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Abstract—Agent-based models (ABMs) are important tools for
predicting infectious disease epidemics and for designing effective
interventions. ABMs take into account individual differences,
for instance in contact rate. The drawbacks of ABMs are high
complexity and low performance. In this paper, we present a
data structure - an augmented B-tree - to speed up the weighted
random selection of individuals for the next transmission event
in an ABM of infectious disease dynamics. An additional feature
of the augmented B-tree is that it allows aggregating the force of
infection for groups of simulated individuals. In short, our tech-
nique enhances the performance and simplifies the development
of ABMs.

Keywords—weighted random selection; ABM; agent-based mod-
eling; infectious disease epidemics; B-tree; performance.

I. INTRODUCTION

Agent-based models (ABMs) are important tools for pre-
dicting infectious diseases epidemics and for designing effec-
tive interventions [1]–[4].

The classic model for infectious disease dynamics is the so-
called ’SIR model’ formulated by Kermack and McKendrick
[5] where S, I and R denote the susceptible, infected and
recovered fractions of the population.

The original SIR model is a deterministic model where a
set of differential equations describe the rates of change in S,
I and R.

Stochastic models take both chance and the effect of
population size into account, and model a population as
discrete numbers of people in the S, I and R state. Each
simulation run has a different outcome and evaluating a single
scenario requires multiple runs and aggregating the output.
These simulations take time as every single event (disease
transmission, recovery) is modelled explicitly.

Agent-based models [6] are the most sophisticated type
of model. In this type of model, individuals are represented
as objects that differ from each other in the values of their
attributes. In addition to taking chance and finite population
size into account, agent-based models also take heterogeneity
between individuals into account: some individuals may have
higher contact rates than others, and some individuals may
always recover from disease faster than others.

The main drawbacks of ABMs are high complexity and low
performance. Each individual is a distinct object in software
with its own attributes and life history. As in stochastic models,
the time course of a simulation of an infectious disease with an

ABM consists of a sequence of events (either transmission or
recovery). If individuals differ in contact rate and/or recovery
rate, a weighted random selection of individuals is required
at each event. Selecting a single individual by iterating a list
takes time proportional to the number of individuals in the list.

In this paper, we present an augmented B-tree as an
efficient data structure for random selection of individuals
weighted by the value of an individual attribute such as contact
rate. The augmented B-tree is key for simulating epidemics
in large (>100,000 individuals) populations with individual
heterogeneity. The augmented B-tree can also be used to
pinpoint the force of infection in a simulated population. In
short, the data structure improves the performance of ABMs
and makes it simpler to develop these models, which improves
the tractability of this type of models.

The rest of this paper is laid out as follows. In Section
II, we will provide the necessary background on the different
types of SIR models. Section III describes the data structure in
detail and reports performance figures. In Section IV, we will
show results of using the data structure in an individual-based
SIR model with different degrees in contact rate heterogeneity.
Section V discusses the application of the data structure to an
age structured population. In Section VI, we discuss additional
features of this data structure and similar developments in the
field of simulating networks of chemical reactions.

II. BACKGROUND ON INFECTIOUS DISEASES DYNAMICS

The classic model for infectious disease dynamics is the
SIR model [5]. In this model, the population is subdivided
into susceptible (S), infected (I) and recovered (R) categories.
The following set of differential equations determines the
dynamics:

dS/dt = −β · c · I · S/N (1)

dI/dt = β · c · I · S/N − I/d (2)

dR/dt = I/d (3)

with
N = S + I +R (4)

and

β transmission probability per contact
c contact rate
d duration of infection
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This model simulates numbers of individuals (or population
fractions) as continuous variables and is deterministic: for a
given set of initial values the model will always produce the
same output. This type of model aims to capture the average
behaviour of the epidemic.

Stochastic models take the random nature of transmission
events between discrete individuals into account. A stochastic
model simulates discrete numbers of people in the S, I or R
state and produces different output for each simulation run. A
stochastic equivalent of the deterministic SIR model simulates
the transition events from the S → I state and the I → R
state for discrete individuals, with:

rS→I = −dS/dt = β · c · I · S/N (5)

rI→R = dR/dt = I/d (6)

The direct method [7] is an algorithm for stochastic models
of chemical reaction kinetics that can be used to simulate the
dynamics of this system:

1) sum the event rates
2) draw a random number x between 0 and the sum of

the rates i.e., uniform on (0, rS→I + rI→R)
3) determine whether infection or recovery will occur:

infection if 0 < x < rS→I and recovery if rS→I <=
x < rS→I + rI→R

4) draw a value for ∆t from an exponential distribution
with rate rS→I + rI→R

5) move the time forward to t+∆t and execute the event
6) go to step 1

Deterministic and stochastic models are relatively simple
to implement although running stochastic models may be
time consuming - especially for large populations - as every
individual state transition is simulated.

Stochastic models do not take consistent heterogeneity
between individuals into account. Stochastic models model
numbers of molecules of a species or numbers of individuals
in a certain state. Although it is possible to categorise a
population into subgroups with different contact rates (e.g., the
core group model for gonorrhea in the US [8]), an arbitrary
and continuous distribution of contact rates (and/or recovery
rates) within a population requires modelling at the level of
the individual.

In the stochastic SIR model, the infection and recovery
event rates are easily calculated from (5) and (6) and moving
the simulation forward in time using the direct method is
straightforward. In an agent-based SIR model with heterogene-
ity in both contact rate and duration of infection, the event rates
are given by (assuming proportionate mixing):

rS→I = β ·
I∑

j=1

cj ·
∑S

j=1 cj∑N
j=1 cj

(7)

rI→R =

I∑
j=1

1

dj
(8)

In (7) the summed contact rate
∑I

j=1 cj of infected indi-
viduals replaces the product of contact rate and numbers of

infected individuals c · I of(5). As we assume proportionate
mixing, the summed contact rates of susceptible divided by
the summed contact rate of all individuals

∑S
j=1 cj/

∑N
j=1 cj

in (7) replaces the fraction of contacts with susceptibles S/N
of (5).

The principle of the direct method still works, but now
we do not only have to determine which type of event occurs
but also which individual should be selected for the transition
event. Therefore step 5 in the algorithm is replaced by:

5) move the time forward to t+∆t and execute the event:
a) if infection:

• draw a random number y uniform on
(0,

∑S
j=1 cj)

• iterate over all susceptibles subtracting
cj from y until y < 0

• select that individual and execute the
infection event

b) if recovery:
• draw a random number y uniform on

(0,
∑I

j=1 1/dj)
• iterate over all infected subtracting 1/dj

from y until y < 0
• select that individual and execute the

recovery event

The random selection of an individual weighted by contact
rate (or recovery rate) in steps 5a and 5b performs poorly if
individual rates are stored in a simple data structure such as
an array or a list: the time complexity for iterating an array
or list is O(n) (i.e., the required time increases proportionally
with the number of individuals). In the next section we present
a more efficient data structure.

III. AN AUGMENTED B-TREE FOR WEIGHTED RANDOM
SELECTION OF INDIVIDUALS

A. Data structure

To move an agent-based SIR model forward in time re-
quires summing the individual infection and recovery rates,
drawing a time till the next event and selecting the event
type and the individual. As the individual rates may differ,
the selection of an individual is a weighted random selection.
After an individual has been selected, he or she is moved to
the next state.

To prevent O(n) time complexity, we would like an alter-
native to simply iterating over a list with individual rates. The
main requirements for an alternative data structure or algorithm
are:

• rapid weighted random selection of elements

• quick and easy insertion and removal of elements (or
of updating the rates)

A data structure that fulfils these requirements is a balanced
search tree with nodes that are augmented [9] with a record
of the sum of an attribute of the child nodes. We chose a
standard B-tree [10] as the basis. B-trees are widely used in
relational databases and have O(log(n)) time complexity for
search, delete and insert actions [10]. Fig. 1 illustrates a B-tree
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∑=27.0

c, 3.8 h, 5.2

∑=5.6

a, 2.4 b, 3.2

∑=4.2

j, 1.9 k, 2.3

∑=8.2

e, 4.0 f, 4.2

Fig. 1. Augmented B-tree for rapid selection weighted by individual rate.
Each node contains i. the sum of the values of the elements in that node and
in all subtrees of that node, ii. an ordered list of key, value pairs (e.g., a, 2.8
for smallest element in the tree), and iii. pointers to child nodes with keys
intermediary between the keys of the elements left and right of the pointer.
In this example, the tree contains contact rates (the values) of individuals
identified by single character as key.

(of order 2, i.e., with either 1 or 2 elements per node) in which
the nodes have been augmented with the sum of the values of
the elements in that node and all subtrees of that node. In this
example, each element would represent an individual denoted
by a key (single lowercase character) and a value (e.g., contact
rate). To select a random individual weighted by contact rate,
we proceed as follows. First, a random number x is drawn from
a uniform distribution between 0 and the sum of all values in
the tree. Next, x is compared with the sum of the leftmost
child node, and if the sum of that node is less than x, subtract
that sum from x, and continue to the value of the leftmost
element in the root node, the sum of middle child node etc.
As soon as the current value of x is less than the value of
an element or child node, the element or child node will be
selected. Suppose the sum of the values is 27.0 (see Fig.1)
and we have drawn x = 10; as the sum of the left child node
5.6 < 10, x ← 4.4; as the value of c, 3.8 < 4.4, x ← 0.6
and we descend to the middle child node; as the value of e,
4.0 > x, e is selected.

B. Expected performance

For each level in the tree, at most 4 comparisons (2 values
within the node itself and 2 out of 3 subtree sums referenced
by pointers) are needed to either find the required element or
find the subtree containing the element. Thus, the number of
comparisons for weighted random selection increases linear
with the number of levels whereas the number of elements
in a tree increases exponentially with the number of levels
of the tree. Therefore, time complexity of weighted random
selection is O(log(n)). Time complexity of insert, delete and
update actions in an augmented B-tree is also O(log(n)) as
only the sums of the nodes on the path leading to the element
need updating for these actions. Selecting by key is the same
as in standard B-trees, i.e., O(log(n)).

As for standard B-trees [10], the space complexity for the
augmented B-tree is O(n) ; the pointer structure is identical to
that of a B-tree but additional space is required for storing the
sums. The space for storing the sums decreases with increasing
number of elements per node and can be tuned. Note that the
values do not have to be stored in the tree if the values can
be referenced through the key.

TABLE I. PERFORMANCE OF A JAVA ARRAYLIST VS. AN AUGMENTED
B-TREE FOR WEIGHTED RANDOM SELECTION. TIME IN µSECS PER SELECT

(AVERAGE±SEM OF 10 RUNS OF 5,000 SELECTS EACH). ALL
DIFFERENCES BETWEEN ARRAYLIST AND AUGMENTED B-TREE WERE

SIGNIFICANT AT P < 1E-6 (STUDENT T-TEST).

Number of elements ArrayList Augmented B-tree

10,000 6.6±0.1 0.32±0.01

20,000 13.9±0.1 0.50±0.04

50,000 35.0±0.3 0.65±0.01

100,000 71.5±0.5 0.88±0.01

200,000 174±1 1.13±0.01

500,000 522±2 1.40±0.01

1,000,000 1073±3 1.71±0.02

C. Measured performance

Table 1 shows the performance of weighted random selec-
tion using a Java ArrayList versus an augmented B-tree. The
time required for 5,000 weighted random select actions was
determined for increasing numbers of elements in the data
structure. Each test was performed 15 times. To allow the
Java VM to warm up, only the final 10 runs were used for
calculating the average and SEM. All tests were performed on
a MacBook Pro with 8 GB RAM and a 2.8 GHz Intel Core
i7 processor on OS X 10.8.4 using the Java SE 6 runtime.
Minimum and maximum Java heap space was set to 768 MB.
A Java software library including the augmented B-tree will be
published as open source on www.skardahl.com, the website
of Skardahl BV, before October 27, 2013.

The figures in Table 1 show that the augmented B-tree
has much better performance than the Java ArrayList, even
when just 10,000 elements are present in the data structure.
In addition, the table show that the time complexity is about
O(n) for the ArrayList (about a 10-fold increase in time from
100,000 to 1,000,000 elements) whereas for the augmented B-
tree the increase is about proportional to log(n). The amount
of memory required for the augmented B-tree was about six
times that of a Java ArrayList: for 1 million elements 147 MB
for the augmented B-tree vs. 25 MB for the ArrayList.

IV. APPLICATION OF THE AUGMENTED B-TREE TO AN
INDIVIDUAL-BASED SIR MODEL

Fig. 2 shows the dynamics of an agent-based SIR model
with and without heterogeneity in contact rate. Heterogeneity
decreases variability and causes an earlier and higher peak
in the number of infecteds whereas the fraction susceptible
remaining after the epidemic has died out is the same (not
shown). The data shown in fig. 2 were generated by 20
simulation runs each modelling a population of size 100,000
with individuals with either the same or different contact rates.
The 20 simulation runs took 5 seconds in total. When an
ArrayList was used for weighted random selection the 20 runs
took 12 minutes in total. Using the augmented B-tree therefore
caused a speed-up of a factor 140. For larger population sizes
the difference would even be larger.

V. USE OF THE AUGMENTED B-TREE FOR EPIDEMICS IN
AGE STRUCTURED POPULATIONS

So far, we focused on random selection of elements
weighted by the value of the element. Although the elements
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Fig. 2. Dynamics of a SIR model with 100,000 individuals, an average
effective contact rate (equal to transmission probability per contact multiplied
with contact rate) of 0.35 per day, and a disease duration of 4 days. The
parameters are equivalent to R0 = 1.4. The red lines (peaking around 75
days) show the time course of the number of infected individuals for a model
where all individuals have the same effective contact rate and the blue lines
(that peak around 25 days) show the same for heterogeneous individual contact
rates which were drawn from an exponential distribution with mean 0.35 per
day.

are ordered by key, the ordering was irrelevant for the simple
individual based SIR model.

When modeling SIR dynamics in an age-structured pop-
ulation, the obvious key to use is age (or birthdate). When
using age as a key, the augmented tree allows summing the
individual effective contact rates of the infecteds by age range.
For each age range, the summed rate can be distributed over
age ranges of susceptibles according to a contact matrix.

An additional feature of the augmented tree (not related
to scheduling transmission events) is that we can get a quick
response to queries for the sum of attribute values in a certain
key range. For example, in an agent-based SIR model we could
find out which age group (or birth cohort) causes most new
infections by using birthdate as key and the effective contact
rate as attribute value and querying different age ranges of
infecteds. In the same way we could find out which age group
is most subject to new infections by querying aggregate contact
rates in age ranges of susceptibles. As for selection and update,
the time complexity of key range queries is O(log(n)).

VI. DISCUSSION

We have described a data structure that can speed up
agent-based simulations of infectious disease dynamics in large
populations by a factor of 100 or more. The augmented B-
tree that we have presented enables more realistic modeling
of individual heterogeneity (e.g., in contact rate) while at the

same time offering the option to easily aggregate the individual
rates by key range thereby providing insight into the groups
causing and experiencing the force of infection.

A similar algorithm as presented here has been described
for the simulation of chemical reaction kinetics. Gibson and
Bruck [11] developed a logarithmic scaling version of the SSA
(stochastic simulation algorithm) using an indexed priority
queue or binary tree for a more efficient way to select the
chemical reaction that will fire next. Slepoy et al. [12] present
a constant-time kinetic Monte Carlo algorithm that could in
principle also be used for agent-based models of epidemics.
However, the composition-rejection algorithm presented in
[12] requires sorting the rates in categories to prevent too many
rejections, and is not easy to implement. Also, it does not offer
the option to aggregate rates by key range.

We believe that our augmented B-tree is useful in all agent-
based models where random selection weighted by individual
risk (i.e., rate, susceptibility, etcetera) is required. In addition,
the augmented B-tree is useful to aggregate individual attribute
values (e.g., rates), optionally by key range.
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