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Abstract–We consider a dynamical system, which can
be regarded as a transport model. A stochastic and
deterministics versions of the model are investigated. The
behaviour of the first version of the model is stochastic
only at the beginning and over some time becomes a pure
deterministic system. The second system comes to a steady
state, which depends on the initial state. Considered models
can be interpreted as cell automata.
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I. FORMULATION OF PROBLEM

We consider a mathematical model of a dynamical system.
This model can be interpreted as a system of particles, which
move in accordance with some rules. The movement of these
particles is similar to movement of connected pendulums [1].
The model has also an equivalent interpretation. Namely, the
support of movement can be considered as a closed sequence
of contours. There are four vertices on each contour, as shown
in Fig.1, and a particle, which occupies one of the vertices at
each discrete time instant. Each contour has common vertices
with two adjacent contours, as shown in Fig. 3. The model
can be described as a Markov chain [7]. States of this chain
correspond to configurations of particles.

We have obtained mathematical results that concern the
behaviour of the system. The cases of small dimensions can be
studied by exhaustion. Simulation is used in cases of greater
dimensions.

The considered model is similar to a traffic model, which
was introduced by K. Nagel and M. Schreckenberg and
can be interpreted in terms of cellular automata [2]. Nagel
and Schreckenberg investigated the movement on an one-
dimensional lattice (straight line or circle).

In Section 1, the considered system is described. In Sec-
tion 2, a formal description of particles movement rules is
given. In Section 3, some propositions are formulated concern-
ing a version of the model with a stochastic rule. In Section 4,
some propositions are formulated concerning a version of the
model with a deterministic rule.

A contour is considered, which contains four cells NWSE
(North, West, South, East). A particle moves on the contour
in accordance with rules formulated below. The rings can be
joined at points (vertices) NWSE forming a network, as shown
in Fig. 1 and Fig. 3.
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Fig. 1. Basis rings

Let us describe the rules of particles movement on the ring
NWSE

(1) Red state of particle A. If at present time the cell C ahead
of the particle A in the direction of movement is occupied by
the particle B of another ring, then the particle A does not
move.

(2) Green state of particle A. If at present time the cell
ahead of the particle A in the direction of movement is vacant
and not concurrent, then the particle A comes to C for one
step.

(3) Yellow state of particles A and B. If at present time the
same cell C is the next cell in the direction of movement for
two particles A and B (no more particles can be as the network
is plane), then, with probability α = α(A), the particle A
moves and the particle B does not move, and, with probability
β = 1− α, the particle B moves and the particle A does not
move.

The cell C is called concurrent.

Consider the following systems.

(a) We identify nodes N and S, W and E of the same ring,
and we get an elementary ”pendulum”, Fig 2, n = 1.

WE NS

Fig. 2. A ring with joined opposite poles
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(b) We consider also a ”necklace”, i.e., a closed system
containing n rings, Fig. 3, n > 1.
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Fig. 3. Necklace

If we identify nodes N and S in each ring of ”necklace”,
then we get a circular pendulum. Round nodes can be occupied
successively by particles of the neighboring pendulums, and
square nodes can be occupied only by their particle. A
pendulum is a side of a regular polygon, as shown in Fig. 4.
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Fig. 4. Circular (hexagonal) pendulum

The main problem considered in the paper is to investigate
the system behavior for different possible initial conditions:

(i) state of synergy, at which all particles move unimpeded;

(ii) state of collapse, at which all particles stop as they
cannot move in accordance with the rules;

(iii) spectrum of system velocities; each particle, during time
T, moves at T1 steps and does not move at T − T1 steps, or
some particles stop and other move permanently.

The considered model is somewhat similar to models inves-
tigated in [3- 6], where cellular automata have been used for
the local description of the traffic. The difference is that, in
present paper, a network model has been introduced.

II. CIRCULAR α -n -PENDULUM

Consider a regular polygon with n vertices, as shown in
Fig. 4. The cells are numbered from the vertex E, counter
- clockwise 1, 2, 3, 4, as shown in Fig. 1. Even numbers
correspond to main positions and odd numbers correspond to
peripheral positions.

States of a particle, on the pendulum k at moment T, are
denoted by

xk =′′ (2k) + 1′′, if the particle occupies the cell 2k and
moves in direction of 2k + 1;

xk =′′ (2k) − 1′′, if the particle occupies also the cell 2k
but moves in the opposite direction;

xk = ”(2k + 1) − 1”, if the particle of the k-pendulum
occupies at the right peripheral cell and moves back to the
cell ”2k”;

xk =” (2k − 1) + 1”, symmetrically.

Suppose the cell 0 and the cell 2n are the same cell. The
cell 1 and the cell 2n + 1 are also the same cell. Suppose
x1, x2, x3, . . . , xm are the states of particles at present time.
Then

(1) (xk) ̸= (xk+1) ∀k, 1 ≤ k ≤ n as two particles cannot
occupy the same cell;

(2) if (x∗
k) = (x∗

k+1), then the cell (2k + 1) is concurrent,
and the probability of gain are α and 1 − α; i.e., with
probability α realize

x∗
k+1(T ) = xk+1(T + 1), xk(T + 1) = xk(T ),

or with 1− α respectively

x∗
k(T ) = xk(T + 1), xk+1(T ) = xk+1(T ).

(3) if (xk) = x∗
k+1, then xk+1(T + 1) = xk+1(T ), i.e., the

particle k + 1 does not move;

(4) if x∗
k(T ) = x∗

k+1(T ), then xk+1(T +1) = xk+1(T ), the
particle k + 1 does not move, i.e., xk(T + 1) = xk(T ).

III. SOME RESULTS FOR α-n-PENDULUM

The following results have been found for the case 0 < α <
1.

3.1. For all initial states, after a time interval with finite
expectation, no concurrent cells occur.

3.2. For all initial states, the system comes to the state of
synergy for a time interval with a finite expectation.

3.3. At the state of synergy, the same four states of the
system are alternated with period 4.

3.4. If n = 2, then for all initial states (T = 0) the system
comes to the state of synergy no later than at time T = 2.

3.5. For any T, with non-zero probability, concurrent cells
can still appear after time T.

3.6. Example one. Let us fix E = 1, N = 2, W = 3,
S = 4, as in Fig. 1. Let us consider one direct movement on
necklace or equivalent pendulum with n = 3. Let (i1, i2, i3)
be a state of the system, where ij = 1, if jth particle is at the
right position, ij = 2, if jth particle is at the middle position
and moves to left; ij = 3, if jth particle is at the left position,
ij = 4, if jth particle is at the middle position and moves to
right.

Suppose the initial state is (4, 4, 2). The following transi-
tions can be realized

(4, 4, 2) → (1, 4, 3) → (2, 4, 4) → (3, 1, 4) →

→ (4, 2, 4) → (4, 3, 1) → (4, 4, 2).
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The system has returned to the initial state after 6 steps, as
shown in Fig. 5.

3.7. Example two. One more example. Consider a dynamical
system of type shown in Fig. 3, with n = 4 and codirectional
movement of particles. State of particle is denoted by letter
R, or G, or Y.

с

с

G

R

Y Y

G

G G

Y YG

G

G G G

R

GG

Y Y

G

Fig. 5. Nondisappearing yellow color: step by step

Thus, some states with concurrent particles can be repeated
with non-zero probability.

3.8. Synergy effect. Suppose n = 3, and all initial states are
equiprobable. With probability 10/13 the system comes to the
state of synergy than at time k = 4. With probability 3/13 the
system comes to the state of synergy after time interval with
expectation M

M ∼ 1

1− α
, α → 1,

M → 1

α
, α → 0.

In the last case, no finite number k exists such that with
probability 1 the system comes to the state of synergy earlier
than at time k.

3.9. Digital synergy. At the state of synergy, the configu-
ration of particles is defined by position unique one.

IV. RIGHT-PRIORITY n-PENDULUM

Suppose α = 1 (analogously, α = 0, left - priority). We
follow Euler technology [10] of hypotheses burning.

4.1 Qualitative property. There are initial states such that
the system comes to the state of synergy no later some fixed
time, and there are such states that all particles move with
same velocities that are less than 1 transition per time unit.

For every initial condition, the average velocity of pendulum
is greater than 0.5 transition per time unit.

4.2. Let us suppose n = 2. For all initial states (k = 0),
the system comes to the state of synergy no more than at time
k = 2.

4.3. Let us suppose that n = 3 and all initial states are
equiprobable. With probability 23/26 the system comes to the
state of synergy no later than at time k = 4. With probability
3/26 the same 6 states alternate with period 6. In this case
there are 4 transitions of every particle per a period, i.e., the
velocity of every particle is equal to 2/3. The expectation of
particles velocities is equal to 25/26.

4.4. Let us suppose that n = 4 and all initial states are
equiprobable. With probability 75/97, the system comes to the
synergy for a fixed time, and the same four states alternate with
period 4. With probability 22/97, since some fixed time, the
states of one of two sets alternate with period 16. In this case,
there are 12 transitions of every particle per a period, and the
velocity of particles equals 3/4. The expectation of particles
velocities is equal to 183/194.

V. CONCLUSION AND FUTURE WORK

We have considered a behaviour of a deterministic system.
A stochastic and deterministics versions of the model are
investigated.

A ”two-dimensional pendulum”, which is shown in Fig. 6,
will be presented.

Fig. 6. Two-dimensional pendulum

Vertexes with even sum of row and column indexes,
so called ”papa-vertexes”, contain particles, which move to
neighbouring vertexes ”mama” according to some plan. One
particular case is equivalent to dynamical model of flow on
chainmail, as shown in Fig. 7.
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Fig. 7. Flow on chainmail

We also plan to discuss the connection with cellular play of
Conway [9].
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