
Open Source, Simple, Concurrent Simulator for
Education and Research

Miguel Bazdresch
ECTET Department

Rochester Institute of Technology
Rochester, NY, USA

Email: miguelb@ieee.org

Abstract—In engineering education and training, it is
desirable that students develop their own simulators, or
inspect the source code, modify it, and design their own
functionality based on an existing simulator. Existing
commercial and open-source simulator software are not
always appropriate for this purpose, given their complexity
or their closed-source nature. We propose a simulator that
is simple enough to be used for this purpose, while offering
powerful features (such as concurrent computation and
graphical user interfaces) that make it adequate also for
more advanced research work.
Keywords–Modeling, Computer Simulation, Parallel

Processing, Educational Technology

I. Introduction
In engineering education or training, it is often de-

sirable that students build their own simulators, inspect
and/or modify the source code of an existing one, or
design their own code and insert it into a simulator. It is
difficult to accomplish these objectives in the context of
an engineering course, with a reasonable time investment
on the part of the students. It would be useful to have
an educational simulator with the following features:

• Open-source, so that its code may be freely in-
spected and modified.

• Coded in a simple, dynamic language.
• With high performance.
In this paper, we present a simulator that meets this

description. The simulator is similar to Simulink [1] or
LabView [2]. It allows simulation of models that may
be divided into independent, interconnected blocks. Data
and/or events flow among the blocks, of which some are
sources, some sinks, and some process their input into
an output. It may be useful for discrete simulation, for
model-based design, for implementing stencil codes and
for simulating other types of distributed models.
The paper is divided as follows. In Section 2, we

present an introduction to the Julia language; the sim-

plicity and performance of the proposed simulator are,
in large part, due to this language. In the third section, we
describe our proposal in some detail. Then, we compare
it with other existing simulators offering similar capabil-
ities. We finish the paper by presenting our conclusions
and our plans for the future.

II. The Julia Language
Julia [3], [4] is a recent open-source numerical com-

puting language. It offers the simplicity and expressive-
ness of more well-known dynamic languages such as
Python [5] or Matlab [6], with execution times that are
frequently no more than two times slower than C or
C++ code. In comparison, algorithms coded in Python
or Matlab often are thousands of times slower than their
equivalents written in C.
Julia achieves this unprecedented (for a dynamic

language) execution speed thanks to a “just in time”
compilation strategy, based on the Low-Level Virtual
Machine (LLVM) [7].
The combination of speed and simplicity is one of

Julia’s main attractions; however, it has other features
that make it interesting as a simulation programming
language: its typing system and its built-in parallel and
distributed computing features. Julia’s development is led
by a team at the Massachusetts Institute of Technology.
Although still in its early stages, it has attracted consider-
able interest. It is available for the three major operating
systems, Windows, Linux and OS X.

A. Julia’s typing system
Julia’s typing system is powerful and flexible. It offers

a nominative type hierarchy with bits (numbers), com-
posite (structures) and dictionary types, among others.
Types may be used as arguments. The compiler creates
efficient code by using run-time, dynamic type infer-
ence on variables. Julia allows the option of declaring

7Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

(annotating) a variable’s type, which helps the compiler
produce faster code.
In the context of simulation, besides its execution

speed benefits, a powerful type system helps to insure
that interconnected blocks receive and produce data of
the expected types, avoiding run-time failures and coding
errors.

B. Julia’s parallel and distributed computing environ-
ment
Multi-core, distributed, clustered, cloud and otherwise

parallel and concurrent computing platforms promise
significant gains in simulation speed [8]. While parallel
programming is not a trivial task, it can be made more
tractable by appropriate support from the programming
language. Julia provides a multiprocessing environment
based on message passing. Each processor runs its own
Julia code on its own memory, and all data sharing is
done explicitly by passing messages between CPUs.
Multiprocessing lends itself to simulating a model

which can be divided into independent blocks, each
of which operates on data produced by other blocks
and hands its data to other blocks. Each block runs
independently on each processor, and exchanges data
with other blocks using message passing. The main
drawback of this technique is the overhead involved in
passing messages.
Julia also supports automatic compilation for multi-

processing and cluster computing. For instance, arrays
may be distributed, in the sense that it is divided into
subarrays, each existing on a different CPU’s memory.
Operations on the array are performed by all CPUs in
parallel, behind the scenes and with very little explicit
intervention by the user.

III. The proposed simulator
In this section, we describe a simulator that takes

advantage of Julia’s strengths, and that is sufficiently
simple to be adopted in an educational context, while
being powerful enough to be useful in research.
Assume that we wish to simulate a model that has been

divided into a number of discrete blocks. Each block
has several input and/or output pins, each of which is
connected to one or more pins of other blocks.
In a concurrent simulator, a scheduler assigns blocks

to available computing resources according to certain
rules. We now describe our proposal in more detail.

A. Blocks
A block is a structure with the following fields:

• A configuration, implemented as a hash table. Each
block defines its own configuration and how it is
interpreted.

• A work function, which processes the inputs to
produce the outputs.

• A stop function, which is called when the scheduler
stops the simulation.

• A state, where the block may store its state.
• A set of input and/or output pins, each of a given
type.

• A flag that tells the scheduler that the simulation
should be stopped.

• A flag that tells the scheduler that the block’s work
function is currently being executed.

Some configuration items may specify how the block
is to be executed and scheduled. For example, if a block
opens a file, then the file descriptor will be valid only
for the CPU where the file was opened. In such a case, it
is required that the block is executed always in the same
CPU. As another example, multiprocessing (in contrast
to multithreading) makes it easier to manually partition
work among the available CPUs. This may be achieved
by indicating to the scheduler that a block should only be
executed on a set (or subset) of the available processors.
After blocks are defined, they are instantiated. A given

block instance has its own configuration and state, which
may be different from those of other instances. Once
blocks are instantiated, their pins are connected using a
simple function. In this way, a dataflow graph is built,
with data pipes connecting the blocks.

B. Scheduler
The scheduler executes in a single processor. It tra-

verses the dataflow graph, trying to find a block that
meets a set of criteria for execution. Once a block is
found, it calls the block’s work function on a free CPU.
Then, it continues the search.
A block that meets all the following criteria is eligible

for execution:
1) The block must not be running on another CPU.
2) If the block specifies execution on a particular

processor, then said processor must be free.
3) All of the block’s input pins must be connected to

pipes that are not empty; likewise, all its output
pins must be connected to pipes that are not full.

This scheduler is very simple, but it allocates work in
an efficient manner and, if there are more blocks than
CPUs, it is able to keep all CPUs busy.
If it is desired, it is very easy to modify the scheduler

or create a new one, due to the simplicity of the language

8Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

and its dynamic nature.

C. Interfaces
The simulator supports two kinds of interfaces. The

first is support for graphical user interfaces. These are
blocks that represent data graphically on the screen, and
also allow the user to interact with the simulator via
traditional user interface elements such as buttons or
menus. One example would be an oscilloscope block that
displays a signal. Another example would be a waterfall
display.
The second kind of interface blocks are those that

connect to external hardware elements and allow interac-
tion with physical signals or data. This allows the model
to be tested with the same kind of data an eventual
system implementation would interact with. For instance,
we provide source and sink blocks that connect to a
computer’s sound card, which in this case acts as a
general, low-bandwidth signal acquisition and generation
system.

IV. Example
We present an example of a simple block. The block

takes as input a vector of floating point numbers. Its
output is the square of the input’s elements. This block
has one input pin and one output pin. We need to create
a function to instantiate the block:
function square_float_inst()
b=Block({}, # empty dictionary
x::Vector{Float}->x.*x # work function
()->nothing # stop function
0, # initial state
[Pin(Vector{Float})] # input pin
[Pin(Vector{Float})]) # output pin

return b
end

In this code, Block() is a constructor that returns a
block with the given arguments, and Pin() returns
a pin of the given type. Note we can use types as
constructor arguments in a very simple way. We use an
empty dictionary as configuration, since this block has
no configurable options.
In this case, the stop function is an empty func-

tion. Using anonymous functions, this is specified as
()->nothing. The work function is defined also as
an anonymous function, but note that in this case we
used type annotations to ensure correctness and to help
the compiler. For more complex cases, the work function
can be defined separately.
The user would create a block instance squarer by

calling squarer = square_float_inst(),
and would connect its input pin to an

already instantiated source block source with
connect(source,1,squarer,1). With this code,
output pin 1 of the source block is connected to output
pin 1 of the squarer block. The function connect()
verifies that pin types match, and builds the simulation
dataflow graph. With the function run(), the scheduler
launches the simulation.

V. Comparison with similar simulators

Our proposal is similar to tools such as LabView,
Simulink and GNU Radio. Of these, only GNU Radio [9]
allows code inspection and modification. For this reason,
we focus on it for comparison.
On one hand, GNU Radio is a much more mature

tool, with many well-tested, high-performance blocks
available. It is focused on modeling signal processing,
software-defined radio and telecommunications systems.
It offers real-time performance in some applications.
It has interfaces to many kinds of hardware. It offers
multithreading parallelism.
On the other hand, GNU Radio is a complex system.

The blocks and scheduler are written in C++ to achieve
the required performance, while the dataflow graph is
defined using the Python programming language. This
mixture of languages, together with other decisions in the
simulator’s design, introduce some level of complexity.
This is exemplified in [10], a tutorial to write a block that
squares its input. The block’s code consists of more than
200 lines of C++, and its implementation requires the
knowledge of concepts such as virtual functions and in-
heritance. While this complexity also provides flexibility
and robustness, it may also preclude the study of GNU
Radio in some educational environments. In comparison,
the example presented in the previous section achieves
essentially the same functionality in less than ten lines
of code, and involves much less complex programming
concepts.
Our proposed simulator uses a single, simple language

(Julia), which offers performance competitive with C++
and C. The language’s expressiveness means that in-
specting the scheduler’s and any block’s source code
is feasible within the scope of beginner or intermediate
engineering courses. This is achieved without sacrificing
features; on the contrary, the parallel and distributed
computing facilities offered are often superior to the
alternatives.
In Table I, we summarize the comparison between our

proposal and GNU Radio.

9Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

TABLE I
Our proposal compared to GNU Radio

Proposal GNU Radio

Mature No Yes
Large library of blocks No Yes
Single language implementation Yes No
Concurrency Multiprocessing Multithreading
Distributed computing support Yes No
Code complexity Low High
Interface to external hardware Yes Yes
Graphical user interfaces Yes Yes

VI. Conclusion and future work
We have presented a simulator simple enough to be

used, inspected and modified by undergraduate engi-
neering students. Even though it is simple, it offers
performance that in many cases is much higher than, and
at least comparable to, Matlab’s, Simulink’s, or Python’s.
This is possible due to its use of the Julia programming
language. It also offers advanced multiprocessing and
distributed computing support. It supports graphical user
interface blocks and interfaces to external hardware.
There is much work to be done in the future:
1) The available block library needs to grow and

mature.
2) Blocks that interface to a variety of hardware and

computer ports have yet to be developed.
3) We wish to have an interface to blocks written in

different languages, from LabView’s G to Verilog.
4) The scheduler’s performance has to be optimized

after being measured under a variety of workloads
and with different computing resources.

5) Other scheduling algorithms should be proposed
and evaluated.

6) Discrete-event simulation has yet to be imple-
mented. This may be achieved by an appropriate
scheduler and by creating block pins of a time-
related type.

7) The simulator has to be tried in a classroom
environment, to verify its educational value.

8) In order to enable more complex scenarios, a
formalism such as DEVS [11] will have to be im-
plemented. A comparison with the large number of
DEVS-based frameworks (in multiple languages)
will be then possible.

We believe the Julia language, although still in its
early stages, has the potential to become the premier
numerical computing language. Its speed and flexibility
will undoubtedly allow it to enter into computing areas
now dominated by other languages, including simulation.
The simulator’s source code is available for browsing

and download at [12].

References
[1] “Simulink R2012b documentation center,” MathWorks,

Retrieved: Nov. 2012. [Online]. Available: http://www.
mathworks.com/help/simulink/index.html

[2] “Labview technical resources,” National Instruments, Retrieved:
Nov. 2012. [Online]. Available: http://www.ni.com/labview/
technical-resources/

[3] J. Bezanzon, S. Karpinski, V. Shah, and A. Edelman,
“Julia: A fast dynamic language for technical computing,”
in Lang.NEXT, Retrieved: Nov. 2012. [Online]. Available:
http://julialang.org/images/lang.next.pdf

[4] J. Bezanzon, S. Karpinski, and V. Shah. (Retrieved: Nov. 2012)
Julia Project, software and instructions. [Online]. Available:
http://julialang.org/

[5] “Python documentation,” Python Software Foundation,
Retrieved: Nov. 2012. [Online]. Available: http://www.python.
org/doc

[6] “Matlab R2012b documentation center,” MathWorks, Retrieved:
Nov. 2012. [Online]. Available: http://www.mathworks.com/
help/matlab/index.html

[7] C. Lattner and V. Adve, “LLVM: a compilation framework for
lifelong program analysis transformation,” in Code Generation
and Optimization (CGO 2004), International Symposium on,
Mar. 2004, pp. 75–86.

[8] C. Vecchiola, S. Pandey, and R. Buyya, “High-performance
cloud computing: A view of scientific applications,” in Per-
vasive Systems, Algorithms, and Networks (ISPAN 2009), 10th
International Symposium on, Dec. 2009, pp. 4–16.

[9] “GNU Radio Project, software and instructions,” Eric Blossom
and others, Retrieved: Sept. 2012. [Online]. Available:
http://www.gnu.org/software/gnuradio/

[10] E. Blossom. (Retrieved: Sept. 2012) How to write a signal
processing block. [Online]. Available: http://www.gnu.org/
software/gnuradio/doc/howto-write-a-block.html

[11] B. P. Zeigler, “Hierarchical, modular discrete-event modelling
in an object-oriented environment,” Simulation, no. 5, pp. 219–
230, Nov. 1987.

[12] M. Bazdresch. (Retrieved: Nov. 2012) Proposed simulator
project, software and instructions. [Online]. Available: https:
//bitbucket.org/mbaz/chango

10Copyright (c) IARIA, 2012. ISBN: 978-1-61208-234-9

SIMUL 2012 : The Fourth International Conference on Advances in System Simulation

