
Towards a SDL-DEVS Simulator

Multiparadigm simulation

Pau Fonseca i Casas

Statistics and Operations Research Department

Universitat Politècnica de Catalunya

Barcelona, Catalunya, Spain

pau@fib.upc.edu

Josep Casanovas

Statistics and Operations Research Department

Universitat Politècnica de Catalunya

Barcelona, Catalunya, Spain

josepk@fib.upc.edu

Abstract— In this paper, we present the first version of a

simulator that allows executing models defined using Discrete

Event System Specification and models defined using

Specification and Description Language. Specification and

Description Language (SDL) is a graphical language,

standardized under the ITU Z.100 recommendation, widely

used to represent telecommunication systems, process control

and real-time applications in general. Discrete Event System

Specification (DEVS) is a formalism widely used on the

simulation field to represent Discrete Event Systems. The

execution of the DEVS models is based on a transformation of

the simulation model DEVS representation to an equivalent

SDL representation. To do this, we propose a XML

representation for the DEVS models, and a XML

representation for SDL models. Also, we implement an

algorithm capable to perform this transformation.

Keywords-simulation; formal language; SDL; DEVS

I. INTRODUCTION

The purpose of the paper is to present a simulator

capable to understand and use SDL, or DEVS language, in a

single simulation model. Several simulators capable to

understand DEVS language exist, like DEVS++ [1], CD++

[2] or Galatea [3] among others; also, several tools work

with SDL, like Cinderella [4] or IBM’s Tau Telelogic [5].

However, currently, there is no simulator capable to work

with both languages. This capability improves the

reusability of models and the combination of technologies in

a single framework. The underline idea is to enable the use

of several models in a bigger and detailed model composed

by those models. Also, those models can be defined using

different formal languages. In this paper, not only a

simulator able to understand both languages is presented,

but also a method that enables the translation from DEVS

models to SDL, based on a proposed XML representation of

DEVS models.

This paper is organized as follows: first, we review both

languages. Next, we present how we can describe both

languages using XML, proposing a new representation for

atomic DEVS models. From this representation and thanks

to an algorithm that allows the transformation from DEVS

to SDL, we present a mechanism that allows performing this

transformation automatically. Lastly, we present a system

that is capable of perform a simulation using DEVS or SDL

models.

II. SPECIFICATION AND DESCRIPTION LANGUAGE

Specification and Description Language (SDL) is an

object-oriented, formal language defined by the

International Telecommunication Union –

Telecommunication Standardization Sector (ITU–T). The

recommendation that summarizes its use is Z.100. The

language is designed to specify complex, event-driven, real-

time, interactive applications involving many concurrent

activities using discrete signals to enable communication

[6]. The definition of the model is based on different

components:

 Structure: system, blocks, processes and
processes hierarchy.

 Communication: signals, with the parameters
and channels that the signals use to travel.

 Behavior: defined through the different
processes and procedures.

 Data: based on Abstract Data Types (ADT).

 Inheritances: to describe the relationships
between, and specialization of, the model
elements.

The language has 4 levels (Figure 1):
1. System.
2. Blocks.
3. Processes
4. Procedures.

To know more about the Specification and Description

Language, [6][7][8] can be consulted.

188Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Figure 1. The figure shows the first level of an SDL model. Here, a

system named “My_system” is shown. It is composed by a single block

“My_block”, who receives a signal named “signal” from the environment

through the channel named “channel”.

III. SDL REPRESENTATIONS

SDL have two ways to be represented, SDL PR and SDL

GR. SDL-PR is conceived to be easily processed by

computers, also allows a compact representation of a model.

SDL-GR has some textual elements which are identical to

SDL-PR (this is to allow specification of data and signals)

but it is mainly graphical.

Figure 2 shows an example of a textual and graphical

representation of an SDL process. We are not using the

textual version of SDL only for one reason. Some different

textual representations of DEVS based on XML format

exist. Since we want to allow an automatic transformation

from SDL to DEVS, the use of XML simplifies our

programming code because now is easy to read and write

structured text files that follow the XML syntax, and also,

thanks to the XSD we can validate the correctness of its

syntax. We are using the XML representation for SDL

proposed in [9]. Since the more important aspects of an

XML file can be represented, and validated, through an

XSD file, in the next section some areas of the XSD file are

shown.

process P;

 start;

 nextstate idle;

 state idle;

 input s;

 output t;

 nextstate idle;

 endstate idle;

endprocess P;

Figure 2. Textual and graphical SDL representation.

A. XML representation of an SDL simulation model

This representation was first presented on [10], no

modifications have been done from this schema. We next

describe the more important elements. For further details,

please see [10], or download the complete schema from

[11].

In Figure 3, we show the first level of the XSD schema

we use to validate the structure of our XML. The first level

of this schema represents the first level of the Specification

and Description Language (system outmost block). Figure 4

shows the process type that allows represent an SDL

process.

Figure 3. XSD schema, system view

Figure 4. XSD schema, process view

IV. DEVS FORMALISM

Proposed by Bernard Zeigler in the 70’s [12], the main
scope of Discrete Event System Specification (DEVS) is the

idle

t

s

idle

idle

1(1)process P

189Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

representation of simulation models. A DEVS model is a
tuple composed by the elements defined as follows:

 {()| ()}

DEVS distinguishes between an internal and external

transition. An internal transition is a kind of transition that
doesn’t need any external event to be launched. As an
example, if in a “t” time, the system reach the state “s”, the
system remains in this state the during the time defined on a
“time advance” function “ta(s)” (if no external event is
received). When the time reach the value defined in the
“ta(s)” function an output event is produced (this output is
defined on the “λ(s)” function) and the state changes to “s’ ”.
This process is defined in the internal transition s’= δint(s).

External transitions define the modifications in the model
due to the reception of external events. For example, before
the model reach the state “s’ ”, in a time “t”, due to his
internal transition, an external event, with value x, is
processed. In this case the system reach state (s,e) where
e<ta(s), the transition follows the external transition function,
defined by s’= δext(s,e,x), and no exit event is produced.

At this point, it is important to underline that “ta(s)”
could be any real number, plus 0 and ∞, and:

• If ta(s) is 0, “s” is a transitory state.
• If ta(s)=∞, “s” is a passive state.
In the next lines, we review two examples from [12]. We

use these two models to transform them automatically to a
SDL specification and then execute the models using SDLPS
[9].

A. Processor example

This example represents a single processor that receives
different jobs. Each job has associated a processing time
(represented by a real number). Once the time is over event
“ready” is produced. When a new event reach the processor,
if this is working with a job, this event is ignored. The DEVS
formalization of this model is:

 { }

 { }

 { () () ()}

 () ()

 () {
(()

()

 () ()

 ()

B. FIFO Queue example

The queue represented in this example has the following
characteristics:

 The queue has infinite capacity.

 Different jobs reach the queue to be stored,
while the “ready” signals symbolize the
necessity of transmit the first job of the queue.

 The transmission of this job is done through an
output event.

 The queue spends 0 time units in the exit delay.

The DEVS model is:

 { } { }

 { }

 { () () ()}

 () ()

 () {
()
()

 ()

 ()

V. DEVS COUPLED MODELS

DEVS also allows formalizing simulation models
without describing the behavior for each element belonging
the model. It is possible to describe the structural relations
that exist among identical elements. These models are named
“coupled models”. In DEVS there are two main types of
coupled models:

 Modular coupling.

 Non modular coupling.
In modular coupling integration among different model

components happens only across entries and exits defined in
the components, while in non-modular coupling, interaction
is produced across states. The literature established that is
possible to pass from one kind of coupling model to the other
[5], therefore in present paper we will focus on show the
existing relation among SDL formalism and the DEVS
modular formalism.

For simplicity, the DEVS coupled model used in this
paper is DEVS coupled model with ports. In this model a
series of input and output ports are described. With this logic
is possible to depict the following example, see Figure 5,

190Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

representing the combination of the two models that have
been defined previously (the queue and the processor).

Figure 5. DEVS coupled model.

The coupling model specification for this model is:

N = (X, Y, D, {Md | d Î D}, EIC, EOC, IC, Select), on
X=Jx{inport1}
Y={y(Job) | Job ϵ J } x { outport1}
D={P,Q}
EIC{(N, inport1), (Q, inport1)}
EOC{(P,outport1), (N, outport1)}
IC{(P, outport2), (Q, outport2)}

VI. XML REPRESENTATION OF DEVS MODELS

Some attempts have been made to represent DEVS
models using XML. As an example, in [13], a schema is
presented that cannot characterize the programming logic,
loops and if-then-else constructs. Our approach is going
further and allows the representation of those elements. We
propose to use ANSI C (since it is an ISO standard) to
represent the code contained in model. Also this simplifies
the representation of the model on SDL, using a variant
named SDL-RT who uses ANSI C too. In our point of view
the DEVS-XML representation that we present here can be
considered as a good starting point for a robust and complete
representation of DEVS models using XML.

We follow some conventions to represent a DEVS model
using XML syntax:

 All the code needed to fully define the
simulation model is defined on the “values” xml
section.

 The initial conditions of the model is defined in
the XML as well, using a ”value” attribute
related to all the variables that defines the state
of an atomic DEVS model.

 Also, to represent the value ∞ used in the
passive states we use ‘inf’ literal value.

Some parts of the XML schema used to represent

coupled and an atomic models is shown in Figure 6.

Figure 6. DEVS XML schema.

The complete definition of the DEVSmodel using XML is

show next. In Figure 7 is represented the whole DEVS model
using XML. In Figure 8 the definition of the states is shown.
Figure 9 shows the definition of the input and the output
elements. Figure 10 represents the external functions and in
Figure 11 the time advance and output functions.

Figure 7. GG1 DEVS model.

191Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

Figure 8. States definition.

Figure 9. Input and output elements.

Figure 10. External an internal functions.

Figure 11. Time advance and output functions.

From this DEVS-XML representation, we can obtain an

equivalent model described using Specification and
Description Language, using again XML (SDL-XML).

VII. TRANSFORMING FROM DEVS TO SDL

The transformation algorithm is based on the theoretical
proposal presented in [14]. In this infrastructure, we
implement this proposal using the XML representation for
the SDL and DEVS model (DEVS-XML and SDL-XML).
This allows us to obtain a new XML file that represents a
DEVS model. The schema used here to represent the SDL
model is based on those presented on [10] we only show here
the more important aspects of the resulting XML file that
represents the new proposal for the DEVS-XML
representation.

Figure 12. XML representation of the SDL model.

192Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

In Figure 12, we can see the whole representation of the
DEVS-XML model, now transformed to a SDL-XML
representation. We can see, as we can expect, that the model
contains two processes, the queue and the procesor1.

Figure 13. Process queue definition.

In Figure 13 the XML representation using SDL for the

DEVS queue element is shown.

VIII. SIMULATING THE DEVS MODEL ON SDLPS

Regarding the infrastructure used, it is remarkable that
SDLPS has been build using C++ and C languages. The code
related to the model is represented using a DLL, and the
generation of the SDL-XML model is done through a plug-in
on Microsoft Visio®.

Figure 14. SDLPS system loading the DEVS model.

In Figure 14, we can see the DEVS GG1 model on

SDLPS. Note that it is not represented the DEVS model

because the Microsoft Visio® plug-in we develop allows the
generation of the SDL-XML from a SDL Microsoft Visio®
diagram, but the inverse is not yet implemented (we cannot
regenerate the diagram form a SDL-XML representation.

On the left side, we can see the tree that contains all the
elements that defines the model.

IX. DISCUSSION

Several formal languages exists that can be used to
represent a simulation model, like SDL, DEVS, PetriNets
[15], or SysML among others. The use of this kind of
languages in a simulation project is very desirable, because
clearly differentiates the model form the implementation that
finally represents the model. Also helps in the understanding
of the model and helps in the Validation and Verification
process. However, only few simulators allow working with
different formal languages in the same environment.

In this paper, we presented a XML representation for
atomic and coupled DEVS models with the main goal to
serve as a starting point to achieve a complete representation
of a DEVS model. This allows the construction of tools that
works with DEVS. Also we shown that thanks this
representation we can implement a transformation algorithm
between DEVS and SDL, allowing that in a single model we
can use both formalisms. This simplifies the reuse of
simulation models, and the collaboration between different
groups that can use the formal language they prefer to define
the models. The first issue that is needed to be fixed is that
only few of them have been standardized, this often implies
that the XML representation of the models needs to assure
the inclusion of new features to the language. Also the
textual representation of these models, needed in order to be
used in a computer simulator, sometimes does not exists.

Also, we presented an infrastructure that allows the
simulation of DEVS and SDL models. This combination of
both languages can be done thanks the XML representation
used for DEVS and SDL models. In this infrastructure we
show that the final user can define the models using common
simulation tools, like Microsoft Visio®, and thanks a plug-in
the XML representation can be obtained.

Now, this infrastructure is currently used in a production
environment in real simulation projects for different well
known industries. Those projects help us in the Verification
of the tool and in the development of some missing plug-ins
for some of the more common used computer programs in
the industry.

ACKNOWLEDGMENT

Many thanks, for his support in the development of this

project, to the Computing Laboratory of the Barcelona

Informatics School.

193Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

REFERENCES

[1] M. Ho Hwang. (2009, April) DEVS++: C++ Open Source
Library of DEVS Formalism. Document. [Online].
http://odevspp.sourceforge.net <retrieved: 10, 2011>

[2] G. Wainer, "CD++: a toolkit to develop DEVS models,"
Software, Practice and Experience, vol. 32, no. 3, November
2002, pp. 1261-1306.

[3] J. Dávila, E. Gómez, K. Laffaille, K. Tucci, and M. Uzcátegui,
"MultiAgent Distributed Simulation with GALATEA," in
Procediings of the 9-th IEEE International Symposium on
Distributed Simulation and Real Time Applications, Montreal,
2005, pp. 165-170.

[4] CINDERELLA SOFTWARE. (2007) Cinderella SDL.
[Online]. http://www.cinderella.dk <retrieved: 10, 2011>

[5] IBM. (2009) TELELOGIC. [Online]. http://www.telelogic.com/
<retrieved: 10, 2011>

[6] Telecommunication standardization sector of ITU. (1999)
Series Z: Languages and general software aspects for
telecommunication systems. [Online]. http://www.itu.int/ITU-
T/studygroups/com17/languages/Z100.pdf <retrieved: 10,
2011>

[7] L. Doldi, Validation of Communications Systems with SDL:
The Art of SDL Simulation and Reachability Analysis.: John
Wiley & Sons, Inc., 2003.

[8] R. Reed, "SDL-2000 form New Millenium Systems,"
Telektronikk 4.2000, pp. 20-35.

[9] P. Fonseca i Casas, "SDL distributed simulator," in Winter
Simulation Conference 2008, Miami, 2008, pp. 2943-2943
http://wintersim.org/abstracts08/POS.htm#fonsecaicasasp84590
. <retrieved: 10, 2011>

[10] P. Fonseca i Casas, "Towards an automatic transformation from
a DEVS to a SDL specification," in Procediings of the 2009
Summer Simulation Multiconference, Istanbul, Turkey, 2009,
pp. 348-353.

[11] P. Fonseca i Casas. (2011) Pau Fonseca i Casas. [Online].
http://www-eio.upc.es/~pau/index.php?q=node/30 <retrieved:
10, 2011>

[12] B.P. Zeigler, H. Praehofer, and D. Kim, Theory of Modeling
and Simulation.: Academic Press, 2000.

[13] J.L. Risco-Martín, S. Mittal, M.A. López-Peña, and J.M. De la
Cruz, "A W3C XML Schema for DEVS Scenarios," in Spring
Simulation Multiconference 2007, vol. DEVS Symposium,
Norfork, Virginia, 2007, pp. 279-286.

[14] P. Fonseca i Casas and Josep Casanovas Garcia, "Using SDL
diagrams in a DEVS specification," in The Fifth IASTED
International conference on Modeling Simulation and
Optimization, 2005, pp. 67-72.

[15] L Recalde, E Teruel, and E Silva, "Autonomous continuous P/T
systems. Application and Theory of Petri Nets," Lecture Notes
in Computer Science, 1999, pp. 107-126.

194Copyright (c) IARIA, 2011. ISBN: 978-1-61208-169-4

SIMUL 2011 : The Third International Conference on Advances in System Simulation

http://odevspp.sourceforge.net/
http://www.cinderella.dk/
http://www.telelogic.com/
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/Z100.pdf
http://www-eio.upc.es/~pau/index.php?q=node/30

