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Abstract—In general, tools used in concrete machining op-
erations are not adapted to the particular machining processes
whereas tool wear and production time are the main cost
causing factors. A geometrical simulation model describing
cutting forces and wear of both diamond and workpiece had
been proposed in the past. This model takes the abrasive
nature of the machined material into account by modeling the
microparts of diamond and workpiece as delaunay tessellations
of points randomly distributed within the workpiece and
simulating the process iteratively. By fitting the model to a
series of real experiments, the general appropriateness of the
model had been shown. An implicit assumption of these fittings
is that the connected processes are stationary. However, after
investigating real process data in the time domain, it turns
out that this assumption does not hold. Instead, the forces are
obviously affected by material heterogeneity which is not taken
into account in the first stage model. To fill this gap, now, an
extension of the simulation model is introduced, where the
material heterogeneity is modeled and simulated by Gaussian
Random Fields.

Keywords-Machining; Numerical Simulation; Gaussian Random
Fields.

I. INTRODUCTION

Tool wear and material removal rate represent two domi-
nant cost factors in machining processes. To obtain durable
tools with increased performance, these factors have to be
optimized considering the process conditions. Unlike ductile
materials such as steel, aluminum or plastics, material char-
acteristics for mineral substrates like concrete are difficult to
determine due to their strongly inhomogeneous components,
the dispersion of the aggregates and porosities, the time
dependency of the compression strength, etc. [2]. As a result
of the brittleness of mineral materials and the corresponding
discontinuous chip formation, there are varying engagement
conditions of the tool which leads to alternating forces and
spontaneous tool wear by diamond fracture.

Despite the manifold of concrete specifications, tools for
concrete machining are still more or less standardized tools
which are not adapted to the particular machining applica-
tion. The following analysis is carried out in a subproject of
the Collaborative Research Center SFB 823 [10]. In non-
percussive cutting of mineral subsoil such as trepanning,

diamond impregnated sintered tools dominate the field of
machining of concrete due to the excellent mechanical prop-
erties of diamonds. These composite materials are fabricated
powdermetallurgically [6]. Well-established techniques like
vacuum sintering with a preceding cold pressing process
or the hot-pressing, which is a very fast manufacturing
route, are used for industrial mass production. Due to the
premixing of metal powders and synthetic diamond grains,
the embedded diamonds are statistically dispersed in the
metal matrix. Additionally, the composition and allocation
of different hard phases, cement and natural stone grit in
the machined concrete are randomly distributed. Because of
these facts, the exact knowledge of the machining process
is necessary to be able to investigate for appropriate tool
design and development.

To obtain a better understanding of these highly complex
grinding mechanisms of inhomogeneous materials, which
are hard to be described by physical means, statistical
methods are used to take into account the effect of diamond
grain orientation, the disposition of diamonds in the metal
matrix and the stochastic nature of the machining processes
of brittle materials. The first step to gain more information
about the machining process is the realization of single grain
wear tests on different natural stone slabs and cement.

This paper is organized as follows. Section II gives an
overview of the setup used for the experiments under study.
After that, Section III shortly describes the simulation model
the extension of which is shown in Section IV. After the
presentation of the results in Section V, the paper closes
with the conclusion and a short outlook in Section VI.

II. EXPERIMENTAL SETUP

To gain information about the fundamental correlations
between process parameters and workpiece specifications,
single grain scratch tests have been accomplished. Within
these, isolated diamond grains, brazed on steel pikes have
been manufactured (see Fig. 1 and 2) to prevent side effects
of the binder phase or forerun diamond scratches as they
occur in the grinding segments in real life application.
To provide consistent workpiece properties, high strength
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Figure 1. Diamonds and brazed sample.

Figure 2. SEM picture of brazed diamond grain.

concrete specimens of specification DIN 1045-1, C80/90 [3]
containing basalt as the only aggregate had been produced.
Besides these the two phases, cement binder and basalt, were
separately prepared as specimens for an analysis of their
material specific influence on forces and wear.

To eliminate further side effects such as hydrodynamic
lubrication, interaction of previously removed material and
adhesion, the experiments have been carried out without any
coolant. The brazed diamond pikes had been attached to
a rotating tool holder which in turn had been mounted to
the machine (see Fig. 3) to simulate the original process
kinematic. Parameters for experimental design were chosen
according to common tools and trepanning processes. To
guarantee constant depth of cut the rotatory motion of
the diamond pike had been superimposed by a constant
infeed which generated a helical trajectory. To generate a
measureable diamond wear, a certain distance had to be
accomplished. Therefore, a total depth of cut of 250 µm
had been achieved in every test.

III. SIMULATION MODEL

The general aim of the project at hand is the opti-
mization of the machining process w.r.t. production time,
forces affecting the workpiece and tool wear. For this
aim, knowledge about the relationships between adjustable
process parameters, measurable covariates and the outcome
is inevitable. From this knowledge, optimal strategies and
parameter settings can be derived. As the real machining
experiments are very time consuming and expensive it is of
primary interest to develop a realistic simulation model. This

Figure 3. Scratch Test Device on Basalt.

compute (Sk, Sw)
S0
k ← SkRxRzRy + (dp, hk, 0)⊗ 1nk

for i = 1→ imax do
Si
k ← Si−1

k Rr − (0, ar, 0)⊗ 1nk

compute intersection volumes Ws

for j = 1→ nw do
mk;j ←

∑
l:ws;lj>0 wk;lρk

compute (γw, γk)
γ ← max(γw, γk)
Fij ← (vpmk;j)/td
(Fn;ij , Fr;ij)← Fij(sinγ, cosγ)
if ww;jρw > µkmk;j then

remove diamond simplices l : ws;lj > 0
else

reduce heights of diamond
simplices l : ws;lj > 0 by ηk

end if
remove workpiece simplex j

end for
(Fn;i, Fr;i)← (

∑
j Fn;ij ,

∑
j Fr;ij)

end for

Figure 4. Pseudocode Representation of Simulation Model. Sk and
Sw: vertices of grain and workpiece; Rx, Rz and Ry : random rotation
matrices for initial orientation; dp: diameter of machined hole; hk: initial
grain height; Rr : rotation matrix of tool depending on angle per iteration;
ar : height change per iteration; Ws: matrix of intersection volumes wl,j

between l-th grain and j-th workpiece simplex; ρk and ρw: diamond and
workpiece material densities; γw and γk: angles of contacting workpiece
and diamond simplices; vp: cutting speed in rpm; td: time scaling parame-
ter; µk: diamond specific threshold factor; ηk: diamond specific flattening
factor.

model then can be used for the derivation and testing of such
strategies and settings before verification in real processes.

To deal with this task, a simulation model based on
Delaunay Tessellations [5] of the workpiece and the diamond
was proposed. This approach had been chosen contrarily to
the usually chosen discrete model types on regular grids for
the simulation of grinding processes (see [1] and [11] for
overviews) due to the abrasive nature of the used materials.
Fig. 4 shows a pseudocode representation of the proposed
simulation model. For full details of the model, see [9].

Beside the extension of the model, our work is focussing
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Figure 5. Left: Crystal structure of diamond, right: Simulated diamond
grain

about, some slight modifications about how diamond grain
and workpiece are modeled had been made. Up to now,
the vertices in both grain and workpiece were generated by
drawing coordinates from an independent uniform distribu-
tion within the material and tool shape. However, to get more
realistic results by now the microparts are based on a jittered
regular grid for the workpiece. For the tool, the vertices are
aligned along the cubic crystal structure of the diamond and
also (slightly) jittered (see Fig. 5).

IV. MODELING OF MATERIAL HETEROGENEITY

In its latest version, the simulation model (described
below) assumed both the diamond and the workpiece to
consist of homogeneous material. While this assumption can
be seen fulfilled in the case of the diamond it is obviously
violated in the case of the workpiece as even relatively
homogeneous materials like basalt show a high degree of
local differences in hardness. These differences are to be
assumed even higher in the case of concrete composites due
to air pockets and the concrete additives.

This local heterogeneity in the machined workpiece ob-
viously affects the force signals, as can be illustrated by
forces measurements taken during each of the experiments
of the basalt series the model had been fitted to in [9].
For better interpretation, Fig. 6 visualizes how the one-
dimensional signals are transformed to spatial data. Subfig.
a) shows a simulated workpiece with local differences in
hardness heterogeneity visualized on a colour scale from
blue (low) to red (high). The black arrow line in Subfig. b)
shows the course the diamond tip takes during the process
as the tool is rotated and shifted towards the workpiece with
constant speed. When the tip enters the workpiece it takes
force measures from the cylinder highlighted in Subfig. c).
By assigning the force measurements to their coordinates
on the cylinder and unrolling the resulting cylindral image
(Subfig. d)), a two-dimensional image of the signal can
be obtained. Note that even though visualizations in the
following are partly presented in the plane, computations
are always performed in 3D.

Figure 6. a) Simulated workpiece, b) Course of diamond during process,
c) Cylindric bore hole, d) Cylinder cut free (left) and unrolled (right).

Fig. 7 shows exemplary 2D-images for two of the basalt
experiments. Obviously, the forces reflect local differences.
However, they are disturbed by both random and systematic
noise. The random part of the noise is measurement error
mainly caused by different chip sizes. The systematic part
of the noise appears to be periodic on the one hand and
reflects frequencies like gear wheel mesh frequencies which
are prominent in the engine spectrum. Another part of the
systematic noise is global trend being active during the start
of the process while the diamond enters the material.

A. Robust Statistical Estimation of Local Heterogeneity

By making the force data accessible for an estimation
of the material heterogeneity means the separation of the
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Figure 7. Two-dimensional force images of two basalt machining
experiments. Color scale from blue/low force to red/high force.

smooth local heterogeneity and noise. Due to the high vari-
ability between the experiments and the severe presence of
outliers and possible sudden shifts in the force measurements
robust techniques are applied to solve this task.

Mapped back to the time domain, the local heterogeneity
can be interpreted as the gradually changing periodic com-
ponent (seasonality) γt in the model

Yt = µt + γt + ut + vt, t = 1, ..., N = l · p, (1)

where the other components building up the specific force
signal Yt are the global trend µt, the sum of systematic
and random noise ut and the spiky noise vt caused by
outliers. The period of one revolution is denoted by p, while
the number of total observed revolutions is given by l. For
the interesting heterogeneity γt general smoothness meaning
γt ≈ γt−p is assumed while for identifiability the condition∑p

i=1 γt+i = 0, t = 0, p, ..., N − p is stated.
Our proposed method for the robust estimation of γt is a

two-step procedure, the first step of which is the estimation
of the trend by µ̂ using running medians of length 2·bp+1

2 c+
1:

µ̂ = med{yt−b p+1
2 c

, ..., yt+b p+1
2 c
},

t = bp+ 1

2
c+ 1, ..., N − bp+ 1

2
c.

In the second step of our procedure, the moving sea-
sonality γt is iteratively estimated by alternating between
smoothing the signal in rotational and in feed direction. The
smoothing again is obtained by the application of running
medians, while the initial heterogeneity estimator is based
on the detrended signal meaning

Figure 8. Two-dimensional heterogeneity of two basalt machining experi-
ments. . Color scale from blue/low heterogeneity to red/high heterogeneity.

γ̂
(0)
t = medj∈J0{yt+j − µ̂t+j}, t ∈ T0

γ̂
(i)
t = medj∈Ji

{γ̂(i−1)t+j }, i ∈ 1, ..., 2I, t ∈ Ti

Ji =

{
{−kh,−(kh − 1), . . . , (kh − 1), kh}, i+1

2 ∈ IN0

{−kvp,−(kv − 1)p, . . . , (kv − 1)p, kvp}, i
2 ∈ IN

Ti =

{
{kh + 1, kh + 2, . . . , N − kh}, i+1

2 ∈ IN0

{kvp+ 1, kvp+ 2, . . . , N − kvp}, i
2 ∈ IN

i = 1, ..., 2I, γ̂t = γ̂
(2I)
t ,

where kh and kv are the half window widths in rotational
and in feed direction and I is the total number of iterations.
Values of γ̂t for t /∈ Ti are estimated by extrapolation from
the closest window.

Within the investigations of the basalt series, it turned
out that a common half window width of kh = kv = 7
gave stable results and that the results converge after the
iteration number exceeds the value I = 16. Hence, these
parameter values had been chosen for the global fitting.
Fig. 8 exemplarily shows the 2d-images of γ̂t for the two
experiments shown in Fig. 7.

B. Simulation of Local Heterogeneity by Gaussian Random
Fields

One aim of our actual work is a realistic simulation
of the material heterogeneity within the machining process
simulation. A straightforward way for doing so is to simulate
the heterogeneity by samples of Gaussian Random Fields,
the parameters of which are based on the estimations of γt
obtained in the way described in the last section.

For this purpose, a joint variogram based on random
patches of the in total 73 cylinders derived from each γ̂t-
series had been computed. The moment estimated variogram
based on 50 equally spaced bins from 0 to 130 mm is shown
in Fig. 9.

Fig. 9 also shows a theoretical variogram in green which
is based on an exponential covariance model (see [12]) with
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Figure 9. Joint variogram of fitted local heterogeneity. Green: fitted
exponential covariance model.

parameters fitted to the empirical variogram by Ordinary
Least Squares [7]. These parameters are given by the values
0 for the mean, 0.0168 for the standard deviation, 0.0112
for the nugget and 26.852 for the scale. The corresponding
theoretical variogram obviously meets the empirical one very
well so it can be used to base the heterogeneity simulations
on.

For the simulations between the geometrical initialization
of the workpiece and the process simulation, a step is added
to the model, where each workpiece simplex gets a hetero-
geneity value assigned to. To do so, an isotropic Gaussian
Random Field [12] is sampled based on the fitted covariance
model on a equidistant grid within the workpiece. Then, each
workpiece simplex gets the heterogeneity value assigned to
that results from interpolating the specific Random Field
realization to its center by ordinary Kriging [12].

As the covariance function parameters are based on the
additive decomposition of the original signal into trend,
seasonality and error, the implementation of the simulated
material heterogeneity is simply obtained by adding γt to
the homogeneously simulated signal yt.

V. RESULTS

The procedure described in the previous section had
been applied to re-simulate a process series with parameter
settings defined by the Central Composite Design the basalt
experiments were based upon. The simulated output had
been compared to the corresponding real data sets and a
high degree of accordance between simulated and real data
was observed. Fig. 10 shows an exemplary comparison of
simulated and measured forces, while Fig. 11 displays a
simulated heterogeneous workpiece after machining.

The main remaining differences between the simulated
and the real data by now seem to be a periodic noise.
As the dominating frequencies of this noise are the same

Figure 11. Simulated machined workpiece.

for processes with the same parameter settings, this noise
is not caused by material heterogeneity but by the engine
and therefore extends the scope of this paper. Obviously,
the noise is stationary and by this does not affect the
heterogeneity estimation. However, further analysis of this
systematic noise type and appropriate model extensions will
be made in separate work.

VI. CONCLUSION AND FUTURE WORK

In this paper, a major extension of an efficient, flexible
and valid model for the simulation of the machining pro-
cess of inhomogeneous mineral subsoil had been proposed.
This extension consists of the shift from static to dynamic
modeling where it turned out that material heterogeneity
has to be taken explicitly into account. It had been shown
that for the integration of this heterogeneity in the case
of a comparably homogenous material with presumably
continuous heterogeneity structure like basalt the usage of
Gaussian Random Fields is appropriate. This result is very
feasible since it yields a parsimonious and well identifiable
parametrization of heterogeneity.

However, for more complex materials like concrete, over-
all continuous heterogeneity cannot be assumed as, e.g.,
aggregates and air pockets cause rapid shifts in heterogene-
ity. For this reason, heterogeneities of different material
phases will have to be modeled separately as, e.g., done
in [4] for two-phase materials. For the fit of the correspond-
ingly extended simulation model a procedure for automatic
identification of phases is needed, which is actually being
developed in the project the work presented here is part of.
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Figure 10. Comparison of real (left) and simulated data (right). Top: signals in time domain with estimated heterogeneities in green. Middle: Signals in
2D-representation. Bottom: estimated heterogeneities in 2D-representation. Note that color scales between signals and heterogeneities are not comparable.

(DFG), within the framework of Project B4, Statistical Pro-
cess Modelling for Machining of Inhomogeneous Mineral
Subsoil.
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