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Abstract—A continuing technology scaling and the increasing
requirements of modern embedded applications are most likely
forcing a current multi-processor system-on-chip design to scale
to a many-core system-on-chip with thousands of cores on a
single chip. Network-on-chip emerged as flexible and high-
performance solution for the interconnection problem. There
will be an urgent need for fast, flexible and accurate simulation
models to guide the design process of many-core system-on-
chip. In this paper, we introduce a novel analytic approach for
modeling on-chip networks to fulfill these requirements. The
model is based on queueing theory and very flexible in terms
of supported topology, routing scheme and traffic pattern. The
approach overcomes the limitations of the mean value analysis
introduced in the existing work. Instead, it provides information
about a steady-state distribution of the network routers. This
allows to dimension network resources, such as buffers, links,
etc. We show the high accuracy of the model by comparison
with a cycle-accurate simulation. The model is able to estimate
the mean network latency with an accuracy of about 3%.

Keywords-network-on-chip; noc; queueing theory; analytic
model.

I. Introduction

In embedded computing, today’s applications show a com-
mon trend towards a continuously increasing computational
effort and reliability. This is especially true in the area of
multi-media and mobile communication. These requirements
can only be fulfilled by massively exploiting parallelism.
Taking also emerging technologies like 3D chip stacking
[1] into account, today’s multi-processor system-on-chips
(MPSoCs) soon scale to many-core SoCs with thousands of
processors on a single chip [2]. Already in 2015, we may
have 1000 or more cores on a chip [3].

If we assume such a large number of cores, the inter-
connection problem becomes a serious challenge. Classical
interconnection architectures, such as busses or crossbar
switches, cannot offer the necessary flexibility and scaling
with respect to throughput or area overhead. Network-on-chip
(NoC) evolved as a flexible and high-performance solution
for the interconnection problem during the last decade [4].
NoC is a packet-switched on-chip network where packets
are forwarded from a source to a destination via several
intermediate router nodes. We call the processing nodes that
are connected to the NoC cores, modules or processing
elements (PEs). Their functionality is thereby transparent
to the NoC, i.e., this could be a processors, memory or an
external interfaces. The smallest unit, to be transmitted over
a NoC, is called the flit (flow control digit).

Finding an optimal NoC interconnect for many-core SoCs
is a very challenging task, since many different design ob-
jectives and constraints have to be considered, like choosing

routing and switching methods, selecting topology, applica-
tion mapping, etc. [5]. This leads to a huge design space.
Therefore, fast and accurate NoC models will be required that
give an insight into the system and enable us to reduce the
design space already in early design stages. Cycle-accurate
simulation based approaches are too slow for this purpose.
Simple high-level system models (e.g. only considering the
propagation latency and ignoring queueing delays), on the
other hand, are able to provide results in very short time.
Due to the high abstraction, however, these models loose
quite some accuracy. Analytic models provide a good trade-
off between both approaches and are thus well suited for the
NoC exploration of a many-core SoC.

In this paper, we propose an analytic NoC model based on
queueing theory [6] that provides a high degree of flexibility
regarding topology, routing and traffic scheme. In contrast to
existing models, it is not restricted to mean value analysis but
provides information about the state distribution functions of
the routers. It enables us to easily derive arbitrary performance
metrics, such as mean latency, buffer usage or blocking
probability, and makes the model a very flexible tool for
NoC performance analysis.

The remainder of this paper is structured as follows. In
Section II, we discuss related work. Section III shows the
system model and its assumptions. Then, Section IV intro-
duces the analytic NoC model on network level (IV-A) and
router level (IV-B). We evaluate the accuracy of the proposed
approach against cycle-accurate simulation in Section V.
Finally, Section VI concludes the work.

II. Related Work

Much effort has been spent for more than two decades for
finding adequate traffic models for the analysis of off-chip
and (later) on-chip networks. In 1990, Dally [7] developed
analytic tools for investigating latency and throughput in
networks, but restricting to k-ary n-cube topologies. Recent
approaches focus on the mean value analysis of latency,
throughput and energy consumption. Kiasari et al. presented
an M/G/1 queueing model for wormhole switched two-
dimensional (2D) torus NoC topologies, assuming determin-
istic routing [8]. A different approach has been published in
2009 in [9], which introduces an empirical model to estimate
contention delays for constant service time routers. Thereby,
the hybrid router model takes into account Poisson input flows
as well as output flows from preceding constant service time
routers. Ogras et al. presented a fast and flexible analytic
approach in 2010 [10] for the mean value performance
analysis of virtual channel first-come first-serve (FCFS) input
buffered routers for arbitrary topology and service time
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Figure 1. The Hierarchical structure of the proposed analytic model.

distribution. Other recent approaches for modeling on-chip
networks [11] focus on the theory of the Network Calculus
[12]. This theory provides a powerful tool for an estimation
of performance bounds in NoCs, which is essential for giving
statements about the realtime capabilities of a network in early
design stages. However, for the exploration of the average
network behavior, other methods, like stochastic models, are
more expedient.

III. System Model

We assume the routers to be arranged in an arbitrary
topology. An arbitrary number of cores is allowed tobe con-
nected to a single router. Due to the low buffer requirements,
wormhole switching is the most favored switching technique
for realizing best-effort services in on-chip networks today
[5]. Therefore, we restrict our model to this technique. The
routing protocol, on the other hand, shall not be restricted.
Concerning the arbitration scheme, we restrict to the first-
come first-serve method. Extensions to other arbitration
schemes, like the popular round-robin, are left for future
work. Routers consist of an arbitrary number of buffered input
ports and an arbitrary number of (unbuffered) output ports.
We assume infinite buffer size.

Furthermore, we assume external packet arrivals from
PEs to possess Poisson characteristic [6], i.e., they have
exponentially distributed inter-arrival times with known mean
values. This assumption is often made to approximate real
network traffic while reducing the model complexity at the
same time. The router service times include processing delay
for arbitration as well as forwarding delay for the packet and
are assumed to be exponentially distributed. Furthermore,
knowledge of the mean router service rate and router service
latency is required. We assume it w.l.o.g. to be equal for all
routers in the network. Finally, we imply a common clock
for all routers.

IV. An analytic Model for Networks-on-Chip

To provide a flexible as well as a fast analytic model
we propose to follow a hierarchical approach as depicted
in Figure 1. We split the NoC model into an analysis on
network level and on router level. By performing the analysis
on router level and combining the results on network level,
we thus reduce the complexity.

The network model receives multiple inputs that have to
be specified by the user. The traffic scenario is described by
the traffic characterization matrix T and the external arrival
rate vector l. The topology and interconnection is specified
via the connectivity matrix Γ. Finally, information about the
applied routing scheme is provided via the routing matrix R.
An overview of the notation and a more detailed explanation
is given in Table I.

Based on this information, the network model is able to
compute local parameters for each router node individually,
i.e., the inputs for the router model. The local parameters
comprise the local arrival rates λi that is the accumulated
arrival rate over all traffic flows that cross router input i.
Furthermore, the forwarding probabilities fi, j are computed.
fi, j defines the probability that a packet arriving at a router
input i is forwarded to a router output j (please note that the
indices i and j correspond to the unique identifier of the link
that is connected to router input or output). The computation
of the local arrival rates and forwarding probabilities is
discussed in more detail in Section IV-A.

The local parameters can now be applied to a queueing
model on router level. It is responsible for deriving the
compound distribution for the number of packets in the input
queues, which represent the router state. Consequently, the
knowledge of the compound distribution enables a compu-
tation of key performance indicators, such as average buffer
usage, blocking probabilities or mean queueing delays. The
queueing model on router level is introduced in Section IV-B.

Finally, the performance metrics, computed on router level,
have to be combined on network level, e.g., to derive path
delays by summing up the queueing delays and the fix router
propagation latencies.

A. Analysis on Network Level

We can derive the vector of local arrival rates λ, with
elements λi (1 ≤ i ≤ NE), by summing up all traffic flows that
cross a specific link (and router input queue, respectively).
Therein, NE is the number of links in the network. The
traffic characterization matrix T provides information about a
pairwise traffic flow probability between each module s and
d. By weighting T with the external arrival rates l, we get the
traffic intensities (in packets/cycle) for each pair of modules.
Finally, we multiply the traffic intensities with the probability
that the flow will pass link i (given by routing matrix R) and
sum up the fractions of the contributing traffic flows:

λi =

NM∑

s=1

NM∑

d=1

ls · ts,d · rs,d,i, 1 ≤ i ≤ NE . (1)

The notation is given in Table I. By applying the definition
of the Frobenius inner product [13], we can rewrite (1) as
matrix equation as follows:

Table I: Model parameters and notation

NM Number of modules

NR Number of router nodes

NE Number of edges

T =
[
ts,d

]
Traffic characterization matrix (of size NM × NM) with
elements ts,d that specify the send probability from
module s to module d

l = [ls] External arrival rate vector (of size NM × 1) with ele-
ments ls representing the arrival rate (packets/cycle) from
source module s

Γ =
[
γs,d
]

Connectivity matrix (of size (NM+NR)×(NM + NR)) with
elements γs,d ; γs,d > 0, if there is a directed connection
from s to d; the value γs,d represents the link ID for this
connection (sgn(Γ) ≡topology matrix)

R =
[
rs,d,i
]

Routing matrix (of size NM × NM × NE) with elements
rs,d,i defines the probability that link i is occupied for
routing a packet from source module s to target module
t (
∑
∀i rs,d,i = 1)

x Average router service time
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λi = tr

((
T · LD

)T
Ri

)
. (2)

In (2), tr represents the trace of the matrix, LD is the NM ×
NM diagonal matrix representation of vector l:

LD := diag(l),

and Ri the corresponding submatrix of R that consists of
all elements rs,d,i with 1 ≤ s, d ≤ NM . We can select the
set of local arrival rates Λr for a single router node r by
exploiting the knowledge of the topology that is contained in
the connectivity matrix Γ. I.e. we collect all λi where i is the
ID of an input edge of router r:

Λr := {λi | ∃s; 1 ≤ s ≤ NM + NR; γs,r = i}. (3)

We continue to compute the forwarding probability matrix
F. The matrix element fi, j (1 ≤ i, j ≤ NE) can be defined
as traffic intensity between router input i and router output j
normalized to the total arrival rate at input i, i.e., λi:

fi, j :=

∑NM

s=1

∑NM

d=1
ls · ts,d · rs,d,i · rs,d, j · δi, j

λi

, 1 ≤ i, j ≤ NE .

(4)
We call the term δi, j the link selector matrix. It ensures
that there is only a forwarding probability fi, j > 0, if (i, j)
represents an input/output link pair of the same router:

δi, j :=

{
1, i f ∃s, r, d with γs,r = i ∧ γr,d = j
0, otherwise

.

Therein, γs,r and γr,d are corresponding elements of the
connectivity matrix Γ. Equation (4) can be rewritten in matrix
form:

fi, j :=
δi, j

λi

· tr

((
T · LD

)T (
Ri ◦ R j

))
, (5)

where ◦ represents the entry-wise multiplication (i.e., the
Hadamard product) of two matrices. Finally, we also restrict
the set of forwarding probabilities Fr to a single router node
r, similar to the approach in (3), and come to (6):

Fr := { fi, j | ∃s, d; 1 ≤ s, d ≤ NM + NR; γs,r = i ∧ γr,d = j}.
(6)

B. An Analytic Router Model based on Queueing Theory

Based on the assumptions that we made in Section III, an
M/M/1 queueing system [6] with exponential interarrival and
service times will be appropriate to model the router behavior.
However, in reality, the traffic situation within a router looks
more complicated, as the example in Figure 2 (left) shows.

Therein, we find splitting and merging of traffic flows that
contend with other input queues for multiple output ports.
Furthermore, each input has different probabilities of being
forwarded to a specific output. To be able to represent the
router system by a queueing model, we propose using a
simplified equivalent system, as depicted in Figure 2 (right).
The idea is to include the contention delays into the service
times and thereby receiving port specific service times. In fact,
if a packet in front of a (FIFO) queue is blocked due to a
contending queue, this is nothing else than a delayed service.
Therefore, it is reasonable to consider the contention delay as
a service time increase. Consequently, we come to a reduced
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Figure 2. The equivalent queueing system simplifies a view onto the
traffic situation in a router and can easily be expressed as a Markov
model.

equivalent system that now only consists of a single output
server and multiple input queues, each having an individual
service time (and service rate µi respectively).

Due to the memoryless property of the exponentially
distributed arrival and service processes, the state of the
equivalent router system can now solely be defined by the
number of flits contained in the input queues. If we represent
the state by a vector where each element represents the fill
level of a single input queue, we can model the system by
means of a multidimensional Markov chain. This is illustrated
in Figure 3 for the case of a router with two inputs (please
ignore the depicted macro states for now). Therein, the
transition rates are defined by the arrival rate λi and service
rate µi for each input independently. Let x be the current state
vector of the router. Then, a transition from state x→ x + ei

(where ei is the unit vector for dimension i) has an intensity
of λi. On the other hand, a transition x → x − ei has an
intensity of µi. The boundaries of the Markov chain are an
exception to that rule (first column/row in Fig. 3). There, we
find a different contention situation. In the case of two inputs,
we have no contention caused by the second input anymore.
Therefore, the transition rates for x → x − ei change to µ,
i.e., the basic router service rate without contention delay.

For solving the Markov chain, we still need to know the
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Figure 3. Example of a two-dimensional Markov model for a router
with two inputs and the decomposition into reversible sub-chains.
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service rates µi that include the contention delay to be able
to define the transition rates. For this purpose, we apply an
idea that was proposed in [10] to determine the mean waiting
time for a similar input buffered router model assuming an
FCFS arbiter. We modify this approach to find an estimation
for the mean service time, i.e., the waiting time of the flit
in front of the queue. Similar to [10], we first compute the
pairwise contention probability ci, j for all inputs pairs (i, j) of
a router with P inputs based on the forwarding probabilities
F that can be derived according to (5):

ci, j =

P∑

k=1

fi,k f j,k, i , j, 1 ≤ i, j ≤ P. (7)

From (7), an equivalent matrix equation can be derived

C = F · FT . (8)

Note that the main diagonal of the contention probability
matrix C in (8) is set to ”1” which makes the following
computation more convenient. Based on the contention prob-
abilities, we can derive an expression to estimate the mean
service times xi(y) under contention:

xi(y) := x + x

P∑

j=1, j,i

ci, jy j, 1 ≤ i ≤ P. (9)

The first summand x of (9) represents the mean router
service time for the packet in front of queue i. The second
summand considers the contention delay. Therein, the vector
y represents the instantaneous fill state of each input queue,
i.e., yi = 0, if input queue i is empty and does not contribute
to the contention delay and yi = 1 otherwise. We will call
y the router macro state in the following and can directly
derive it from the router state x:

yi =

{
0, i f xi = 0
1, i f xi > 0

,

or rather informally: y = sgn(x).
We can still condense (9) somewhat by exploiting the

convenient definition of contention probability matrix C and
provide a short form matrix equation for the mean service
rates µi(y) (i.e. the inverse of the mean service times):

µi(y) :=

[
1

µ
Ci

T y

]−1

, 1 ≤ i ≤ P. (10)

With the definition for the mean service rates µi(y) in (10)
we have now all necessary inputs to solve the Markov chain
in order to obtain the steady-state probability distribution.
However, in trying to do so, we are confronted with an-
other challenge. If we apply the Kolmogorov criterion for
reversibility of Markov chains, we soon realize that it does
not hold for some cases in the peripheral region of our Markov
chain. Accordingly, the chain is not time reversible; see Fig. 3
and examine the following state transitions: (0, 0)→ (1, 0)→
(1, 1) → (0, 1) → (0, 0), and the corresponding return path.
We notice that the product of the transition rates is not equal
for both directions, and thus, it does not fulfill the Kolmogorov
criterion [14]:

λ1 · λ2 · µ1 · µ , λ2 · λ1 · µ2 · µ.

Consequently, we are not allowed to apply local balance
equations to solve the chain. Unfortunately, we are not
able to find a closed-form solution for the infinite Markov
chain solely based on the global balance equations. Fehske
and Fettweis [15] recently encountered exactly the same
problem when trying to solve an equivalent Markov chain.
They proposed an approximation to find a solution for the
stationary distribution. The approach is based on the concept
of aggregation of variables that is well known by economics
for quite some years [16]. The proposed algorithm consists
of the following steps.

We start decomposing our Markov chain into reversible
sub-chains. This is done by collecting all states x that belong
to the same macro state (or aggregate state) y = sgn(x) in a
common set S(y):

S(y) ≔
{
x ∈ NP

0 | sgn(x) = y
}
.

The idea behind the definition is that all states are collected
in the a macro state where we find a similar contention
situation. If we consider a contending queue, it doesn’t matter
how many packets it contains, only if it contains at least
one packet or not. Consequently, the mean service rates are
homogeneous within each macro state. An example for the
Markov chain decomposition for the case of two input ports
is provided in Figure 3. Therein, we decompose the two-
dimensional Markov chain into four macro states. Macro state
(0, 0) contains all states where both input queues are empty
(which is only a single router state (0, 0)). Macro states (1, 0)
and (0, 1) collecting the states where only one of the two
queues is empty. Hence, we have no contention within these
two macro states. Macro state (1, 1) represents all router states
where both queues are not empty. In this example, this is the
only macro state where contention occurs.

Since the transition rates are homogeneous within each
macro state, the sub-chains are reversible and can be solved.
This leads to a product form solution for the stationary
probability distribution of the number of customers (i.e.
packets) π̃ in an M/M/1 queueing system that is well known
from classical queueing theory [6][15]:

π̃(x) =

{ ∏
i∈N1(y) (1 − ρi(y)) ρ

xi−1

i
(y)σ(y), for y , 0

σ(0), for y = 0
(11)

with utilization ρi(y) of input queue i defined as

ρi(y) :=
λi

µi(y)
.

Note that (11) only yields an estimate for the solution of the
stationary probability distribution. This is because we omit
the transitions between the macro states at this consideration.
Also, note that (11) is conditioned on the probabilities of the
corresponding macro state σ(y) to ensure that

∑
x π̃(x) = 1.

So far, we have no knowledge about the macro state
probabilities σ(y). We can compute σ(y) by solving the (now
finite) Markov chain on macro state level. Figure 4 shows a
solution for the transition rate p(y, y′) from macro state y to
macro state y′, as provided by [15]:

p(y, y′) =


λi, for y′ = y + ei

µi(y) − λi, for y′ = y − ei

0, else
, (12)
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Figure 4. Example: Markov chain on macro state level assuming a
router with two inputs.

where ei again represents the unit vector for dimension i.
Based on (12), we can now define the transition probability

matrix P =
[
pi j

]
with pi j := p

(
yi, y j

)
. With the definition of

pii := −
∑2P

j=1 pi j we normalize the row sum to 0.
Finally, we can follow the usual approach and solve the

equation system for the vector of macro state probabilities σ
based on the transition probability matrix P:

σP = 0,

under the side condition
∑

y σ(y) = 1.
Based on (11), we can now compute the approximates

for the state probabilities π̃(x). We can derive several key
performance indicators, such as the mean number of packets
in the queue E[xi]:

E[xi] ≈
∑

x

π̃(x)xi =
∑

y

ρi(y)

1 − ρi(y)
σ(y),

or the mean queueing delay Wi for input queue i by applying
Little’s law [6]:

Wi =
E[xi]

λi

.

V. Performance Evaluation

We show the accuracy of the proposed NoC model by
comparing it against cycle-accurate NoC simulation. Due to
the similar system model assumptions we decided to compare
our approach against the model proposed in [10] as well as
the NoC simulation tool that has been used therein [17].

We assumed following common simulation parameters:

• deterministic, dimension-ordered XY-routing,
• flit traffic, i.e., packet size = 1,
• input buffered routers with FCFS arbiter and service rates

of µ = 0.5,
• large buffer size (256 flits) to approximate the infinite

buffer model and
• simulation run time of 105 cycles with a warm-up period

of 104 cycles.

We investigate the following two topology/traffic scenarios
under different load conditions (defined by number of injected
packets/cycle) and compare the average packet transmission
latency in the network.

First, we choose a very simple scenario to investigate the
model behavior under a clear contention situation. Therefore,
we consider a simple chain of four routers where a single
PE is connected to each router. The PEs at routers 1 and
4 are sending their packets to PE 2 and 3 with a uniform
distribution. PEs 2 and 3 do not send any packets. Hence, we
find at router 2 and 3 a contention situation with the following
forwarding probability matrix F:

F =


0 0 0

0.5 0 0.5
1 0 0

 .

The result under different load conditions is shown in Fig-
ure 5. We find that the latency estimation for our proposed
approach (red curve with + marker) follows very well the
cycle-accurate simulation results (black curve with point
marker) under a low and medium load condition. However,
it significantly underestimates the network saturation limit
where latency tends to infinity (0.66 packets/cycle in our
model compared to 0.8 packets/cycle in the cycle-accurate
simulation). The reference mean value model from [10] (blue
curve with circle marker) shows a slight overestimation of the
latencies under mid load conditions but estimates the network
saturation point quite well.

The reason for the poor estimation of the network saturation
point of our model is the applied aggregation approach for
approximating the solution of a Markov chain. Therein,
the stability of the overall solution is determined by the
stability of the ”worst-case” aggregate, i.e., the aggregate with
the highest contention. If the solution for the ”worst-case”
aggregate tends to infinity the overall solution tends to infinity
as well. To avoid this behavior, we propose to determine an

average service time xi over all macro states for every router
input. This is done by computing the expectation of the mean
service times xi(y) over all macro states based on the known
macro state probabilities σ(y):

xi =
∑

y∈{0,1}P

xi(y)σ(y)yi. (13)

Therein, yi constrains the expectation to those macro states
where queue i is not empty. We compute the average waiting
time Wi for input queue i based on (13):

Wi =
xi

1 − λixi

.

The result of the refined approach is also depicted in
Figure 5 (green curve with square marker). It shows a very
good match compared to the cycle-accurate simulation. The
latencies under low/mid load conditions, as well as the
network saturation point, are estimated very accurately by
this approach. The average estimation error is less than 3%.

Finally, we choose a 4x4 2D-mesh topology using a more
diverse traffic pattern of the generic multimedia application
from [10]. We target to compare the estimation quality of the
average latencies under more complex contention situations.
The results are plotted in Figure 6 and confirm the accurate
results of the first scenario. Again, the average estimation
error is around 3% (9% for the reference model). However, we
still notice a slight underestimation of the network saturation
limit of about 2.5% for that case. The reference mean value
model shows a better accuracy in this region.
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Figure 5. Performance results for 4x1 chain analyzing the average
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Figure 6. Performance results for 4x4 2D-mesh with generic mul-
timedia application traffic analyzing the average packet latency in
comparison to cycle-accurate simulation.

Note that the presented results only serve as proof of
concept and easily scale to larger networks. The relative
accuracy of the latency estimation is expected to stay in the
same range under similar contention situations, independent
of the NoC size. This is because the analysis of the queueing
delay is done on router level and only accumulated on network
level.

VI. Conclusion and Future Work

In this paper, we presented a novel analytic approach for
modeling on-chip networks for many-core SoC based on
queueing theory. In contrast to many existing models, the
approach is very flexible in terms of supported topology,
routing scheme and traffic pattern. The approach overcomes
the limitations of the mean value analysis introduced in the
existing work. Instead, it provides information about a steady-
state distribution of the network routers. This allows to derive
arbitrary key performance indicators, such as blocking prob-
abilities or average queueing delays, which is very important
information for dimensioning network resources, such as
buffers, links, etc. We demonstrated the very high accuracy of

the approach by comparison to a cycle-accurate simulation.
The average estimation error for the mean latencies in a 4x4
2D-mesh is only 3%.

Many extensions of the NoC model are planned. We target
to consider different arbitration schemes, such as the popular
round-robin method. A finite buffer model extension would be
interesting in order to model network acceptance behavior and
back pressure effects. A generalization towards an arbitrary
service time distribution is also desirable. Finally, supporting
multiple clock domains (i.e., globally asynchronous locally
synchronous systems) and frequency scaling is another open
topic in order to explore a many-core NoC more accurately.
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