
A Matlab/Simulink Simulation Approach for Early Field-Programmable Gate

Array Hardware Evaluation

Celso Coslop Barbante, José Raimundo de Oliveira

Computing Laboratory (COMLAB)

Department of Computer Engineering and Industrial Automation (DCA), UNICAMP

Campinas, Brazil

e-mail: celsocos@dca.fee.unicamp.br, jro@dca.fee.unicamp.br

Abstract— This paper presents a Matlab test bench

development for Field-Programmable Gate Array hardware

simulation. When a design uses hardware blocks provided by

third-part vendors (known as Integration Packages - IP),

several options can be set in the block configuration page,

inside vendor tool, and affect how the block behaves. These

configuration options should be evaluated for any integration

package one may be interested in and the test bench proposed

facilitates the evaluation of any block-specific configuration

parameters, enabling a three times reduction of block

configuration time.

Keywords-Model verification; Matlab; FPGA design.

I. INTRODUCTION

Hardware verification is becoming more challenging as
design complexity grows. Verification times have increased
with the rising gate count; as overall design complexity
grows, ensuring that the system complies with the required
specification in early design stage is a desired time saving
approach [1].

Textual language can be used to develop a test bench;
however, this approach has a degree of complexity similar to
design itself and is human-resource intensive. This task can
be accomplished easier with a tool like Matlab, demanding
less knowledge of vendor specific optimizations [2] to
achieve the goal of developing a test bench.

The required computational run-time for simulations is
also an important factor to consider because computer
resources are limited and costly. Efficient simulation
techniques, as presented in this work, collaborates to
improve a rational use of computer resources [3].

According to a survey of Collett International Research
in 2002, only 39% designs were shipped bug free at first
silicon, while 60% contained logic or functional flaws, more
than 20% required 3 or more silicon spins. The Collett
survey has also shown that nearly 50% of total engineering
time was spent on verification [4]. Because the design
complexity continually increases, the actual numbers are
expected to be worse, being more difficult to verify the
design today than in 2002.

Some of these verification challenges can be addressed
by using a model-based simulation system, where
mathematical aspects and algorithms become a key area in
the verification efforts, also incorporating software
techniques for formal verification [5-6]. The design
methodology that best fits the proposed test bench is a top-

bottom design strategy, which can be done using the Matlab
and the FPGA tools to generate desired IP models; for
example, Fast Fourier Transforms, Arithmetic Logic Units
and Decoders, among other blocks that may be provided by
Field-Programmable Gate Array (FPGA) vendors.

During design cycles, the model is refined and
progressively approaches the hardware behavior, until the
hardware IP can be directly used.

In this article, the Xilinx and Matlab integration will be
presented with one simple test case, which consists of a Fast
Fourier Transform (FFT) processing core, as presented in
Section II. A proposed Design Flow is explained in Section
III, and the methodology results are presented in Section IV.

II. MATLAB/FPGA SYSTEM INTEGRATION

The first step to achieve the goal to simplify verification
using the Matlab is selecting an IP, from available from
FPGA vendors, sometimes through third parties companies,
but with vendor’s support in order to enable support for
simulation, hardware models and even synthesis. Two
examples of such integration tools are Altera DSP Builder
[7] and Xilinx System Generator [8].

Both tools share the same principles, but differ in
integration method, capability and support options. The
installation procedure details can be found in the vendor’s
web site and will not be repeated here; however, the process
is straightforward once you have checked the Matlab version
and FPGA tool version compatibility [9].

Figure 1. Xilinx Blockset inside Simulink

89Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Each integration package is targeted to a specific
Matlab/FPGA vendor tool combination and one must
confirm you have correct version of all tools to avoid
interoperability problems. The final result will be a Simulink
block list inside Matlab, as it is shown in Figure 1.

Under the hood, more changes in the Matlab tool were
done and more than a few Simulink [10] blocks are
available: a diverse set of FPGA hardware models can be
used and a clever use of this integration enable that a test
bench developed in Matlab can also be used to validate
hardware design, however to use the same Matlab
environment for FPGA hardware models you must first
generate the models inside the FPGA vendor tool.

During hardware model generation, design choices are
required. These choices are made by parameters selections,
and each IP has several parameters to be set. Early
evaluation methodology to quickly test the model parameters
is a major goal for this work, since several blocks can be
created, and using the proposed test bench, parameters can
be quickly adjusted and compared.

The Xilinx System Generator IPs available in functional
categories are, in alphabetical order:

 Automotive & Industrial

 Advanced eXtensible Interface (AXI)

 Base IP (FPGA basic blocks)

 Communication and Networking

 Debug and Verification

 Virtual Input/Output

 Digital Signal Processing

 FPGA Features and Design

 Math Functions

 Memories and Storage Elements

 Standard Bus Interfaces

 Video and Image Processing

For instance, a single Fast Fourier Transform (FFT) core
from Digital Signal Processing category should be somewhat
simple to use, but this simple IP requires a lot of design
choices: The FFT Core can compute from 8 to 65536-point
forward or inverse complex transforms. The input data is
represented as two's-complement numbers from 8 to 34 bits
wide or single precision floating point numbers with 32 bits
wide and the phase factors can range from 8 to 34 bits wide.

The FFT IP can use on-chip block RAM or distributed
RAM across FPGA; calculation can be done using full-
precision unscaled numbers, scaled fixed-point numbers and
block-floating point. Some parameters can be configured in
run time with additional logic: the point size, the choice of
forward or inverse transform, and the scaling schedule.

Finally, four architectures are available to provide a
tradeoff between sizes and transform time [11]. With all
these options, just for a FFT block, the time required to
simulate a hardware level design can be too long, so using
hardware models with regular Matlab script files can easier
simulate the generated IP.

All major parameters in FFT block generation can be
seen in Figure 2, and all this options can be exercised in the
proposed test bench.

The test bench is reliable due to modular nature: test
cases and model files are separated, thus easier than other
graphical-based tools to find issues in the test bench,
simulation test cases and add supporting functions. Early
simulation in the design flow, before first synthesis, can be
used for exercise several design options ahead going further
with the project.

Figure 2. Main options for FFT model generation using Xilinx ISE Core Generator

90Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

III. MATLAB/FPGA DESIGN FLOW

A. Developing the matlab test bench

The Matlab is well known as a high-level language and
interactive environment for numerical computation,
visualization and programming [12]. New features like
Hardware Description Language Coder (HDL Coder) and
Hardware Description Language Verifier (HDL Verifier)
allow modeling, simulating and exploring algorithms by
Matlab and Simulink tools and FPGA vendor companion
allows generating either target-independent or target-
optimized hardware code and program Xilinx and Altera
FPGAs.

Figure 3 shows the proposed methodology with a Matlab
software model in step one, a hardware model introduced in
step two, before hardware verification and reusing Matlab
scripts and Simulink diagrams, saving time and test bench
code. The final step in the design flow is the real hardware
simulation.

Figure 3. Proposed design flow

To check the FPGA design parameters against the
system-level specifications a set of test cases must be
developed. The initial test case could use only Matlab
functions to model the system under study without adding
hardware complexity, to validate the design idea before
investing time in device selection, pin-out and others
synthesis related issues. The initial test case is very simple
and can easily simulate and compare the generated IP against
Matlab floating point and full precision functions.

This allows design space analysis and numerical
precision evaluation and also keeps the data for latter
comparison between hardware and Matlab implementation,
creating a figure of merit for quality and easily showing
tradeoffs impact and artifacts that may arise due to several
design choices made in IP generation.

The Xilinx provided C-model is cycle-accurate and has
been demonstrated that results from Matlab, FFT model and
System Generator model are all equivalent [13].

To reproduce the results of this work, please note you are
not able to use the LCC compiler shipped with Matlab

because it will not compile some IP models. Xilinx
recommends using Microsoft Software Development Kit
(SDK) for windows platform or Gnu Compiler Collection
(GCC) for Linux platforms. You can refer to Xilinx user
guide [14] and Matlab documentation [15] to create the
function models whether is needed.

The test bench starts with a set of Matlab scripts that
contain the global variables to control verbosity (to facilitate
test bench debug) and design parameters. The test bench
calls a set of test cases which can instantiate different
models of device under test, for example the first one with
the Matlab models and a second one with hardware models
provided by FPGA tool.

B. File structure

A test bench top file was created with global variables to
control run-time parameters, data sizes and script verbosity.
There are parameters to controls text displayed messages
during the test bench run and it is useful to debug the test
bench itself, but once the environment is working, less debug
messages can be displayed to concentrate the focus on the
device under test. Utility file functions keep test bench
organized and are a good location to place common
functions brought by test cases. These are the test bench root
files and a set of test cases files to exercise the model.

Once the main scripts and test cases were developed, a
high level model using only built-in Matlab functions was
made to mimic the desired hardware behavior. These high
level models uses all the Matlab capabilities to reduce design
time and the result will be compared to the hardware model
and to latter validate the IP.

During the development of this work, a small set of
utility routines were split into test bench top file and utility
functions to keep top file small and easy to change.
Moreover, the utility functions can be easily expanded and
currently are used to display graphics and store personal
preferences in a place which makes more sense than test
bench top.

The hardware model can be instantiated by using the
FPGA blocks available in Simulink but pay attention that
hardware models can also be generated from FPGA vendor
tool and embedded in Matlab code by using precompiled
functions in the same fashion as regular function is used.

 Test bench top
- control variables
- data initialization
- verbosity control
- test case selection

 Utility functions
- draw graphics
- evaluate errors
- formatted text output
- other used test bench functions

 Test cases
- call software and hardware models
- execute desired tests and comparisons
- use of utility functions and model files

91Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

 FFT Model direct calculation using Matlab function
- golden model for floating point FFT

 FFT Model using fixed point calculation
- golden model for fixed point FFT

 FFT Model using FPGA hardware model A
- hardware model with “A” parameter set

 FFT Model using FPGA hardware model B
- hardware model with “B” parameter set

 FFT Model using FPGA hardware model C
- hardware model with “C” parameter set

 More FFT models can easily be included.
- create as many models as required

Figure 4. File structure example

When a FPGA IP model is generated by using the Core
Generator tool, the model file is also generated. This model
is placed inside IP directory tree, created by Core Generator
tool and can be used in Matlab, but the integration between
Matlab and FPGA vendor tool must be up to date because
the Matlab model will call a pre-compiled file (for Altera) or
bit accurate C models (for Xilinx).

Keep in mind that simply copying the model file for
another PC running Matlab will not work, because the
models rely on FPGA vendor files to work.

In the example provided in Figure 4, three files for FFT
test cases and three files for FPGA models are shown, but
during development, many files can be created as many
options can be evaluated in the IP generation procedure. Use
as many files as required to represent different parameters
analyses in the test bench.

For a quick analysis of design space and numerical
precision loss, this is very convenient, simple to design and
to reuse.

IV. RESULTS

Once the test bench is ready and the software level
function is working, the simulation is very simple to be
repeated because the entire test bench is parameterized.

The Matlab scripts calculate buffer sizes and compare
with provided data and other similar tasks, in order to
provide a sanity check during simulation run time. This help
to avoids mistakes in data format and parameter setup,
because the sanity checks try to reproduce the constraints
available in the FFT manual.

The result from this test bench development using
automatic calculation instead of hard-coded values is a
deeper knowledge of the FFT IP and deeper comprehension
of the FFT IP manual.

The test bench functions generate warning messages,
trigger some double checks in IP specification to confirm if
test bench behavior was accurate.

It was possible to simulate the hardware and evaluate
design tradeoffs, simply using the model and comparing the
results between high level function and the vendor-provided
hardware model function.

A lot of experimentations with FFT IP parameters were
possible, helping to find the best fit for IP speed, area size
and data size. All those experimentations were easy to
reproduce by saving the hardware model files, reducing the
amount of time compared with traditional Simulink design
flow with lower level test benches. The easy reproducible
results are welcome result of this methodology.

Compared with traditional Simulink graphical approach,
this text-based methodology with multiple model files that
can be exercised in the same simulation run, has potentials to
give early-results for comparison, enabling for example the
analysis of fixed point quantization errors early in design
saving synthesis time and reducing efforts in final hardware
creation [16-17].

For the FFT IP core generated with parameters presented
in Figure 2, the result for simulation with hardware and
software models is depicted below. The algorithm uses the
FFT block to simulate a power spectrum calculation from a
modified sinusoid signal with a peak power at low
frequency.

Figure 5. Power spectrun evaluation: Comparing pwelch function,

software FFT model and hardware FFT model

Three simulations are shown in the Figure 5. A first one
uses software function to calculate the power spectrum
coefficients, the second uses Matlab pwelch function, and
finally, the same calculation is done with FFT via hardware
model.

It is possible to see that pwelch and Matlab FFT
functions match to each other. This makes sense because

92Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

both functions use the same precision to calculate the power.
However, a significant difference between the result from the
Matlab software functions and the hardware model
equivalent can be found.

This is expected because hardware models use fixed
point precision and with the proposed test bench this result
was easy to reproduce for several model configurations,
resulting a better design space analysis.

The result provided in Figure 5 was found before first
FPGA synthesis, directly in Matlab and much faster than
traditional Simulink flow with hardware in the loop
simulation.

V. CONCLUSIONS

A reduction of three times in simulation setup time was
experienced for the FFT block. Saved time increases
proportionally to quantity of simulated models, because once
the file structure is deployed and first model is exercised, it is
very simple to add more models to the test bench. The test
bench development contributed to a better understanding of
IP parameters, design arguments and options.

Initial hardware results were ready to analysis without
even synthesize the designs and the Simulink graphical
interface was avoided and this is an important feature,
because it is faster to design a test bench by using text than
graphical interface.

ACKNOWLEDGMENT

The authors would like to acknowledge the financial
support of CAPES and the support of the Department of
Computer Engineering and Industrial Automation (DCA) at
State University of Campinas – UNICAMP.

REFERENCES

[1] E. Linehan and S. Clarke, “Managing hardware verification
complexity with aspect-oriented model-driven engineering”,
[retrieved: September, 2013], Available: http://ulir.ul.ie/
handle/10344/666

[2] Synopsys Inc., “Faster simulation without more hardware”,
[retrieved: October, 2013], Available:
http://www.synopsys.com/Company/Publications/SynopsysIn
sight/Pages/Art2-FasterSimul-IssQ2-11.aspx

[3] S. Narayanan and L. Rothrock (editors), “Determining the
number of simulation runs: Treating simulations as theories
by not sampling their behavior”, Human-in-the-loop
simulations: Methods and practice, Chapter 5, Springer, 2011,
pp. 97-116

[4] P. J. Mosterman, “Model-based design of embedded
systems”, Proceedings of the 2007 IEEE International

Conference on Microelectronic Systems Education, IEEE
Computer Society, IEEE Press, June, 2007, pp. 197-199,
doi:10.1109/MSE.2007.65

[5] P. S. Kaliappan, “Model based verification techniques”, May,
2008, unpublished paper

[6] V. D. Silva, D. Kroening, and G. Weissenbacher, “A survey
of automated techniques for formal software verification”,
IEEE Transaction on Computer-Aided Design of Integrated
Cricuits and Systems, Vol 27, no 7, July, 2008, pp. 1165-1178

[7] Altera Inc., “DSP builder”, [retrieved: August, 2013],
Available: http://altera.com/products/software/products/dsp/
dsp-builder.html

[8] Xilinx Inc., “System generator for DSP”, [retrieved:
September, 2013], Available: http://www.xilinx.com/tools/
sysgen.htm

[9] Xilinx Inc., “Which versions of System Generator for DSP
and Accel DSP synthesis tool are compatible with which
versions of ISE design tools and MATLAB?”, [retrieved:
September, 2013], Available: http://xilinx.com/support/
answers/17966.htm

[10] The Mathworks Inc., “Simulink - simulation and model based
design”, [retrieved: October, 2013], Available:
http://www.mathworks.com/products/simulink/

[11] Xilinx Inc., “Logic core IP: Fast fourrier transform product
specification”, [retrieved: August, 2013], Available:
http://www.xilinx.com/support/documentation/ip_documentat
ion/ds808_xfft.pdf

[12] The Mathworks Inc., “Matlab (rel. 2011a – 2012b)”,
[retrieved: September, 2013], Available:
http://www.mathworks.com/

[13] J. Wu, “FFT results from Matlab fft, bit accurate C model and
SysGen FFT block”, July, 2010, [retrieved: August, 2013],
Available: http:// myfpgablog.blogspot.com.br/2010/07/fft-
results-from-matlab-fft-bit.html

[14] Xilinx Inc., “LogiCORE IP fast fourier transform v9.0:
product guide for vivado design suite”, [retrieved: August,
2013], Available: http://china.xilinx.com/support/
documentation/ip_documentation/xfft/v9_0/pg109-xfft.pdf

[15] The Mathworks Inc., “Create MEX-files: Build C/C++ and
Fortran subroutines into MATLAB functions” [retrieved:
September, 2013], Available: http://www.mathworks.com/
help/matlab/create-mex-files.html

[16] The Mathworks Inc., “FPGA design and codesign with
Matlab”, [retrieved: August, 2013], Available:
http://www.mathworks.com/fpga-design/

[17] S. V. Beek and S. Sharma, “Best practices for FPGA
prototyping of MATLAB and simulink algorithms”,
[retrieved: September, 2013], Available:
http://www.eejournal.com/archives/articles/20110825-
mathworks/

93Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

