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Abstract−−−−This work develops a model-based approach to the 

specification and analysis of the functional/temporal 

behavior of complex multimedia/ hypermedia systems. The 

approach is centered on Time Stream Petri Nets (TSPN) as 

the authoring formal language and on UPPAAL as the target 

tool for model checking activities. A structural translation 

from TSPN to UPPAAL timed automata (TA) was recently 

defined in the form of a reusable TA library. The library 

was proven to be timed bisimilar to TSPN. This paper 

focuses on the practical aspects of the approach by showing 

its application to a non trivial modeling example related to a 

hypermedia system whose properties are predicted by 

exhaustive verification. Finally, conclusions are drawn with 

an indication of on-going and future work. 

 
Keywords-Model-based prediction; multimedia/ 

hypermedia systems; time stream Petri nets; synchronization 

consistency; model checking; UPPAAL. 

 

I. INTRODUCTION 

An interactive multimedia document (IMD) or 

hypermedia document, concerns the coordinated 

presentation of different types of information (audio, 

video, images, text, etc.) possibly associated with user 

interactions. The quality of the presentation of an IMD 

depends on the fulfillment of the temporal 

synchronization constraints, which are associated with the 

component media objects. Different approaches are 

described in the literature to address IMD specification 

and verification/validation of the synchronization 

consistency. Although an informal/intuitive or general 

purpose authoring approach can be preferable for editing 

an IMD, the informal specification must then the 

converted into some formal notation and associated tools, 

which can support the necessary verification activities. As 

an example, the SMIL language [3, 16] can be used as an 

authoring language. In the approach developed, e.g., in 

[15], from a SMIL specification some intermediate data 

structures are firstly generated; this makes it possible to 

translate the specification into the terms of process 

algebra of RT-LOTOS, which permits a formal analysis 

of synchronization consistency. 

In this work, a methodology based on Petri nets [11, 

13] is proposed for the specification and analysis of IMD. 

Petri nets have both an intuitive graphical notation and a 

rigorous mathematical representation for property 

checking. In particular, Time Stream Petri Nets (TSPN) 

[4, 10, 14] are chosen for the specification of complex 

hypermedia documents. TSPN associates temporal 

validity intervals to input arcs only, and a firing rule, 

selected in a rich set, to constrain transition firing. 

Although in the work described in [8-9] a TSPN 

specification or high level specification is translated into 

RT-LOTOS for verification purposes, the original 

contribution of this work is an exploitation of a translation 

of TSPN into UPPAAL [1], assisted by a library of 

reusable timed automata [7], which opens model checking 

to TSPN-based hypermedia documents. The achieved 

UPPAAL translation was proved to be timed bisimilar to 

TSPN. TSPN offers great flexibility to the modeler of 

general time-dependent systems. In [7], it is shown how 

the formalism is also well suited for modeling and 

property checking of real-time embedded systems. 

 Section II introduces the TSPN formalism and its 

extension HTSPN (Hierarchical TSPN) more suited to 

hypermedia systems modeling. Flattening problems of 

HTSPN to TSPN are addressed in Section III with a 

hypermedia example. The UPPAAL library supporting 

TSPN is summarized in section IV. Analysis of the 

synchronization consistency of the hypermedia example is 

reported in Section V. Finally, conclusions are presented 

together with an indication of on-going and future work. 

 

II. BASIC CONCEPTS OF TIME STREAM PETRI NETS 

A TSPN is a tuple ),,,,,,,,( 0 MASYNIMMIFBTP nh
 

where: 

• P  is a finite nonempty set of places; 

• T  is a finite nonempty set of transitions; 

• B  is the backward incidence function, N→×TPB : , 

where N  denotes the set of natural integers; 

• F  is the forward incidence function, N→×TPF : ; 

• 
nhI  is the set of inhibitor arcs, TPI nh ×⊂  where 

0),(),( =∈ tpBItp nh
; 

• 
0M  is the initial marking function, N→PM :0

, 

which associates with each place a number of tokens; 

• IM  is a function, which associates with each arc, 

incoming to a transition, an interval defining its static 

temporal validity interval. 

}),{(: ∞∪×→
++ QQAIM where +

Q  represents the 

set of nonnegative rational values, 

}),(0),(|),({ nhItptpBTPtpaA ∈∨≠×∈==  is the 

set of all incoming arcs and )](),([)( maxmin atataIM =  

is such that ).()( maxmin atat ≤  

• SYN is a function, which associates each transition 

with a firing rule: 

,,,,,{: MasterOrStrongOrAndWeakAndTSYN −−→

,,,, MasterWeakMasterStrongMasterAndMasterOr −−−−

}AndPure− ; 

• MA is a function that associates a master arc to each 

transition whose firing rule requires it, ATMA m →: , 

where:
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,,,{)(|{ MasterAndMasterOrMastertSYNTtTm −−∈∈=

}}., MasterWeakMasterStrong −−  

The marking of a TSPN is a function N→PM : , 

which associates each place with a number of tokens. An 

arc Atpa ∈= ),(  is enabled by a marking M  iff: 

),()(0)( tpBpMIapMIa nhnh ≥∉∧=∈ . The set of 

arcs enabled by a marking M , is denoted by )(MenArc . 

The set of incoming arcs of a transition t  is denoted as 

)(tA . A transition t  is enabled by the marking M  iff: 

)()( MenArctA ⊆ . The set of transitions, which are 

enabled by a marking M  is denoted as )(Menabled . The 

set of input places of a transition constitutes its preset. 

The set of output places of a transition is its postset. 

The state of a TSPN model is a pair ),( IM  where M

is a marking and I  is a mapping that associates each arc 

enabled in M  with a dynamic temporal validity interval, 

i.e., }){()(: ∞∪×→
++

RRMenArcI , )](),([)( ayaxaI = . 

The initial state of a TSPN is given by ),( 00 IM , where 

)( 0MenArca ∈∀  )()( aIMaI = . A transition 
ft  is said to 

be fireable at relative time θ  from state ),( IM  if 
ft  is 

enabled by M  and )(min)(
)(

tuptlow
Menabledt

f
∈

≤≤ θ . For any 

transition t  enabled by M , its dynamic time interval 

)](),([ tuptlow  is determined as follows: 
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where )(tMAam =  if 
mTt ∈ . Let t  be a transition fireable 

from state ),( IMS = . The state )','(' IMS =  reached by 

firing t  at relative time θ , is determined as follows: 

• Pp ∈∀ ),(),()()(' tpFptBpMpM +−=  

• )'(MenArca ∈∀  

[ ]−−=

∈∨∉

∨∉
=

otherwise)(},0,)(max{)('

)()
~

(

)( if
)()('

θθ ayaxaI

tAaMenArca

MenArca
aIMaI  

where Pp ∈∀ ),()()(
~

tpBpMpM −= , i.e., M
~

 is the 

intermediate marking resulting from the withdrawal 

sub-phase. An enabled arc is violated if the upper 

bound of its dynamic temporal validity interval is 

negative. 

A transition 't  enabled in M  can lose its enabling 

during the atomic firing process of t  either in the 

intermediate marking M
~

or in the reached marking 'M . It 

is said non persistent to the firing of t . On the contrary, a 

persistent transition (which is enabled in M ) keeps its 

enabling during the whole firing process of t . A transition 

is said newly enabled if it was not enabled in M or in M
~

but it is enabled in 'M . It is worth noting that a valid 

firing interval for an enabled transition may exist also in 

the case the timing constraints of some of the incoming 

arcs are violated. Once a valid timing interval is found for 

a transition, it constitutes a strong constraint (as in 

classical Time Petri Nets [12], which associates a static 

timing interval to transitions) on its firing. Of course, arc 

violations can determine transition violation if no valid 

timing interval is possible for the transition. As a 

consequence, TPSN use a weak synchronization model for 

arcs but a strong synchronization model for transitions.  

The mathematical definition of transition dynamic 

firing interval highlights that, in general, a 

synchronization rule (see also Figure 1) can be driven by  

(a) the latest arriving process (And, Pure−And, 

Weak−And, And−Master) where the last arc that reaches 

the lower bound of its temporal interval allows the firing 

of the related transition 

(b) the earliest arriving process (Or, Strong−Or, 

Or−Master) where the first arc, which reaches its lower 

bound permits the firing of the associated transition 

(c) the arriving of a statically selected process (Master, 

Strong−Master, Weak−Master), i.e., the transition can 

only fire when its master arc reaches the lower bound of 

its associated temporal interval. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Basic TSPN synchronization rules 

 

As an example of transitions, which can or cannot be 

violated, differences between the And and Pure−And 

firing rules can be pointed out. If input arcs temporal 

intervals overlap, the behaviour of And and Pure-And 

coincide: the transition can only fire in the intersection of 

the intervals. In the case some intervals are disjoint, at 

least one arc is violated when a process (input arc) 

reaches its lower bound. In this situation, the And firing 

rule permits one single synchronization point at the lower 

bound of the latest arriving process. In other words, under 

the And firing rule a transition can always fire, but with 

the Pure−And the firing is impossible to occur when the 

intersection is void. 
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Rules Master and Or−Master can be violated when 

the master arc is violated. An intriguing case concerns the 

Strong−Master rule. If at the enabling time of the 

transition a non master arc is already violated, there exists 

one single synchronization point at the lower bound of the 

dynamic interval of the master arc. A single point of 

synchronization at current time is permitted when the 

master arc is violated at the enabling time of the 

transition. In the case of an overlapping scenario of the 

timing intervals, a firing interval for the transition exists, 

which starts with the lower bound of the master arc 

(possibly updated to current time if it was passed) and 

ends with the earliest upper bound. It can easily be 

verified that rules Weak−Master, And−Master, Or, 

Strong-Or and Weak-And can never be violated. 

As it is usual in Time Petri Nets [2], a TSPN multiple 

enabled transition is assumed to fire its enablings one at a 

time (single server semantics). After its own firing, a 

transition t , which is still enabled is regarded as a newly 

enabled one. 

 

III. MODELING A HYPERMEDIA SYSTEM BY TSPN 

In order to widen the modeling capabilities of TSPN 

as an authoring formal tool, in [8], it was proposed 

HTSPN (Hierarchical TSPN). The concept was 

introduced of an abstract place shown graphically as a 

dashed circle (see Figure 2). A subnet can be defined 

within an abstract place, which typically has an input 

place and a final one. The subnet in turn can have further 

abstract places and so forth recursively.  

Abstract places enable incremental modeling by 

deferring to a later time the definition of the internal 

details of the subnet. However, an abstract place must be 

both structurally and temporally equivalent to the internal 

subnet. Structural equivalence means that the subnet 

could functionally replace the abstract place. Temporal 

equivalence means that the expected temporal behavior of 

the subnet must fulfill the temporal constraints expressed 

at the abstract place (requirement) level.  

To favor the authoring of complex 

multimedia/hypermedia systems, the use of HTSPN can 

be organized into three synchronization layers (see also 

Figure 2). At the link layer the hypermedia system is 

designed according to the user-point of view, i.e., 

conceptually in a similar way to an hypertext. Here, the 

user can choose a link to interrupt and put forward a given 

presentation or can require to rewind the presentation 

from its beginning etc. At the composite layer, the 

hypermedia system is specified through the composition 

of multiple media, which are operated according to given 

temporal constraints. Finally, at the atomic layer, details 

concerning the playing/rendering of a multimedia 

scenario are furnished. 

Figure 2 portrays an example hypermedia model 

adapted from [8], devoted to the presentation of a 

commercial product. An initial text is presented to the 

user, which invites to start the presentation by clicking on 

a Start button. Following a start (modeled by next1 in 

Figure 2 and the firing of the first Master transition), a 

token is generated in the place L2 and in the abstract place 

Information.  

Token in L2 enables both the possibility for the user to 

request the Again link, which asks to interrupt current 

presentation and to restart it from the beginning, or to 

conclude the presentation by invoking the Next link 

(next2 arc). The following constraints exist: (a) Again 

cannot be issued before at least 65 time units (tu) are 

elapsed from the moment the token was put in L2; (b) the 

Next link can only be requested at the end of multimedia 

presentation. The multimedia presentation is assumed to 

last in 150 tu. Moreover, 70 tu are allowed, after 

termination of multimedia presentation, during which the 

user can ask the Next link for concluding the presentation 

(see next2 arc). If 70 tu elapses, the Next link is 

automatically invoked (see the Weak-And transition, 

which feeds the End place). 

 
Figure 2. An HTSPN hypermedia model (from [8]) 

 

Token in Information abstract place begins the actual 

presentation. First an audio is played (see token in the A 

place in the composite layer in Figure 2), which in the 

worst case has a duration of 65 tu. The system forbids the 

user to ask the Again link if the audio content is still in 

progress. At the end of the audio, a token is generated in 

the place I of the subnet at the composite layer and in the 

AV abstract place. As a consequence an image is rendered 

with duration [90,145] tu. Token in AV starts an 

audio/video scenario detailed in the atomic layer. This 

multimedia scenario is composed of 10 audio/video 

objects. A video object (token in the V place) is rendered 

with a duration of [9,16] tu. A corresponding audio object 

(token in the A place) has a rendering timing constraint in 

[10,15] tu. Since the audio is the most important media, 

the master rule is used for synchronization and the input 

arc of the audio is defined as the master arc. As one can 

see from the atomic layer, inter-media synchronization 

(which affects skew and then lip-synch) was introduced 
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just after each presentation of a couple of corresponding 

audio and video objects. The goal was to minimize the 

audio/video skew by keeping audio/video synchronized to 

the largest extent. 

The multimedia scenario terminates when all the 10 

tokens are consumed. During the presentation of the 

multimedia scenario, the user can select the link Again, 

which requires the hypermedia system to interrupt its 

current operations and to restart from its beginning. 

Temporal intervals on the arcs exiting from 

Information and AV abstract places capture system 

requirements. The requirement of finishing AV states that 

the multimedia scenario should terminate within 

[100,150] tu, which is intuitive by considering that audio 

objects are most important than video objects and that 

each audio requires [10,15] tu to be presented. The 

requirement of conclusion of Information states that the 

underlying layers must terminate within [150,215] tu 

(inclusive of the duration of the audio in the A place of 

the composite layer). 

 
 

Figure 3. A flattened version of the hypermedia TSPN model 

 

Following a termination of the multimedia scenario, a 

token is generated in the End place, which models some 

concluding remarks to the user. Such remarks have a 

duration in [18,23] tu. When also the remarks are 

finished, the system comes back to its home marking. 

The conceptual model in Figure 2 specifies only 

hypermedia author requirements. It tacitly delegates the 

implementation level to correctly restart the Petri net to its 

home marking following the natural conclusion of the 

presentation or after each Again request.  

In order to clarify problems that arise when an 

HTSPN hypermedia model like that portrayed in Figure 2 

is put in concrete terms, Figure 3 shows a flattened 

version of the model. The unfolded model highlights 

dependencies between adjacent layers and, most 

importantly, solves problems of “dead tokens”, which can 

be left in the model after an Again request. In addition, 

the flattened model is also in charge of re-installing the 

initial marking in all the cases it is necessary. A fourth 

layer, which can be named clean-up layer, was introduced 

with a minimal subnet, which eliminates no longer needed 

tokens and reconstitutes the model home marking. 

For simplicity, in the flattened model a more uniform 

naming schema was followed for identifying both places 

and transitions. The clean-up subnet is composed by 

places p11 and p12 and transitions t8, t9, t10 and t11. At 

each termination of the multimedia scenario, or following 

an Again request, a token is deposited in p12, which 

supervises the model clean-up. Clean-up operations 

consumes 0 time. The token in p12 is eventually 

eliminated by a firing of transition t11, which uses the 

Master firing rule. One time unit is used for ensuring the 

end of the clean-up operation. Place p11 is the 

complementary one of the place p9. After each firing of t6 

transition, a token is consumed from p9, and a new token 

is generated in p11. As a consequence, during the clean-

up operations, t11 will fire multiple times so as to re-

install the 10 initial tokens in p9. It should be noted that 

an Again request can occur during the presentation of a 

video/audio couple (one token in p8, one token in p10) or 

just before the beginning of the next multimedia couple of 

objects. Therefore, the clean-up subnet will remove no 

longer useful tokens in p7 or in p8 and p10. 

A few inhibitor arcs were introduced in the flattened 

model in Figure 3. Arc p9t5 ensures the multimedia 

scenario naturally ends when all the 10 tokens in p9 are 

consumed. Arcs p12t6, p12t7 forbid prosecution of the 

multimedia scenario as soon as an interruption request 

(i.e., Again) is sensed. Finally, inhibitor arc p11t11 

ensures that the p12 clean-up token can be destroyed after 

the home marking of p9 was re-established. 

 

IV. AN UPPAAL TA CATALOG SUPPORTING TSPN 

A structural translation was defined in [7], which 

enables a TSPN model to be equivalently transformed in a 

network of UPPAAL timed automata [1]. The translation 

associates a timed automaton with each transition with a 

given firing rule and a certain number of input arcs. 

Clocks are associated with input arcs only, but they are 

consulted by the transition according to the chosen 

synchronization rule. A transition template automaton is 

parameterized with its unique ID, and clock and bounds 

of its input arcs. The realization owes to latest UPPAAL 

version (4.0.13), which makes it possible to introduce 

global/local data structures and functions (in C-like 

syntax), which contribute to a compact definition of 

template processes without impairing the efficiency of 

state graph exploration. 

Global constants A, P and T, respectively hold the 

number of input arcs, the number of places and the 

number of transitions in the model. Constants PRE and 

POST denote respectively the maximal cardinality of a 

transition preset or postset. Constant INF denotes infinity. 

Topology of a TSPN model is memorized into constant 
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matrices Backward B:TxPRE→ArcInfo, Forward 

F:TxPOST→F, InpurArcs AI:A→InputArcInfo where 

ArcInfo and InputArcInfo are the following structures: 

 
typedef struct{ 

 int[-1,P-1] index; //place id, -1 for a non existing arc 

int weight; //input/output arc weight 

} ArcInfo; 

typedef struct{ 

 int[0,T-1] tid; //transition id 

 int[0,PRE-1] pid; //preset id 

} InputArcInfo; 

 

Dynamic status information of a model is stored in the 

marking vector M, the enabled input arc vector EA, the 

input arc clock vector x and the current fired transition 

variable TID: 

 
int[0,K] M[P]={...}; //for a K-bounded a model 

bool EA[A]; //initialized to all false 

clock x[A]; //one clock per input arc 

int[-1,T-1] TID; //transition fired ID, -1 denotes no transition 

 

Transition enabling and firing are assisted by the 

global functions bool enabled(const int ID), void 

withdraw(const int ID), void deposit(const int ID), which 

receive the unique transition ID. Input arc statuses and 

associated clock variables reset are responsibility of the 

global function void updateArcs(const bool w), which 

receives a boolean parameter indicating if the update is 

requested by a withdraw or a deposit operation. When an 

input arc a switches from the disabled to the enabled 

status or following the firing of its own transition, is still 

enabled, its status is set in the EA[a] and its clock x[a] is 

reset so as to start measuring the elapsed time since the 

instant of arc enabling. Similarly, when a is found 

disabled its status is reset in EA[a] and its clock x[a] is 

reset provided the function updateArcs() is invoked 

during a deposit or a refers to a transition t different from 

the current fired transition held in the global TID variable. 

This provision allows one to check, during verification, 

the clock value x[a] when a fired transition is in the 

intermediate withdraw phase. 

 
Figure 4. The Supervisor automaton 

 
Figure 5. The Transition automaton 

 

A TSPN model with N transitions is mapped onto an 

UPPAAL network of N+1 automata where each automaton 

corresponds to a distinct TSPN transition of the source 

model. The additional automaton is a supervisor [6] (see 

also Figure 4) whose responsibility is to allow TSPN 

transitions to complete their firing one at a time, by 

stepping through the atomic phases of transition firing.  

A fundamental template is Transition (see Figure 5), 

which has one single input arc and can be used with any 

firing rule. A Transition instance receives the arc clock x 

and bounds lb and ub of the arc temporal validity interval.  

A Transition automaton starts in the D (disabled) 

location. As soon as it finds itself enabled, it moves to the 

F (Firing) location, where it waits for the lower bound lb 

to be reached. Firing can be completed at any time the 

clock x is greater than lb but lower than or equal to ub (as 

stated by F invariant) if ub is finite. Would ub be infinity, 

the transition can stay in F an arbitrary amount of time. 

While in F, the transition can move immediately to D if 

the firing of another transition disables (for a conflict) this 

transition. Firing completion is mediated by the 

intervention of the Supervisor, using the two unicast 

channels pre and post and the broadcast channel update. 

The first phase of firing completion is for the transition to 

move from F to W (withdraw) location, under a pre 

synchronization. In the case multiple transitions are ready 

to complete their firing, one transition is chosen non 

deterministically. From W the transition eventually 

completes its firing by a second synchronization with the 

Supervisor through the post channel. Before this, the 

supervisor has to ask all the transitions to check their 

status following the withdraw of current firing transition. 

This important check is based on the broadcast channel 

update. A variable number of transitions (even no one 

transition) can possibly synchronize (update?) with the 

supervisor. Following an update synchronization, a 

transition can become enabled or being previously 

enabled (in the F location) it can become disabled. Urgent 

locations in the Supervisor ensure the firing process is 

terminated without passage of time. As one can see from 

Figure 4, the supervisor cycle includes two update 

broadcast synchronizations: after token withdrawl and 

after token deposit. 

Initially, the Supervisor sends a first update 

synchronization so as to allow transitions that are enabled 

in the initial marking to switch from D to F location. The 

function updateArcs() is invoked after each change in the 

model marking, and thus after a withdrawl (within 

function withdraw()) or a deposit phase (within function 

deposit()). Initially, in order to permit input arcs to check 

their status, updateArcs() is invoked by the Supervisor 

along with the first update! synchronization.  

 
Figure 6. MasterTransition automaton 
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Transition template automata have names that mirror 

the adopted firing rule and the handled number of input 

arcs. In Figure 6 and Figure 7, the MasterTransition and 

WeakAnd2Transition templates are shown. 

 
Figure 7. WeakAnd2Transition automaton 

 

The automata in Figure 6 and Figure 7 illustrate some 

design principles, which were followed during library 

development. Each template is a decoration of the basic 

Transition template, according to the firing rule. A 

decision point C (committed location) is introduced where 

the automaton chooses to move to a firing location or to a 

V (Violation) location.  

The MasterTransition is unique, whatever is the 

number of input arcs. It receives as parameters the 

transition ID and the clock xm and bounds, lbm and ubm, 

of the master arc. From C the automaton moves to V if 

the master arc is violated at the enabling time of the 

transition. Otherwise, it reaches the F location. It is worth 

to recall that from both urgent and committed locations an 

automaton has to exit immediately without passage of 

time. Committed locations, though, have greater priority 

than urgent locations. 

In Figure 7, one can see two firing locations: F1, 

reached when the upper bound of first interval is found to 

be the maximum among the two intervals at the enabling 

time of transition, and F2 where the upper bound of the 

second interval is the maximum. From the guards of 

edges linking F1 or F2 to W, it is possible to see the and 

condition: only when both intervals are temporally ready, 

the transition can complete its firing. 

Generally speaking, at the enabling time of a 

transition, for each input arc the two quantities can be 

evaluated: lbi−xi, which is the time to start of the relevant 

interval, and ubi−xi, which is the time to finish of the arc. 

In location C of Figure 7, if ub1−x1>=ub2−x2 it means 

that the maximum upper bound comes from the first arc. 

The relationship can be rewritten as x2−x1>=ub2−ub1 

and so forth. 

 

Figure 8. The WeakAnd3Transition automaton 

 Automata for two input arcs can easily be adapted to 

work with a greater number of input arcs. For example, 

Figure 8 shows the WeakAnd3Transition automaton. For 

details about all the other template automata of the 

developed UPPAAL library, the reader is referred to [7]. 

 Figure 9 shows the system declaration section of the 

UPPAAL model corresponding to the translated flattened 

version of TSPN hypermedia example. 

 
// Place template instantiations here. 

t0=MasterTransition(T0, x[P1T0], 0, INF); 

t1=MasterTransition(T1, x[P2T1], 65, INF); 

t2=WeakAnd2Transition(T2, x[P6T2], 0, 0, x[P2T2], 150, 220); 

t3=Transition(T3, x[P3T3], 18, 23); 

t4=Transition(T4, x[P4T4], 50, 65); 

t5=WeakAnd2Transition(T5, x[P9T5], 10, 15, x[P5T5], 90, 145); 

t6=WeakAnd3Transition(T6, x[P9T6], 0, 0, x[P7T6], 0, 0, x[P12T6], 0, 0); 

t7=MasterTransition(T7, x[P10T7], 10, 15); 

t8=WeakAnd2Transition(T8, x[P7T8], 0, 0, x[P12T8], 0, 0); 

t9=WeakAnd2Transition(T9, x[P11T9], 0, 0, x[P12T9], 0, 0); 

t10=WeakAnd3Transition(T10, x[P10T10], 0, 0, x[P8T10],0,0,x[P12T10],0,0); 

t11=MasterTransition(T11, x[P12T11], 1, 1); 

// List one or more processes to be composed into a system. 

system Supervisor, t0,t1,t2,t3,t4,t5,t6,t7,t8,t9,t10,t11; 
Figure 9. System configuration of the hypermedia model in UPPAAL 

 

V. MODEL CHECKING THE HYPERMEDIA MODEL 

After translation in UPPAAL of the flattened version of 

TSPN model, it was possible to check its consistency 

synchronization. Table 1 summarizes the queries that 

were issued to the UPPAAL verifier for exhaustive 

property checking, and the gathered answers. 

The actual declaration of the marking vector M was: 
int[0,10] M[P]={1,1,0,0,0,0,0,0,0,10,0,0,0}; 

Since no out-of-range assignment was signaled by 

UPPAAL during analysis, it was concluded that effectively 

the TSPN model is 10−bounded as expected. 

  

TABLE 1. PROPERTY CHECKING OF THE HYPERMEDIA MODEL 
 Query  Answer 

(1) A[] !deadlock Property is satisfied 

(2) E<> t3.W Property is satisfied 

(3) t3.W-->(M[0]==1 && M[1]==1 && 

M[4]==0 && M[5]==0 && M[6]==0 && 

M[7]==0 && M[8]==0 && M[9]==10 && 

M[10]==0 && 

M[11]==0 && M[12]==0) 

Property is satisfied 

(4) t1.W-->(M[9]==10 && M[7]==0 && 

M[8]==0 && M[10]==0) 

Property is satisfied 

(5) t0.W --> t3.W Property is not 

satisfied 

(6) t2.W --> t3.W Property is satisfied 

(7) A[] t5.W imply y>=150 && y<=215 Property is satisfied 

(8) A[] t7.W imply z<=150 Property is satisfied 

(9) A[] t1.W imply x[P2T1]>=65 Property is satisfied 

(10) E<> t2.W && x[P2T2]>220 Property is not 

satisfied 

 

A first concern (query (1)) was checking absence of 

deadlocks in all the states of the model state graph (a 

safety property). Operator A[] verifies that !deadlock is 

invariantly true in all the states of the model. Query (2) 

(existential) asks if there is at least one state of the state 

graph where transition t3, which concludes the whole 

presentation, fires (the automaton is found in the W 

location). Being known that t3 actually can fires, query 
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(3), based on the leads-to operator -->, checks if it is 

always true that starting from a state in which t3 fires, it 

always follows a state in which the initial marking of the 

model is reinstalled. Query (4) asks, similarly, that 

starting from a state in which t1 fires, i.e., the Again link 

was clicked, it always follows a state in which the atomic 

layer network, which plays the multimedia scenario (see 

places p7, p8, p9 and p10) reaches the home marking in 

which the marking of p9 is 10 (the number of couple of 

media objects to be played) and the rest of the subnet is 

reset. This property in turn ensures that at any time the 

link Again is requested, the subnet correctly starts from its 

home marking. Queries (5) and (6) check liveness 

properties. In particular, query (5) asks the verifier if 

starting from a firing of t0 (which begins the presentation) 

it always follows a firing of t3 (which concludes the entire 

presentation). Obviously, this query has a negative 

response because once started the presentation can be 

interrupted by an Again request possibly an infinity 

number of times. Of course, query (6) is always true: after 

a conclusion of the multimedia scenario, it always follows 

the concluding remark is rendered. Queries (7) and (8) are 

examples of bounded liveness property checking. Toward 

this, two extra clocks z and y (decoration clocks) were 

added to the model. Clock y is reset at each firing of t0 or 

t1, which starts a new presentation, whereas clock z is 

reset at each firing of t4, which begins the multimedia 

scenario of the atomic subnet. All of this was achieved by 

adding a few instructions to the deposit() function. Query 

(7) asks if it is always true that a state in which t5 fires 

implies that a number of time units between 150 and 225 

(including the audio presentation in place p4, which lasts 

in [50,65] time units) elapse (an expectation). Query (8) 

checks if it is always true that a state in which t7 fires 

implies that clock z is less than or equal to 150 time units. 

Query (9) checks if invariantly, i.e., in all states in which 

t1 fires (the Again link was requested), the arc clock 

x[P2T1] has always a value not less than 65. This 

property guarantees that, as in the requirements of the 

hypermedia model, the Again link cannot be issued before 

at least 65 time units are elapsed. Finally, query (10) 

verifies that in no case the arc clock x[P2T2] can be 

greater than 220 at the time in which t2 fires. This 

property ensures that, following a termination of the 

multimedia scenario, the Next link at most after 70 time 

units, that is after 220 time units, is automatically 

invoked. 

Due to answers collected in Table 1, the TSPN 

hypermedia model was found correct functionally and 

temporally. The experimental work was carried out on a 

Win7, Intel Core i3, 4GB, 2.13 GHz. To give an idea of 

the efficiency of the achieved implementation, any query 

in Table 1 ends in about 5 seconds. 

 

VI. CONCLUSION AND FUTURE WORK 

This paper proposes a methodology for modeling and 

analysis of multimedia/hypermedia documents, which is 

based on the Time Stream Petri Net formalism [10]. A 

TSPN model is translated into UPPAAL with the help of a 

developed reusable library of timed automata [7]. All of 

this enables synchronization consistency and temporal 

properties of the multimedia document to be verified 

through model checking.  

Prosecution of the work aims to: 

• Automating the translation from TSPN to UPPAAL, 

by completing an extension of the TPN/Designer 

toolbox [5] so as to graphically drawing a TSPN 

model and then generating the corresponding XML 

UPPAAL code. 

• Extending the approach so as to consider some high 

level or general purpose authoring language like 

SMIL and converting an initial specification of an 

interactive multimedia document into the terms of 

TSPN for subsequent thoroughly exhaustive 

verification. 
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