
Traffic and Monotonic Total-Connected Random
Walks of Particles

Alexander P. Buslaev∗, Alexander G. Tatashev† and Andrew M. Yaroshenko‡
∗ Moscow Automobile And Road Construction State Technical University

Moscow, Russia
apal2006@yandex.ru

† Moscow University of Communications and Informatics
Moscow, Russia

a-tatashev@rambler.ru
‡ Moscow Automobile And Road Construction State Technical University

Moscow, Russia
andreijar@rambler.ru

Abstract–An analytical and simulation models of ran-
dom walk of particles on a closed one-dimensional lattice
are considered. In these models, the particles contained in
a cluster move synchronously. The problem is to find the
average time interval after which only a cluster remains.
This problem is solved with both analytical and simulation
approaches. A simulation model is also developed that
describes the movement of a particles on a ring with traffic
lights. An appropriate analytical model is also developed
with some different rules of functioning. The average
velocity of the particle is calculated. The results obtained
with the simulation and analytical model are compared.
Simulations models are also described that are supposed
to be developed for the traffic with traffic lights, for multi-
lane case, and networks with a periodic structure on that
total-connected random walks occur.

Keywords-stochastic models; random walk; multi-lane
traffic.

I. INTRODUCTION

In [1], some analytical and simulations models in terms
of random walks are considered that can be interpreted as
traffic models. These mathematical models can be interpreted
as cellular automata. The models of this class were introduced
in [2, 3] and were investigated in a lot of works. The scheme
considered in [2, 3] is similar to monotonic random walks on
a lattice. The work of Yu. Belyaev and his students [4, 5]
is devoted to traffic flows in the underground and contains
exact results for one-dimensional random walk (not only
monotonic). Appropriate references are given in [1]. Some
results in this field have been found in [6–11].

In the present paper, we consider a modification of a model
of random walks on a circular lattice. A sequence of adjacent
particles is called a cluster. The clusters are separated one
from another by empty cells. In the considered model, all the
particles within a cluster move synchronously. The number of

clusters can decrease and cannot increase. After some time
interval with a finite average value, only a cluster remains, if
the probability of the cluster movement at a time is less than
1. A problem is solved to find an average time of coming
to the state with one cluster. If the lattice is small, then the
problem can be solved with an analytical approach. If the
number of particles is rather big, then the analytical approach
is too complicated. A simulation model is developed that is
useful in this case.

p

p

Fig. 1. Total-connected walks on a circle

We call the considered random walks totally-connected,
because, in our model, every particle that was contained in a
particular cluster always remains contained in the same cluster.

We also develop a simulation model that describes the
movement of particles on a ring with traffic lights. An
appropriate analytical model is also developed with some
different rules of movement. The average velocity of the
particle is calculated. The results obtained with the simulation
and analytical model are compared.

Simulation models are also described that are supposed
to be developed for the traffic with traffic lights, for multi-
lane case, and networks with a periodic structure on which
total-connected random walks occur. The flow intensity is
investigated with these simulation models.
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II. THE AVERAGE DURATION OF THE TIME INTERVAL
AFTER WHICH ONLY ONE CLUSTER REMAINS

2.1. Consider a closed sequence of cells. The number of
cells is equal to n. There are m (m < n) particles. No cell
contains more than one particle. The clusters can move one
cell forward at discrete times 0, 1, 2, . . . in one direction, Fig.
1. At each discrete time each cluster move one cell forward
with the probability pi, where i is the index of the particle in
front of the cluster.

The behavior of the model is described by a Markov chain,
[12]. The states of this chain corresponds to the configurations
of the particles on the lattice.

Suppose di is the average duration of the time interval after
which the number of clusters decreases, if at the initial time
the chain state is i (the states of the chain are numerated
arbitrarily); qij is the probability that, at the time when the
number of clusters decreases, the chain state is j, if the ith
state was initial; Di is the average duration of the time interval
after which the number of clusters becomes one. Let Ak be
the set of states with k clusters and Bk be the set of states
with no more than k clusters.

The problem of calculation of the values di and qij for
i ∈ Ak is reduced to the appropriate problems if it is supposed
that the number of cells equals n−m+k and there no cluster
containing more than one particle.

We have

Di =
∑

j∈Bk−1

qijDj + di, i ∈ Ak. (1)

Recurrent formula (1) allows to reduce the problem of calcu-
lation of Di to the problem of calculation of di and qij .

In formula (1), the time interval after which the number of
clusters becomes one consists of the time interval after which
the number of clusters decreases, and the time interval since
the end of the first time interval until the time when the number
of clusters becomes one. The average value of the first time
interval equals di. and the probability that after this interval
the chain state is j equals qij . The average value of the second
time interval equals Dj provided it begins itself at the state j.
The average value of the total time interval equals Di. Thus,
formula (1) is valid.

In turn, the consideration of this model is reduced to the
consideration of a random walk of a particle on a facet of
an m-dimensional tetrahedron. Indeed, if xi is the number of
empty cells between the ith particle and the following particle,
then the value of the sum x1+ · · ·+xm remains constant. The
model states correspond to the facet on that this sum remains
constant. The model states correspond to the facet x1 + · · ·+
xm ≤ n −m of the tetrahendron x1 ≥ 0, . . . , xm ≥ 0, x1 +
· · ·+xm ≤ n−m. The particles coordinates correspond to the
lengths of intervals between the particles in the original model,
and each coordinate cannot decrease and increase at once more
than by one. The problem is to find the average value of the
duration of time interval after which the particle comes to the
boundary of the facet, where at least one coordinate is equal to
zero, and to find the probability that the particle comes to the

boundary at a given point. Such problems are solved with an
approach described in [12], and these problems are reduced
to systems of linear equations. However, the number of the
equations can be too big for the system could be solved in
practice. Therefore, a simulation model can be useful.

2.2. Suppose m = 2. At the initial time there are z empty
cells from the particle 2 to the particle 1 in the direction of
the particles movement. At each time 0, 1, 2, . . . the particle 1
moves with the probability p1 and the particle 2 moves with
the probability p2 (0 < p1, p2 < 1).

In this case, the problem is reduced to the consideration of
random walks on a segment. Denote by dz the average duration
of the interval after which the particles form a cluster. Using
an approach described in [12], we get the formulas for dz.

Proposition 1.

By the above conditions the following formulas are true

dz =
z(n− 2− z)

2p(1− p)
, p1 = p2 = p,

dz =
z

(1− p1)p2 − p1(1− p2)
−

−
(n− 2)

((
(1−p1)p2

p1(1−p2)

)z

− 1
)

((1− p1)p2 − p1(1− p2))

((
((1−p1)p2

p1(1−p2)

)n−2

− 1

) , (2)

p1 ̸= p2.

Denote by d the average duration of the time interval after
which the particles are joined.

Proposition 2.

Suppose that all the configurations of two particles on the
ring have the same probabilities p1 = p2 = p. Then

lim
n→∞

n2

12p(1− p)
· 1
d
= 1,

i.e., the asymptotic estimation is true for big values of n

d = d(n) =∼ n2

12p(1− p)
.

The dependence of n2

12p(1−p) ·
1
d on n is showed in Fig.2.

2.3. Suppose now that m = 3. TThe case in which the
number of particles is more than 3 can be considered similarly.
Suppose that the probability of the particle movement at a
time is equal to p. Suppose the particle 2 follows the particle
1 in the direction of the movement. Denote by x, y and z
the number of cells between the particles 1 and 2, between
the particles 2 and 3, and between the particles 3 and 1,
appropriately. The model is described by a Markov chain.
Each state of this chain corresponds to some point (x, y, z),
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Fig. 2. Asymptotic behavior of the value of d

x+y+z = n−2, x, y, z ≥ 0. Denote by d(x, y, z) the average
duration of the time interval after which any two particles form
a cluster, if the initial state is (x, y, z), xyz ̸= 0. Denote by
q(x, y, z;x0, y0, z0) the probability that, at the time at that two
particles form a cluster, the chain state is (x0, y0, z0), if the
initial state is (x, y, z), xyz ̸= 0, x0y0z0 = 0. The problem is
reduced to the investigation of random walks on a facet of a
tetrahedron.

Using an approach described in [12], we find the following
system of linear equations, which has a unique solution,

3p(1− p)d(x, y, z) =

= p2(1− p)d(x+ 1, y, z − 1) + p2(1− p)d(x− 1, y + 1, z)+

+p2(1− p)d(x, y − 1, z + 1) + p(1− p)2d(x− 1, y, z + 1)+

+p(1−p)2d(x+1, y−1, z)+p(1−p)2d(x, y+1, z−1)+1,

xyz ̸= 0;

d(x, y, z) = 0, xyz = 0.

Each equation of this system corresponds to some set
(x, y, z), x > 0, y > 0, z > 0, x+ y + z = n− 3.

Using the same approach, we get the following system of
linear equations, which has also a unique solution,

3p(1− p)q(x, y, z;x0, y0, z0) =

= p2(1− p)q(x+ 1, y, z − 1;x0, y0, z0)+

+p2(1− p)q(x− 1, y + 1, z;x0, y0, z0)+

+p2(1− p)q(x, y − 1, z + 1;x0, y0, z0)+

+p(1− p)2q(x− 1, y, z + 1;x0, y0, z0)+

+p(1− p)2q(x+ 1, y − 1, z;x0, y0, z0)+

+p(1− p)2q(x, y + 1, z − 1;x0, y0, z0), xyz ̸= 0,

x0y0z0 = 0;

q(x0, y0, z0;x0, y0, z0) = 1, x0y0z0 = 0;

q(x, y, z;x0, y0, z0) = 0, (x, y, z) ̸= (x0, y0, z0),

xyz = 0, x0y0z0 = 0.

As above, each equation of this system corresponds to
some set (x, y, z), x > 0, y > 0, z > 0, x+ y + z = n− 3.

The proof of the fact that the solution of each of this two
systems is unique uses an approach described in [12]. This
proof is based on that each inner point (x, y, z) cannot be a
point of maximum for d(x, y, z), and, since d(x, y, z) = 0 for
the boundary points xyz = 0, the the homogeneous system of
linear equations has only the zero solution.

III. SIMULATION MODEL OF RANDOM WALKS ON A CIRCLE

Models that simulate the random walks on a circle have
been developed.

There is no cluster that contains more then one particle at
the initial state.

The average duration of the interval after which only a
cluster remains is investigated.
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Fig. 3. The average time after which the number of clusters decreases

The dependence of the average number of time steps before
the first cluster appears on the number of experiments is repre-
sented in Fig. 3. The number of experiments is represented on
the x-axis, and the investigated average time is represented on
the y-axis. The number of simulation experiments is equal to
10000. We suppose the number of cells equals 20, the number
of particles equals 4. The probability that the particle moves at
a fixed time is equal to 0.5. The initial distribution of particles
is uniform, i.e., before the start of simulation, the particles are
inserted into the cells one after another, and the probability
that the particle is inserted to a given cell is the same for all
the empty cells.

The dependence of the average number of time steps before
the first cluster appears on the flow density is represented
in Fig. 4. The flow density, i.e., the ratio of the number of
particles to the number of cells is represented on the x-axis,
and the investigated average time is represented on the y-axis.
The number of simulation experiments is equal to 100000 for
each density value. We suppose the number of cells equals
100. The probability that the particle moves at a fixed time is
equal to 0.5. The initial distribution of particles is uniform as
it described above.
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Fig. 4. The average number of time steps before the first new cluster appears

IV. TOTAL-CONNECTED WALKS OF A FINITE NUMBER OF
PARTICLES ON A STRAIGHT LINE

Consider also monotonic total-connected walks of particles
on an infinite one-dimensional lattice.

Suppose there is a finite number of particles on a straight
line. Suppose there are m clusters. The probability that the ith
cluster moves at a time is equal to pi, i = 1, . . . ,m. (The first
cluster is ahead. The (i+ 1)th cluster follows the ith cluster,
i = 1, . . . ,m− 1.) Then at each time the difference between
the coordinates of the first and the last particle increases by
one with the probability p1(1 − pm), decreases by one with
the probability pm(1 − p1), and does not change with the
probability p1pm + (1− p1)(1− pm).

The problem is reduced to the results on the symmetric
random walk of a particle on a straight line described in [12,
13].

In [13], a one-dimensional random walk of a particle on a
lattice is considered. At each discrete time the particle with
probability p moves by one position to the right and with
probability q moves by one position to the left, p + q = 1.
It is proved, [12, 13], that, if p = q = 1/2, then the particle
returns to a given position with the probability 1 after a finite
time interval, but the duration of this interval is infinite. If
p > q, then with a positive probability the particle shifts to
+∞ no returning to the initial position. If p < q, then with a
positive probability the particle shifts to +∞ no returning to
the initial position.

Similarly, we have in our model that, if p1 = p2 = · · · =
pm, then the duration of the interval after which only one
cluster remains is finite with the probability 1, but the average
duration of this interval is infinite. If p1 < p2 < · · · < pm,
then the average duration of the interval after which only one
cluster remains is finite. If p1 > pi for some i, then this interval
is infinite with a positive probability.

Let us estimate the average duration of the interval after
which only one cluster remains, if p1 < p2 < · · · < pm.

Let us consider the case of two clusters with the probabil-
ities of the movement at the current time p1 and p2. Let the
number of cells between the particles at the initial time be
z. The problem is reduced to the consideration of a random
walk of a particle that is at the point z in the initial time. The
particle moves to the right by one position with the probability
p, and the particle moves to the left by one position with the
probability q, p + q = 1. If p < q, then the probability 1 the
particle comes with the probability 1 to the position 0 after
a finite time interval. The average of the average duration of
this interval is equal to z(q − p)−1.

In our case, we have to suppose p = pi(1−pi+1)/(pi+1(1−
pi) + pi(1− pi+1)), q = pi+1(1− pi)/(pi+1(1− pi) + pi(1−
pi+1)). Taking into account that with the probability 1−pi(1−
pi+1)−pi+1(1−pi) the particle remains at the current time at
the same point, and therefore the interval for that the particle
does not change its position has the average duration

1

pi+1(1− pi) + pi(1− pi+1)
,

we get that in our model, the average duration dz of the
time interval after which two particles form a cluster can be
calculated as

diz =
z

pi+1(1− pi)− pi(1− pi+1)
. (3)

Formula (3) is the limit case of (2) as n tends to ∞.
Suppose now that m is arbitrary, and zi is the number

between the ith and the (i+ 1)th particles, i = 1, . . . ,m− 1.
Using (3), we have the following the upper bound for the
average duration of the interval after which only a cluster
remains

d <

m−1∑
i=1

zi

p2(1− p1)− p1(1− p2)
.

We have taken into account that the distance between the
particle 1 and the last particle decreases stochastically no
less slowly than the distance between particles 1 and 2,
because pi ≥ p2, and hence pi(1 − p1) − p1(1 − pi) ≥
p2(1− p1)− p1(1− p2), i = 2, . . . ,m− 1.

V. MOVEMENT IN THE PRESENCE OF AN OBSTACLE

Fig. 5. Movement in the presence of an obstacle

Consider the model that is different from the model consid-
ered in Sections 2 and 3, by the fact that an obstacle exists
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on the circle at a given cell (see Fig. 5). This obstacle can
be interpreted as the red traffic light. After some time interval
the obstacle disappears, and a green phase follows. A cluster
is divided if the obstacle appears within the cluster.

The appropriate simulation model is intended to be devel-
oped. The main characteristics of movement that have to be
investigated in simulation experiments are the average velocity
of a particle and the flow intensity. The average velocity v is
the average number of the cells that a particle passes per a time
unit. The flow intensity q is the average number of particles
that passes through a section of the ring per a time unit. For
a one-lane model q = rv, where r is the flow density, i.e., the
ratio of the number of particles to the number of cells.

Consider a model that can describe approximately traffic
with traffic lights. Suppose there is a closed sequence of cells.
The number of cells is equal to n. There is one particle on the
ring. If the particle is in the cell i at the time k, then at the
time k+1 the particle with the probability ai, 0 < ai < 1, is
in the cell i + 1 and with the probability 1 − ai the particle
remains in the cell i, i = 1, . . . , n− 1. If the particle is in the
cell n at the time k, then at the time k + 1 the particle with
the probability an, 0 < an < 1, is in the cell 1 and with the
probability 1− an the particle remains in the cell n.

Proposition 3.

The formula is true

v =
n

n∑
j=1

1
aj

. (4)

Proof. The behavior of the model is described by a Markov
chain [12]. Each of the n state of this chain corresponds to
the index of the cell that contains the particle. The chain
states have stationary probabilities that satisfy the system of
equations

a1p1 = anpn,

aipi = ai−1pi−1, i = 2, . . . , n,

p1 + · · ·+ pn = 1.

This system has a unique solution

pi =
1/ai
n∑

j=1

1
aj

, i = 1, . . . , n. (5)

The average number of transitions of particles is called the
average velocity v of the particle, and

v =
n∑

i=1

piai. (6)

Formula (4) follows from (5) and (6).
Proposition 3 has been proved.

Thus, the average velocity of the particle can be calculated
with (4).

Using (4), we can estimate the average velocity of a particle
in the model in which there are traffic lights at the cells, and
ai is the ratio of the duration of a green phase to the duration
of the total cycle of the traffic lights located at the cell i,
i = 1, . . . , n. If there is no traffic lights at the cell i, then
ai = 1.

probability
v
e
lo

c
it

y
Fig. 6. Comparison of the average velocities found with the simulation and
analytical models with some different rules of traffic lights functioning

In Fig. 6, the results of the comparison of the average
velocities, found with the simulation and analytical models
with some different rules of functioning, is represented. The
analytical model is the same as described above. Suppose
n = 9, a1 = p/2, ai = p, i = 2, . . . , n, where p is a
variable, value of which is represented on x-axis. The value
of the particle velocity is represented on y-axis. In simulation
model the particle moves to the next cell at each time with
the probability p. There is a traffic light in the cell 1. The
duration of both the green and the red phase is equal to a time
unit with the probability 1. The dashed line corresponds to the
formula (3) and the solid line corresponds to the simulation
experiments. The number of experiments is 100000 for every
value of p.

VI. THE MODEL OF TWO-LANE TRAFFIC

1

1

2
2

2
2

1

1
1

Fig. 7. A model of two-lane movement

Consider a generalization of the model of random walks on
a circle.
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Suppose there are two sequences of cells (two lanes) that
form a ring of the dimension 2× n. There are m particles on
the ring, as shown in Fig. 7.

There are two types of particles. A batch of particles of the
same type occupying adjacent cells of the same lane is called
a cluster. The clusters of the first type particles are fast, and
the clusters of the second type particles are slow. The particles
of the same cluster move synchronously. All the particles of
a cluster move one cell forward at each discrete time with the
probability that depends on the type of the particle in front of
the cluster. Clusters can be both united or divided. Two clusters
of the same type are united, if they are on the same lane, and
one of them catches up the other. Particles contained in a
cluster can change the movement lane, and it can occur that
the particles of the same cluster become occupying cells on
the different lanes. A change of the movement lane can occur
if a fast cluster catch up a slow cluster and the appropriate
cells are empty, Fig. 8. The particles of the cluster change the
movement line one at a time.

2
1111

1

1
1

Fig. 8. Particles of a cluster change the movement lane

1

2

111
1

2

2

1

Fig. 9. Situation in that a cluster is divided

A cluster can be divided. Such a situation is showed in
Fig. 9.

The main characteristics of the movement that need to be
investigated in simulation experiments are the average velocity
v of a particle and the flow intensity q: The follow formula is
true q = 2rv, where q is the flow intensity, v is the average
velocity, r is the flow density.

VII. TWO RINGS MODEL

Another generalization of the model of the random walks
on a circle is the two rings model.

Fig. 10. Two rings model

Suppose there are two sequences of cells (two rings) that
have a common cell, Fig. 10. The first ring contains n1

cells, and the second ring contains n2 cells. There are m1

particles on the first ring, and there are m2 particles on
the second ring. The particles contained in the same cluster
move synchronously. All particles of the cluster move one cell
forward at a discrete time with the probability that can depend
on the type of the particle in front of the cluster. Two clusters
united if a cluster catch up an other cluster on the same circle.

If two particles can enter into the common cell, then the
particle moving on the first ring has the priority. The cluster
is divided if a part of the cluster have passed the common cell,
and the rest of the cluster is blocked, Fig. 10.

The main characteristics that have to be investigated in
simulation experiments are the average velocity of particle and
the flow intensity on each ring. The steady probability that a
given cell is occupied has to be also estimated.

VIII. MODEL OF A NETWORK

1

2

3

4

Fig. 11. A fragment of a regular network

Simulation models describing the behavior of networks have
to be developed. One of the possible model structures is
showed in Fig. 11. The rules of the particles movement are
similar to the rules described in the previous sections. If the
probability that a cluster moves at each discrete time equals 1
and the flow density is less than 1/2, then all the clusters can
move with the velocity equal to 1. If the flow density on each
cluster is more than 1/2, the average velocity is less than 1.

IX. CONCLUSION AND FUTURE WORK
The analytical and simulation models of random walks of

particles have been developed. The particles of the same clus-
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ter move synchronously. The results of simulation experiments
were represented. The developed models can be used for traffic
analysis and optimization [14]. Here are some simulation
models that have to be developed:

• Total-connected movement in form of a clustering flow
is observed in many cases, e.g., pedestrians, cyclists, traffic
flows.

• Clusters are the limit state of the solutions of the system of
non-linear ordinary differential equations in the car following
model, [15].

• In the methodological sense, cluster objects simplify the
investigation of the flow problem on a network.

• Traffic control can increase the number of clusters.

• Problems of clustering on networks are supposed to be
investigated.
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