day lead-time it is easily possible that 
delayed lots are blocking further following demands. 

D. Uncertainties in the production planning process 

The production schedule execution is typically affected 
by unforeseen interruptions und disturbances. In the 
simulation model, maintenance, cycle, and setup times are 
considered stochastically influenced, due to their high 
influence on the overall flow shop production process and 
their deterministic usage in the production-planning model. 
Material shortages, which arise from supplier 
unreliableness, are not taken in account and all materials are 
assumed of as supplied in time. 

The maintenance, cycle and setup times that are 
incorporated in the formulation of the production-planning 
problem, are forming the lower bound for the process 
execution and are modeled in the simulation. 

The stochastic influences are modeled with two 
parameters. On the one, hand the likeliness of an increased 
process time and on the other hand the amount of the 
deviation.  The probability that the planned process time 
varies, is modeled with a uniform distribution, whereas for 
the duration a normal distribution is used. Ideally, one is 
able to use historical data to determine the probabilities for 
each machine individually; however, this is not possible in a 
hypothetical model. 

E. Rule-based machine control 

To be able to improve the production plan within the 
simulation we are using a rule-based machine control. We 
are allowing a machine to change its own scheduling plan. 
As a day of lead-time is included in our planning process, 
this should not have a negative effect on later production 
levels.  One possible rule that we also implemented appears, 

when a machine is unable to produce a lot because the 
secondary demands cannot be met. In this case, the machine 
logic tries to find other lots for this period, which do not 
need the missing intermediate products. When such a lot 
exists, it is processed first while the original planned lot will 
be processed later. This way, we are able to ensure an even 
utilization of the given machine capacities. Additionally we 
reduce the danger of possible backlog amounts. This way 
we increase the validity robustness of the production plan. 
Another possible decision rule concerns setup carryovers. If 
production lots of the same product exist in successive 
periods, it is sensible to change the scheduling in a way, 
which allows this product to be produced in the end of the 
first period and in the beginning of the second period. 
Therefore, the need to setup the machines for both 
production lots is not applicable anymore. If one introduces 
a setup, carryover into the mathematical optimization highly 
increased solution times may occur. The discussed rule-
based mechanisms however only lead towards a small 
increase in processing time within the simulation process. 
Additional rules can always be applied in a model specific 
fashion. 

F. Evaluation 

The evaluation calculates performance figures for the 
validity and result robustness. For measuring the validity 
robustness, we compare the objective value of the simulated 
plans with the objective value of the original plan from the 
mathematical optimization. A comparison of single cost 
values is also possible, like evaluating the influence of 
capital commitment costs. A plan is considered validity 
robust, when it does not violate any of the optimization 
models restrictions. The model we use does allow 
backlogging however. Backlogging always incurs penalty 
costs, which also influence the result robustness. However, 
one cannot assess the influence of delivery dates that could 
not be met, as it might lead to the loss of a customer in the 
extreme cases. Therefore, it is sensible to protocol every 
appearance of backlog amounts. 

Important information considers the machine load 
factors. It can happen that the planned or even the maximum 
capacity of a machine is not sufficient to produce all lots 
allocated to it. These events are protocolled and evaluated 
separately as well. This allows for the search of admissible 
alternatives.  

G. Post-Processing 

Within the post-processing component, we are able to 
use additional simulation external methods to generate an 
improved production plan with an increased robustness 
based upon the simulated production plan. An increase of 
validity however usually creates increased costs. Therefore, 
we cannot assume that increased validity robustness also 
correlates with high result robustness. 

The simplest way to increase the robustness of a plan is 
to extend the given capacities where possible. Our model is 
based on a possible three-shift production. Generally, one 
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tries to avoid using all three shifts to avoid high personal 
costs during nighttime. By courtesy of the simulation we 
can however estimate the increase of robustness when 
considering the introduction of additional shifts. This allows 
the production planner to decide whether the additional 
costs are justified or not. One possible way to do this 
automatically is to calculate the average of the production 
timings after a higher number of simulations. Afterwards we 
can determine the average machine load factor and decide 
upon the amount of needed work shifts.  

Another possible way to increase the robustness of the 
production plan is to move several lots into an earlier 
period, when this period contains larger capacity reserves. 
This process is considerably more complicated, as 
secondary demands also have to be fulfilled in due time.  
Therefor one cannot simply review available capacities for 
the final product. One also has to check whether available 
capacities for the production of all needed intermediate 
products exist, which often is not the case when the overall 
machine load factor is constantly high. Additionally an 
earlier production causes further inventory and capital 
commitment costs. Thus, this way often is not an opportune 
choice. In general, it lies in the responsibility of the 
production planner to decide which amounts of cost 
increases he accepts to increase the validity robustness of 
his production plans. All production plans that are created 
within the post-processing can be simulated and evaluated 
again. The production planer consequently can access all 
information he needs to come to a corresponding decision. 

VI. RESULTS 

We executed several simulation runs based upon the 
production plan created by the mathematical optimization, 
using a planning horizon of 56 periods with a dynamic 
demand structure. We assumed a failure rate of 10% for 
each machine. The corresponding processes were prolonged 
by a standard deviation of 15% and 30%. Table 1 shows 
several performance indicators in a comparison of 
simulations with a naïve and rule-based machine control, in 
particular focusing delays for final products... We calculated 
the average values of 100 simulation runs. The rule-based 
machine controls objective function costs are considerably 
lower than the costs caused by the naïve machine control. It 
is noticeable that less final parts get delayed when using the 
rule-based machine control. Therefore, the ability to supply 
is increased and lower delay penalty costs occur. These also 
explain the lower objective cost values. 

 
TABLE 1: COMPARISON BETWEEN DETERMINISTIC (D), RULE-BASED 

(RB) AND NAIVE (N)MACHINE CONTROL 

 

 
However, a deterministic simulation of the production 

plan without stochastic influences shows that no penalty 
costs occur. The deterministic objective function value is 
correspondingly low. The rule-based machine control causes 
an improvement in result robustness as well as validity 
robustness. Table 2 shows the corresponding evaluation 
metrics by Honkomp et al. [10].  

TABLE 2: METRICS BY HONKOMP 

Standard 

Deviation 
Sim-Type             ̅̅ ̅̅       

15% 
Rule-Based 40,00% 1,42 

Naive 40,09% 1,52 

30% 
Rule-Based 42,90% 1,57 

Naive 44,40% 1,69 

 

The first column represents the relations between the 

standard deviation of all objective function values of all 

stochastic simulation runs and the objective function value 

of the deterministic simulation. A lower value indicates that 

disturbances and environmental influences have less impact 

on the ability to supply. The second column represents the 

relations between the objective function values of stochastic 

and deterministic simulations. The value shows the cost 

increase caused by the disturbances and directly shows the 

result robustness. Normally, a higher robustness is gained 

by increased costs. However, the inclusion of penalty costs 

into the objective function value causes lower cost for the 

more robust plan.  

Another reason for increased costs are the personal 

costs. The simulation showed that more working shifts have 

to be introduced to be able to satisfy customer demands. The 

original plan was using working shift per day. The resulting 

plans when using either simulation method mostly used two 

or three shifts. The rule-based machine control delays 13% 

less products beyond the planned capacity restrictions, 

therefore needing less working shifts and causing less 

personal costs as well. When analyzing the problems within 

the production process one needs to find out where a 

possible bottleneck occurs. During the simulation we 

protocol all occurrences of backlog amounts and the 

connected machines, products and periods. For further 

analysis we can determine which products are delayed most 

as shown in figure 3. 

 

 
Figure 3: Delayed Final Parts according to products 

Standard 

Deviation

Sim-

Type

Objective 

Function

Delayed Final 

Products 

(Absolute)

Delayed Final 

Products 

(Relative)

Delay Penalty 

Costs
Stock Costs

D 2.769.282,95 € 2.769.282,95 € 2.769.282,95 € 2.769.282,95 € 2.769.282,95 €

RB 3.944.976,12 € 3.944.976,12 € 3.944.976,12 € 3.944.976,12 € 3.944.976,12 €

N 4.211.949,84 € 4.211.949,84 € 4.211.949,84 € 4.211.949,84 € 4.211.949,84 €

RB 4.355.206,90 € 4.355.206,90 € 4.355.206,90 € 4.355.206,90 € 4.355.206,90 €

N 4.670.432,31 € 4.670.432,31 € 4.670.432,31 € 4.670.432,31 € 4.670.432,31 €

15%

30%

1,66% 

98,34% 

Product 10

Product 11
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Surprisingly, most delays are caused by one final part. 

This is an obvious sign that the production capacity for this 

part might not be sufficient. Alternatively, production 

capacities for needed intermediate products might be 

insufficient. This can be found out by analyzing internal 

delays for the intermediate products. Table 3 shows the 

absolute and relative internal delays for both simulation 

types averaged over 100 simulations. We define internal 

delays as the amount of intermediate products that couldn’t 

be produced in the planned period. 
The usage of the rule-based machine control also shows 

an improvement when considering the internal demands. 

Despite not leading to direct revenue losses due to unmet 

demands, internal delays can cause costs when changes in 

the production plan have to be made. These costs aren’t 

implicitly included into our production model, but it is in 

the interest of the production planner to reduce these costs 

as well. When considering the internal delays per product 

we are able to find out that product 10 and product 11 are 

based on the same intermediate product. This product 

possesses several internal delays, which influence the 

production of the final products. We were able to find the 

bottleneck in our production model and can take action to 

reduce the impact of this issue. 

 
TABLE 3: ANALYSIS: ACCUMULATION OF INTERNAL DELAYS 

Standard 

Deviatio

n 

Sim-Type 
Internal Delays 

(Absolute) 

Internal Delays 

(Relative) 

15% 
Rule-Based 10194,38 1,81% 

Naive 11172,92 1,99% 

30% 
Rule-Based 16172,68 2,88% 

Naive 17266,10 3,07% 

VII. CONCLUSIONS 

We have shown in this paper that a material flow 

simulation can be used to analyze a production plan created 

in a mathematical optimization and to evaluate its 

robustness. It is easily possible to read the results of an 

optimization process, to transfer this data into our 

simulation framework. We are able to simulate the plan 

including probabilities for unforeseen events and fuzzy 

information. The results of the simulations can be used to 

find possible weak spots in the given plan. In several cases, 

we might be able to fix these weak spots through automatic 

post-processing or with manual changes. The effect of these 

changes can also be evaluated using additional simulation 

runs. Therefore, a production planner can decide whether he 

wants to implement these changes or not. Performing a large 

number of simulations is substantially faster than running 

another instance of the optimization problem. In the end, we 

recommend this approach for practical and economic usage. 
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