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Abstract—Simulation of quasi-one dimensional spatiotempo-
ral pattern formation along the three phase contact line in
the fluid cultures of lux-gene engineeredEscherichia coli is
investigated in this paper. The numerical simulation is based on
a one-dimensional-in-space mathematical model of a bacterial
self-organization as detected by quasi-one-dimensional biolumi-
nescence imaging. The pattern formation in a luminousE. coli
colony was mathematically modeled by the nonlinear reaction-
diffusion-chemotaxis equations. The numerical simulation was
carried out using the finite difference technique. Regular oscil-
lations as well as chaotic fluctuations similar to experimental
ones were computationally simulated. The effect of the signal-
dependent as well as density-dependent chemotactic sensitivity
on the pattern formation was investigated. The simulations
showed that a constant chemotactic sensitivity can be applied
for modeling the formation of the bioluminescence patternsin
a colony of luminousE. coli.

Keywords-chemotaxis; reaction-diffusion; pattern formation;
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I. I NTRODUCTION

Microorganisms respond to different chemicals found in
their environment by migrating either toward or away from
them. The directed movement of microorganisms in response
to chemical gradients is called chemotaxis [1]. Chemotaxis
plays crucial role in a wide range of biological phenomena,
e.g. within the embryo, chemotaxis affects avian gastrula-
tion and patterning of the nervous system [2]. Although
chemotaxis has been observed in many bacterial species,
Escherichia coliis one of the mostly studied examples.E.
coli respond to the chemical stimulus by alternating the
rotational direction of their flagella [1], [2].

Various mathematical models on the basis of Patlak-
Keller-Segel model have been successfully used as important
tools to study the mechanisms of chemotaxis [3]. A compre-
hensive review on the mathematical modeling of chemotaxis
has been presented by Hillen and Painter [4].

Bacterial species includingE. coli have been observed
to form various patterns under various environmental condi-
tions [5], [6], [7]. Populations of bacteria are capable of self-
organization into states exhibiting strong inhomogeneities
in density [8]. Recently, the spatiotemporal patterns in the
fluid cultures ofE. coli have been observed by employing

lux-gene engineered cells and a bioluminescence imaging
technique [9], [10]. However, the mechanisms governing the
formation of bioluminescence patterns still remain unclear.

Over the last two decades, lux-gene engineered bacteria
have been successfully used to develop whole cell-based
biosensors [11]. A whole-cell biosensor is an analyte probe
consisting of a biological element, such as a genetically
engineered bacteria, integrated with an electronic component
to yield a measurable signal. Whole-cell biosensors have
been successfully used for the detection of environmental
pollutant bioavailability, various stressors, includingdioxins,
endocrine-disrupting chemicals, and ionizing radiation [12].
To solve the problems currently limiting the practical use of
whole-cell biosensors, the bacterial self-organization within
the biosensors have to be comprehensively investigated.

This paper investigates the bacterial self-organization in a
small circular container near the three phase contact line as
detected by quasi-one-dimensional bioluminescence imag-
ing. The aim of this work was to develop a computational
model for simulating the spatiotemporal pattern formation
of bioluminescence in the fluid cultures ofE. coli [9], [10],
[13]. The pattern formation in a luminousE. coli colony
was modeled by the nonlinear reaction-diffusion-chemotaxis
equations assuming two kinds of the chemotactic sensitivity,
the signal-dependent sensitivity and the density-dependent
sensitivity. The model was formulated on a one-dimensional
domain. The numerical simulation at transition conditions
was carried out using the finite difference technique [14].
The computational model was validated by experimental
data. By varying the input parameters the output results
were analyzed with a special emphasis on the influence of
the chemotactic sensitivity on the spatiotemporal patternfor-
mation in the luminousE. coli colony. Regular oscillations
as well as chaotic fluctuations similar to experimental ones
were computationally simulated.

The rest of the paper is organized as follows. In Section
II, the mathematical model is described. Section III dis-
cusses the computational modeling of a physical experiment.
Section IV is devoted to present results of the numerical
simulation. Finally, the main conclusions are summarized in
Section V.
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II. M ATHEMATICAL MODELING

Various mathematical models based of advection-reaction-
diffusion equations have been developed for modeling of
pattern formation in bacterial colonies [5], [6], [15], [16],
[17]. The system of coupled partial differential equations
introduced by Keller and Segel are among the most widely
used [3], [4].

A. Governing Equations

According to the Keller and Segel approach, the main
biological processes can be described by a system of two
conservation equations (x ∈ Ω, t > 0),

∂n

∂t
= ∇ (Dn∇n− h(n, c)n∇c) + f(n, c),

∂c

∂t
= ∇ (Dc∇c) + gp(n, c)n− gd(n, c)c,

(1)

where x and t stand for space and time,n(x, t) is the
cell density,c(x, t) is the chemoattractant concentration,Dn

andDc are the diffusion coefficients usually assumed to be
constant,f(n, c) stands for cell growth and death,h(n, c)
stands the chemotactic sensitivity,gp and gd describe the
production and degradation of the chemoattractant [3], [17].

The cell growthf(n, c) is usually assumed to be logistic
function, i.e., f(n, c) = k1n(1 − n/n0), where k1 is the
constant growth rate of the cell population, andn0 is the
”carrying capacity” of the cell population [5].

A number of chemoattractant production functions have
been employed in chemotactic models [4]. Usually, a sat-
urating function of the cell density is used indicating that,
as the cell density increases, the chemoattractant production
decreases. The Michaelis-Menten function is widely used
to express the production rate,gp(n, c) = k2/(k3 + n) [3],
[13], [16], [18]. The degradation or consumption of the
chemoattractant is typically constant,gd(n, c) = k4. Values
of k2, k3 andk4 are not exactly known [17].

The functionh(n, c) stands for the chemotactic sensitivity.
The signal-dependent sensitivity and the density-dependent
sensitivity are two main kinds of the chemotactic sensitiv-
ity [4]. Two commonly used forms of the signal-dependent
sensitivity functionh(n, c) are the ”receptor”(h(n, c) =
k5/(k6 + c)2) and the ”logistic” (h(n, c) = k5/(k6 + c))
forms [4], [15], [17]. Assuming that cells carry a certain
finite volume, a density-dependent chemotactic sensitivity
function as well as volume-filling model were derived,
h(n, c) = k5(1 − n/n0), wheren0 denotes the maximal
cell density [4]. Another form for the density-dependent
chemotactic sensitivity (h(n, c) = k5/(k6 + n)) has been
introduced by Velazquez [19].

In the simplest form, the chemotactic sensitivity is as-
sumed to be independent of the chemoattractant concentra-
tion c as well as the cell densityn, i.e.,h(n, c) is constant,
h(n, c) = k5. Since the proper form of the chemotactic
sensitivity functionh(n, c) to be used for the simulation of

the spatiotemporal pattern formation in the fluid cultures of
lux-gene engineeredE. coli is unknown, all these four forms
of h(n, c) were used to find out the most useful form.

When modeling the bacterial self-organization in a cir-
cular container along the contact line [9], [10], [13], the
mathematical model can be defined on a one dimensional
domain - the circumference of the vessel. Replacingf , gp
and gd with the concrete expressions above, the governing
equations (1) reduce to a cell kinetics model with nonlinear
signal kinetics as well as the chemotactic sensitivity,

∂n

∂t
= Dn∆n−∇ (h(n, c)n∇c) + k1n

(

1−
n

n0

)

,

∂c

∂t
= Dc∆c+

k2n

k3 + n
− k4c, x ∈ (0, l), t > 0,

(2)

where ∆ is the Laplace operator formulated in the one-
dimensional Cartesian coordinate system, andl is the length
of the contact line, i.e., the circumference of the vessel.
AssumingR as the vessel radius,l = 2πR, x ∈ (0, 2πR).

B. Initial and Boundary Conditions

A non-uniform initial distribution of cells and zero con-
centration of the chemoattractant are assumed,

n(x, 0) = n0x(x), c(x, 0) = 0, x ∈ [0, l], (3)

wheren0x(x) stands for the initial (t = 0) cell density.
For the bacterial simulation on a continuous circle of the

length l of the circumference, the matching conditions are
applied (t > 0):

n(0, t) = n(l, t), c(0, t) = c(l, t),

∂n

∂x

∣

∣

∣

x=0

=
∂n

∂x

∣

∣

∣

x=l
,

∂c

∂x

∣

∣

∣

x=0

=
∂c

∂x

∣

∣

∣

x=l
.

(4)

C. Dimensionless Model

In order to define the main governing parameters of the
mathematical model (2)-(4) [4], [7], [18], a dimensionless
mathematical model has been derived by setting

u =
n

n0

, v =
k3k4c

k2n0

, t∗ =
k4t

s
, x∗ =

√

k4
Dcs

x,

D =
Dn

Dc

, r =
k1
k4

, φ =
n0

k3
,

χ(u, v) =
k2n0

k3k4Dc

h(n0u, k2n0c/(k3k4)).

(5)

Dropping the asterisks, the dimensionless governing equa-
tions then become (t > 0)

∂u

∂t
= D

∂2u

∂x2
−

∂

∂x

(

χ(u, v)u
∂v

∂x

)

+ sru(1− u),

∂v

∂t
=

∂2v

∂x2
+ s

(

u

1 + φu
− v

)

, x ∈ (0, 1),

(6)

where x and t stand for the dimensionless space and
time, respectively,u is the dimensionless cell density,v
is the dimensionless chemoattractant concentration,r is
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the dimensionless growth rate of the cell population,φ
stands for saturating of the signal production,χ(u, v) is the
dimensionless chemotactic sensitivity, ands stands for the
spatial and temporal scale.

For the dimensionless simulation of the spatiotemporal
pattern formation in a luminousE. coli colony, four forms
of the chemotactic sensitivity functionχ(u, v) were used to
find out the best fitting pattern for the experimental data [9],
[10], [13],

χ(u, v) =
χ0

(1 + αv)2
, (7a)

χ(u, v) = χ0

1 + β

v + β
, (7b)

χ(u, v) = χ0

(

1−
u

γ

)

, (7c)

χ(u, v) =
χ0

1 + ǫu
. (7d)

The first two forms (7a) and (7b) of the functionχ(u, v)
correspond to the signal-dependent sensitivity, while the
other two (7c) and (7d) - for the density-dependent sensitiv-
ity [4]. Acceptingα = 0, β → ∞, γ → ∞ or ǫ = 0 leads to
a constant form of the chemotactic sensitivity,χ(u, v) = χ0.

The initial conditions (3) take the following dimensionless
form:

u(x, 0) = 1 + ε(x), v(x, 0) = 0, x ∈ [0, 1], (8)

whereε(x) was a20% random uniform spatial perturbation.
The boundary conditions (4) transform to the following

dimensionless equations (t > 0):

u(0, t) = u(1, t), v(0, t) = c(1, t),

∂u

∂x

∣

∣

∣

x=0

=
∂u

∂x

∣

∣

∣

x=1

,
∂v

∂x

∣

∣

∣

x=0

=
∂v

∂x

∣

∣

∣

x=1

.
(9)

According to the classification of chemotaxis models, the
dimensionless model of the pattern formation is a combi-
nation of the signal-dependent sensitivity (M2), the density-
dependent sensitivity (M3), the saturating signal production
(M6) and the cell kinetics (M8) models [4].

III. N UMERICAL SIMULATION

The mathematical model (2)-(4), as well as the corre-
sponding dimensionless model (6), (8), (9), has been defined
as an initial boundary value problem based on a system
of nonlinear partial differential equations. No analytical
solution is possible because of the nonlinearity of the
governing equations of the model [7]. Hence the bacterial
self-organization was simulated numerically.

The numerical simulation was carried out using the finite
difference technique [14]. To find a numerical solution of
the problem a uniform discrete grid with 200 points and
the dimensionless step size0.005 (dimensionless units) in
the space direction was introduced,250 × 0.004 = 1. A

Figure 1. Top view bioluminescence images of the bacterial cultures in
the cylindrical vessel at 5 (a), 20 (b), 40 (c), 60 (d) min and space-time
plot along the contact line (e) [10].

constant dimensionless step size10−6 was also used in the
time direction. An explicit finite difference scheme has been
built as a result of the difference approximation [14], [20].
The digital simulator has been programmed by the author in
JAVA language [21].

The computational model was applied to the simulation
of bioluminescence patterns observed in a small circular
containers made of glass [10], [13]. Figures 1a-1d show typ-
ical top view bioluminescence images of bacterial cultures
illustrating an accumulation of luminous bacteria near the
contact line. In general, the dynamic processes in unstirred
cultures are rather complicated and need to be modeled
in three dimensional space [1], [9], [10]. Since luminous
cells concentrate near the contact line, the three-dimensional
processes were simulated in one dimension (quasi-one di-
mensional rings in Figures 1a-1d). Figure 1e shows the
corresponding space-time plot of quasi-one-dimensional bi-
oluminescence intensity.

By varying the model parameters the simulation results
were analyzed with a special emphasis to achieving a
spatiotemporal pattern similar to the experimentally obtained
pattern shown in Figure 1e. Figure 2 shows the results of
the informal pattern fitting, where Figures 2a and 2b present
simulated space-time plots of the dimensionless cell density
u and the chemoattractant concentrationv, respectively. The
corresponding values̄u andv̄ averaged on circumference of
the vessel are depicted in Figure 2c. Regular oscillations
as well as chaotic fluctuations similar to experimental ones
were computationally simulated. Accepting the constant
form of the chemotactic sensitivity,χ(u, v) = χ0, the
dynamics of the bacterial population was simulated at the
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Figure 2. Simulated space-time plots of the dimensionless cell densityu
(a) as well as the chemoattractant concentrationv (b) and the corresponding
averaged values̄u andv̄ (c). Values of the parameters are as defined in (10).

following values of the model parameters [13]:

D = 0.1, χ0 = 6.2, r = 1, φ = 0.73, s = 625 . (10)

Due to a relatively great number of model parameters,
there is no guarantee that the values (10) mostly approach the
pattern shown in Figure 1e. Similar patterns were achieved
at different values of the model parameters. An increase in
one parameter can be often compensated by decreasing or
increasing another one [4], [17], [22] .

IV. RESULTS AND DISCUSSION

By varying the input parameters the output results were
analyzed with a special emphasis on the influence of the
chemotactic sensitivity on the spatiotemporal pattern for-
mation in the luminousE. coli colony. Figure 2a shows
the spatiotemporal pattern for the constant form of the
chemotactic sensitivity,χ(u, v) = χ0.

A. The Effect of the Signal-Dependent Sensitivity

The signal-dependent sensitivity was modeled by two
forms of the chemotactic sensitivity functionχ: (7a) and
(7b). The spatiotemporal patterns of the dimensionless cell
densityu were simulated at very different values ofα and
β. Figure 3 shows signal-dependency of the chemotactic
sensitivity.

Accepting α = 0 or β → ∞ leads to a constant
form of the chemotactic sensitivity,χ(u, v) = χ0. Results
of multiple simulations showed that the simulated patterns

Figure 3. Spatiotemporal plots of the dimensionless cell density u for two
forms of the signal-dependent chemotactic sensitivityχ(u, v): (7a) (α =
0.05) (a) and (7b) (β = 10) (b). Values of other parameters are as defined
in (10).

Figure 4. Spatiotemporal plots of the dimensionless cell density u for two
forms of the density-dependent chemotactic sensitivityχ(u, v): (7c) (γ =
10) (a) and (7d) (ǫ = 0.1) (b). Values of other parameters are as defined in
(10).

distinguish from the experimental ones (Figure 1e) when in-
creasingα-parameter (Figure 3a) or decreasingβ-parameter
(Figure 3b). Because of this, there is no practical reason for
application of a non-constant form of the signal-dependent
sensitivity to modeling the formation of the bioluminescence
patterns in a colony of luminousE. coli.

B. The Effect of the Density-Dependent Sensitivity

Two forms, (7c) and (7d), of the functionχ were em-
ployed for modeling the density-dependent chemotactic sen-
sitivity. The spatiotemporal patterns of the cell densityu
were simulated at various values ofγ andǫ. Figure 4 shows
how the density-dependency affects the pattern formation.

Acceptingγ → ∞ or γ = 0 leads to a constant form of the
chemotactic sensitivity,χ(u, v) = χ0. Multiple simulation
showed that the simulated patterns distinguish from the
experimental ones (Figure 1e) when decreasingγ-parameter
(Figure 4a) or increasingǫ-parameter (Figure 4b). Because
of this, similarly to the signal-dependent chemotactic sensi-
tivity, there is no practical reason for application of a non-
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constant form also of the density-dependent sensitivity when
modeling the pattern formation in a colony of luminousE.
coli.

A simple constant form (χ(u, v) = χ0) of the chemotactic
sensitivity can be successfully applied to modeling the
formation of the bioluminescence patterns in a colony of
luminousE. coli. Oscillations and fluctuations similar to ex-
perimental ones can be computationally simulated ignoring
the signal-dependence as well as the density-dependence of
the chemotactic sensitivity.

V. CONCLUSIONS

The quasi-one dimensional spatiotemporal pattern forma-
tion along the three phase contact line in the fluid cultures of
lux-gene engineeredEscherichia colican be simulated and
studied on the basis of the Patlak-Keller-Segel model.

The mathematical model (2)-(4) and the corresponding
dimensionless model (6), (8), (9) of the bacterial self-
organization in a circular container as detected by biolumi-
nescence imaging may be successfully used to investigate
the pattern formation in a colony of luminousE. coli.

A constant function (χ(u, v) as well ash(n, c)) of the
chemotactic sensitivity can be used for modeling the forma-
tion of the bioluminescence patterns in a colony of luminous
E. coli. Oscillations and fluctuations similar to experimental
ones can be computationally simulated ignoring the signal-
dependence as well as the density-dependence of the chemo-
tactic sensitivity.

The more precise and sophisticated two- and three-
dimensional computational models implying the formation
of structures observed on bioluminescence images are now
under development.
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