
A Non-Modular Modeling and Simulation Approach
Based on DEVS for the Forest Fire Spread

M. Hamri
LSIS UMR CNRS 7296
Aix-Marseille university

Marseille, France
Email: amine.hamri@lsis.org

Y. Dahmani
EECE lab

Ibn Khaldoun university
Tiaret, Algeria

Email: dahmani y@yahoo.fr

Abstract—Recently, the modeling and simulation of forest
fire spread using discrete event formalisms have been inten-
sively investigated. In this paper, we propose a non-modular
approach vs. partial-modular and modular approaches based on
Discrete EVent system Specification (DEVS) formalism to reduce
exchanged messages between cells and to improve essentially
performances of forest fire spread model. Note that the existing
DEVS models simulate the forest fire spread for only small scale
forests.

Index Terms—forest fire spread M&S; DEVS.

I. INTRODUCTION

The Modeling and Simulation (M&S) formalisms are used
to understand, represent, specify, and analyze the dynamic of
systems. Often, these systems are very complex due to the fact
that in a small temporal window there is a high number of
variables which change values. Consequently, this complexity
increases according to the simulation time.

Modeling the system dynamics is a hard task, particularly
natural systems in which abstraction of the behaviors should be
done to reduce the system complexity. Different methods and
techniques were developed in order to improve the formulation
of such systems. In the literature, two main categories are
distinguished: analytic methods, which are difficult to grasp
and M&S ones. Formally, a large variety of behaviors can be
formulated mathematically. To learn about systems, we must
take into account all involved variables and entities. Although,
their dynamics reveals a complex formulation involved by
these variables, the corresponding equations are unable to
provide accurate results due to the increasing complexity of
data.

The M&S is based on an experimental frame. The likeness
between experimentation and M&S was the essence of this
twinning [1], [2] offering the possibility of predicting the be-
havior of complex systems. Various approaches were defined
to handle the two steps of M&S, depending on time-driven or
event-driven.

In the application domain, due to the important damages
caused by fire, governments employed the necessary humans
and resources to limit these damages and intervention costs of
firemen. The scientists on their side have provided efforts to
understand and counter at best the forest fires. Consequently,
many models were developed to firemen and decision makers
to train them and define the efficient strategy.

The mathematical model of Rothermal is one of the viable
models for forest fire. It employs a set of continuous variables
interrelated (vegetation fuel, wind speed and direction, humid-
ity, etc.), which influence the direction and speed of the forest
fire spread. However, the Rothermal model is specific to north
America terrains and can not be reused elsewhere.

On the other hand, simulation models are very accessible
and easy to use. We find the two categories time-driven and
event-driven to M&S of forest fire through the decomposition
of forest in the two-dimensional space. The cellular automata
were widely used in this field. The spread of the forest fire
is based on simple rules executed at each time step. Some of
these rules are extracted from the Rothermal model.

In event-driven simulation, Discrete EVent system Specifi-
cation (DEVS) contributed to this field. The DEVS-Fire model
proposed by the authors in [3] combines DEVS formalisms
and Rothermal model and the shown results are very inter-
esting. However, despite the use of a heap-based simulation
engine to load and simulate only active cells at each simulation
cycle and the enhance of neighbor cell ignition process (pre-
schedule model vs. on-time schedule one), the corresponding
models need an important heap memory and CPU time to
execute the behavior of forest fire spread. Consequently, only
a small set of active cells are allowed to be simulated, even
if the authors note that the model is able to simulate wildfire
with large scale.

In order to remedy the lack of such an approach in which
each forest cell is modeled with an DEVS atomic model and
for each active cell a simulator is invoked to produce the
equivalent behavior, we propose to model the whole forest
with a unique DEVS atomic model, which describes the fire
spread like reality. The paper is organized as follows: Section
2 gives a recall on DEVS M&S and Section 3 discusses our
proposal. Section 4 shows the object-oriented design of the
new model of forest fire spread. Finally, we conclude on this
work and we outline the perspectives.

II. DEVS PRINCIPLES

DEVS is one of the popular discrete event formalisms
proposed in 70’s by Zeigler [4]. The DEVS M&S framework
separates clearly modeling concerns from simulation ones.
In fact, DEVS abstract simulator is useful to produce the
behaviors of any model that respects the DEVS definitions.
On the other hand, DEVS models are reused and coupled

130Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

among them to make new DEVS models. Many research and
practicable works were realized around this formalism thanks
to its powerful expressiveness. This formalism has many
extensions: GDEVS [5], Cell-DEVS [6], etc. and applications
in different fields: forest fire spread, workflows, etc.

A. DEVS Atomic Formalism
According to the literature on DEVS [7], the specification

of a discrete event model is a structure, M, given by:
M = (X,S, Y, δint, δext, λ,D), where X is the set of the

external input events, S the set of the sequential states, Y the
set of the output events, δint is the internal transition function
which defines the state changes caused by internal events, δext
is the external transition function which specifies the state
changes due to external events, λ is the output function, and
the function D : S → R+ ∪ ∞ represents the maximum
length or the lifetime of a state. Thus, for a given state s,
D(s) represents the time during which the model will remain
in state s if no external event occurs.

B. DEVS Coupled Formalism
DEVS promotes modular modeling to reduce the

complexity of the system to describe. The DEVS coupled
strucutre allows to formalize the modeled system in a set of
inter-connected and reused components.
MC = (XMC , YMC , DMC ,Md|d∈D, EIC,EOC, IC, Select),
where
• XMC : set of external events.
• YMC : set of output events.
• DMC : set of components names.
• Md: DEVS model named d.
• EIC: External Input Coupling relations.
• EOC: External Output Coupling relations.
• IC: Internal Coupling relations.
• Select: defines a priority between simultaneous events

intended for different components.
This formalism is proved by the closure under coupling

property, which shows that a DEVS coupled model is a DEVS
atomic one. However, the formalism is less useful to describe
large-scale systems like cellular DEVS, etc. Although, it seems
possible at conceptual level, the corresponding computerized
model can not be coded or at least simulated on computer due
to the fact that the simulation needs a large heap memory. In
[8], the authors show that the closure under coupling can be
used to change the DEVS coupled model by its equivalent
DEVS atomic. Consequently, the heap memory is reduced
to the minimum to load the DEVS atomic model and its
simulator, which consists of a root-coordinator and a basic
simulator. However, the authors note that the transformation
from DEVS coupled to atomic is not conducted automatically
and intelligent modeling is recommended. This point consti-
tutes our main goal.

C. DEVS Simulator
The DEVS abstract simulator (see Fig. 1) consists of a

root-coordinator, which manages the simulation time, sub-
coordinators which dispatch messages according to the specific

couplings of the coupled model that attempt to simulate
and basic simulators related to atomic models. Each process
behaves according to the received messages from parent and
child processes.

Fig. 1. DEVS abstract hierarchical simulator.

The classic structure of DEVS simulator is a hierarchical
one, represented as a tree in which at top level is the root
followed by the sub-coordinators created from DEVS coupled
structure; then, at low level there are basic simulators related
directly to the corresponding DEVS atomic models in order
to execute the different functions δint, δext, λ and D. Fig. 1
illustrates this structure and messages transiting from a process
to another.

III. RELATED WORKS

Many scientific works discuss the forest fire spread and
propose models to anticipate the fire direction and calculate its
Rate of Spread (ROS). in [9], Weber noted that three categories
of such models are developed in the literature: statistical
and Markovian models, empirical models like Rothermal and
Albini models and Physical models, which consist on repro-
ducing the forest fire spread characteristics with law rules.
In the third category, the simulation constitutes an efficient
means for M&S of the forest fire behavior. Two paradigms
are very popular: Cellular Automata (CA) and Discrete Event
Simulation (DES). CA are dynamical models in which the
space of cells is a set of states and the time is an integer. The
cells are arranged in a two-dimensional space and their shape
is often square. Applying CA consists on spreading fire from
a burning cell to its neighbors using Moore or von Newman
neighborhood. Some works [10] used hexagonal cells to have
more realistic simulations. In the field of DES, [3], [11], [12]
used DEVS and its extensions Dynamic-Structure DEVS (DS-
DEVS), Cellular DEVS, etc. to model and simulate forest
fire spread. The main parameter in such models is the ROS,
which allows computing delays (times) to ignite neighbor cells
according to several cell parameters (fuel, slope, etc.) and
weather.

As an example, DEVS-Fire [3] allows to model and simulate
the spread and suppression of fire. It consists of three models:
Rothermal model to compute the ROS according to natural
parameters (wind, terrain, etc.), firefighting model to manage
and execute the planned strategy to suppress fire and the

131Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

forest fire spread model, which ignites unburned cells and
deletes burned ones or saved ones by firemen. The last model
is a DEVS coupled one, which describes the state of the
forest. It decomposes the forest into equal limited cells (areas)
according to two-dimensional space. Each cell is a DEVS
atomic model, which has eight neighbors (except those situated
on the boundaries) and all together form the forest. Each cell
influences its neighbors with events sent out and received via
ports, so an external modular coupling is involved. In order to
enhance DEVS-Fire performances, DS-DEVS is used to create
and delete cells dynamically. This adjustment is motivated by
the fact that only a few number of cells are active during the
simulation of fire spread. Consequently, for each simulation
cycle useless messages like igniting passive cells (burned and
noninflammable) cells are ignored and a reduced heap memory
is allocated only for active active cells; passive cells will not
be loaded. This main advantage is loosen when an important
number of cells are active for a simulation cycle (for more
details see [13], [14]).

The implementation of the DEVS cellular space of DEVS-
Fire following the previous description is known under the
modular approach in [15] and OnTime Schedule model in
[3]. The alternative implementation to the modular approach
is the partial-modular one [15] (pre Schedule model [3]). In
this implementation, the number of simulation cycles to ignite
neighbors of a burning cells is not eight cycles but only one
due to the fact that the burning cell sends out the delays
for which neighbors should ignite and not the event ignite.
Consequently, less messages are exchanged between cells and
simulation execution time is reduced.

However, these implementations are heavy by designing
forest cells with identical DEVS atomic models to get on
memory the cell state and to ignite neighbors on time or by
pre scheduling. In the next section, we propose a new model
for the forest fire spread based on DEVS.

IV. NEW DEVS MODEL FOR THE FOREST FIRE SPREAD

Designing each forest cell in DEVS-Fire with an atomic
model has the advantage that the approach remains modular.
Consequently, cells could be coupled with other DEVS mod-
els. However, the use of external couplings via DEVS coupled
leads to a large structure of simulation for cells which have the
same behaviors. Although, the model is based on a dynamic
structure in which only active cells are simulated; the model
is limited to simulate a small set of active cells at the same
time in order not to overload the heap memory and not to
spend time on creating and deleting active and passive cells
respectively in case of a large set of active cells.

A. Our Proposal

In our modeling of the forest fire spread, we model the
whole forest decomposed into cells with a unique DEVS
atomic model. Each cell is a state variable of this model,
holds a DEVS behavior and communicates with its neighbors
through an internal couplings. In fact, the communication
between cells is done directly inside the model, except events

which influence the outside of model. We can model the
natural parameters that influence the forest fire spread with
other DEVS models coupled with the forest cell model or
sensors which keep values from the real world or estimated
by the user to update the simulation parameters.

The literature distinguishes three classes of parameters
which set the ROS: vegetation type (caloric content, density,
etc.); fuel properties (vegetation) and environmental parame-
ters (wind speed, humidity and slope, etc.). The flaming fire
evolves mainly according to the direction of the wind, its
velocity and the relative humidity. The present model uses
two relevant baseline parameters: wind velocity and relative
humidity. The humidity influences the wild-land fire behavior
by increasing the risk factor. Low relative humidity is an
indicator of high fire danger. A dry and powerful wind,
associated with a dry ground, enormously increase the fire
spread.

Firstly, we identify two main categories of cells:
1) Nonflammable cell: can be a road, a surface of water or

just an empty surface. It is designed with a static model.
2) Inflammable cell: is each area from the forest that is

sensible to fire. According to its natural parameters and
when the event ignite occurs in the corresponding area,
the cell transients from the initial state unburned to
burning to represent consuming fire; after some duration
estimated from natural parameters, the cell goes to state
ember to show the fact that small glowing piece of coal
or wood in dying fire. Then, the cell reaches the state
burned, which is the final combustion process. At this
stage, the nonvolatile products and residue were formed
when matter is burned (see Fig. 2).

Fig. 2. DEVS behavior for inflammable cell.

Note that the difficulty of this model is the estimation of α
and β the lifetime of burning and ember states respectively.
In our case, they are functions of wind velocity, humidity, and
fuel area.

Other categories could be described, such as areas with
risks (houses, plants, etc.) and introduced them into our model.
Therefore, we should first describe the behavior of such areas
with DEVS and then, we plug them inside the forest cell
model.

B. Formal Model of the Forest Fire Spread

The model of the forest fire spread that we propose is a
DEVS atomic model, which collapses all cells inside one

132Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

model to model forests with large scale and to enhance
simulation performances. It is described as follows:
ForestF ireSpread = (X,Y, S, δext, δint, λ,D)

X = {(ignite, list), (wind, velocity), (humidity, value)}
list: the list of cells to ignite initially.
Y = Ø. There is no output event to send out.
S = Cell ×Wind×Humidity × Fuel
Cell is the set of cell areas represented in the two-

dimensional space. Each cell is identified by its position (line,
column) and typed according to two categories nonflammable
and inflammable mentioned above. Each cell keeps its cur-
rent state and according to external and internal events state
changes will occur to update the state of the concerning cell.
Note that each cell has eight neighbors except those situated
on the boundaries. Wind is a global parameter. We assume
that the wind is uniform for all cells. It can be supposed as
a constant or change over time. Wind is described with two
parameters direction(degree) and speed(km/h). We choose
this description to avoid the linguistic description for wind
direction (from north, south, etc.) and to get an exact value.
Humidity is also a global parameter that we suppose uniform
for all cells. Fuel is specific to each cell. It is used to compute
the times of burning and ember of the corresponding cell.

The functions δext(), δint() and D() are shown in Fig. 3.

δext(s, e,x)
c, c´, ca : Cell
if (x = ignite){

for each c ∈ ignitelist
sc = δext (sc, e, ignite)

}
if(x = Wind)

update Wind
if (x = Humidity)

update Humidity
recompute the lifetime for each active cell c

δint(s)
for each c ∈ Cell{

if (lifetime(c) = lifetime(Cell)){
if (burning(sc))

for each c´ ∈ neighbor(c)
sc′ = δext(sc′ , lifetime(Cell), ignite)

sc = δint(sc)
}
else

lifetime(c) = lifetime(c) - lifetime(Cell)
}

lifetime(s)
return min {lifetime(c) | c ∈ Cell}

Fig. 3. DEVS atomic model of forest fire spread

In this model, we assume there is a direct communication
between neighbor cells to exchange the events ignite. With
a modular modeling, when a cell ignites its neighbors (see
Fig. 4), it makes an internal state change to compute the output
through the function λ(), which sends out the event ignite for
all neighbors. Then, the execution of δext() of each neighbor

puts fire in those cells. In our non-modular modeling, when a
cell tries to ignite its neighbors through the autonomous state
change, the internal function δint() calls to δext() of each
neighbor cell to ignite it. Such a communication optimizes
the M&S structure and decreases the number of exchanged
messages between cells.

(a) time = t u.t (units of time) (b) time = t + α u.t

Fig. 4. Spreading of fire in the two dimensional plan using Moore neighbor-
hood.

1) Identification of Ignitable Neighbor Cells: knowing that
the wind direction impacts the spread fire and effectively not
all neighbor cells are ignited when some cells burn, we develop
a specific function to compute the potential neighbor cells
which will be ignited. In fact, from aerial view, the spread fire
takes the form of an ellipse according to the wind direction.
Consequently, a burning cell does not necessarily ignite its
eight neighbors necessarily but only some of them for a point
of time. We can remark a neighbor situated in the same wind
direction will be ignited unavoidably. However, a neighbor in
the opposite wind direction will have less chance to be ignited.
So, we can admit that the fire spread in neighbor cells follows
a sigmoid curve according to the neighbor position and wind
velocity (see Fig. 5).

Fig. 5. Neighboring curve according to wind direction and cell position.

2) Forest Mapping: In our approach, the fire is spread on
the forest map that the user chooses or defines graphically.
This map defines the cell positions and fuels. Each cell has
a fuel constant that the user attributes. A zero fuel for a cell
means that the cell is nonflammable. However, a non-zero fuel
for a cell means that the cell is inflammable; consequently, the
corresponding cell behaves according to the DEVS model in
Fig. 6.

133Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Fig. 6. Forest map with a river.

On this map, the user can identify cells with high risks to
compute the reaching time to such cells, using the simulation
of the forest fire spread.

C. Simulation of the Proposed Model

In DEVS, the simulation mechanism is well formalized. The
structure is made from the model to simulate. So, according
to the size of the model to simulate, a computation of the
needed heap memory could be estimated. In order to simulate
our forest fire spread model, only a basic simulator and a
connected root manager are needed to make simulations (see
Fig. 7); so, a small size of heap memory is useful to simulate
the proposed model.

Fig. 7. DEVS simulation structure for non-modular (atomic) model.

The root can interact with user data to update the data of the
model to simulate. The user can pause the simulation and then
modify any parameter of the model: map data, wind direction
and speed or put the fire in inflammable cells. Then, the user
re-runs the simulation at the paused time with the new data.

V. DESIGN AND IMPLEMENTATION OF THE PROPOSED
MODEL

We design the proposed forest fire spread model in the
object-oriented paradigm (see Fig. 8). Each cell is designed
with a class which holds the corresponding behavior. The
different cells are designed into classes NFlammable and

Inflammable to implement the two cell categories non-
flammable and inflammable, respectively. The uniform vari-
ables Wind and Humidity are sharable among all cell
classes.

Fig. 8. Class diagram of the forest fire spread model.

This static structure could be replaced by a dynamic one
in which we define two lists to hold active and passive cells
separately. The active cell list holds cells for which the current
state is active and the passive cell list holds cells for which
the current state is passive. Thus, a cell migrates from a list
to the other according to the cell lifetime. At the end, these
lists avoid to visit all cells, i.e., to browse all the cell space
to execute the internal state change δint(s) and computes the
lifetime of current state of the model only from the active
cells. Consequently, the run-time of the function lifetime(s)
will be reduced.

This design is extensible, it can integrate new cell cate-
gories with specific behaviors. The designer extends the class
Cell and describes the DEVS behavior of the new cell
class by implementing the interface DEVSModel. The class
Forest instanciates cell objects according to the saved map
description. The Forest object is a DEVS atomic model
that will interact with the simulator to produce behavior. Note
that the structure of this object is static, i.e., cell instances
created first will remain until the end of the simulation. In
addition, the class Forest notifies the graphical user class
ForestFrame about the state changes occurring in cell
objects in order to visualize the spread of fire on the chosen
map.

The simulation core jDEVSPattern is developed according
to the design proposed in [16] using DEVS simulation al-
gorithms [7] and Java language. Often, the use of standard
DEVS simulators certified by the community are well-suitable
like DEVSJava, CD++, etc., for which many applications were
modeled and simulated with success. However, we privilege
this simulator for the following reasons:

1) the design of the simulator is based on software en-
gineering design patterns. So, the software simulation
reuses existing, approved and well-known solutions.

2) the validation of the simulator through the simulation of
complex systems.

134Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

Fig. 9 shows the simulation of fire spread on the chosen
map seen on Fig. 6 at the end stage.

Fig. 9. Simulation of forest fire spread for a specific scenario.

In the above figure, we can note that zones enclosed by the
river are still unburned due to the fact that the fire can not
cross water area.

VI. SIMULATION RESULTS AND COMPARATIVE STUDY

A. Simulation of the forest fire spread model

In order to experiment the proposed model for the forest
fire spread and analyze the fire evolution, we execute two
simulations with the same kind of vegetation and different
wind speed. The wind direction is supposed blowing from
north to south (0◦). The forest square is 25 km2 designed with
cell space 1000x1000 cells and cell size 5mx5m. The simula-
tions are conducted on a personal computer with the following
characteristics: Windows XP professional, Intel Core(TM) 2
Duo CPU 3.0 GHz and 1.97 GB of RAM. The lifetime of
states burning and ember are estimated from a well-known
rule of firemen from the Mediterranean forests. They estimate
the ROS as 3% from wind speed. Consequently, for the two
expected scenarios in which the wind speeds are 3 km/h and
10 km/h, we deduce the following values of ROS: 0.025 m/s
and 0.083 m/s, respectively. Note that for the two scenarios
we ignite the cell situated in the middle (cell(500,500)).

In Fig. 10, we show the spread of forest fire at two stages
(1 hour and 3 hour) after event ignite. We can see clearly in
scenario 1 that the fire spreads slowly in case of a calm wind;
comparing to the scenario 2 in which the fire spreads quickly
causing an important burned area greater than in scenario 1.
In addition, the shape of fire in scenario 1 is a circle, lightly
flat from north side due to the fact that the wind blocks the
fire spread in north direction. In scenario 2, the shape of fire
has an ellipse one, with an oriented cone to south. In fact, this
cone is driven by the wind direction and its form (pointed or
large) depends on the wind speed.

The propagation rules of fire, that we use in the proposed
model, are different from Rothermal rules, and developed by

(a) time = 1 hour (b) time = 3 hour

(c) time = 1 hour (d) time = 3 hour

Fig. 10. Fire spread on GUI ForestFrame.

using our own skills. Unfortunately, it is difficult to validate
the forest fire spread model due to the lack of real data. An
issue, that we will explore, consists in using fuzzy logic to
well estimate the ROS according to firemen knowledge, and
to make easier the validation process.

B. Performance analysis

To analyze the time execution (second s) and resource allo-
cation (mega-byte MB) of our model, we re-conduct the sce-
nario 1 in which the simulation continues until there is no cell
to ignite and all burning cells change state to unburned using
different cell spaces 100x100, 200x200, 500x500, 1000x1000
and 2000x2000 cells. The cell (0, 0) is ignited initially.

TABLE I
EXECUTION TIME OF NON-, PARTIAL- AND MODULAR MODELS

Exec. Time (s) 100x100 200x200 500x500 1000x1000 2000x2000

non-modular 0.1 0.3 4.2 26.1 194.4

partial-modular 36.2 232.2 288.2 282.8 -

modular 154.6 1088.2 1320.5 1337.6 -

From Table I, we see that simulation of cell space size
less than 1000x1000 cells, the execution time takes some
few milliseconds. The enhanced simulation structure and the
optimized model avoid sending out and receiving messages
through ports and exchanged between the simulators and the
coordinator to ignite the neighbor cells. This fact, leads to a
minimum time CPU to execute the fire spread behavior. How-
ever, for the cell space size more than 1500x1500 cells, the

135Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

execution time of the corresponding simulation is important
(few seconds).

Comparing the execution times of partial-modular and mod-
ular approaches that were carried out on a laptop Toshiba
with Intel Celeron 1.6 GHz CPU, 1.2 GB of heap memory
and Windows XP operating system using DEVSJava version
3.0 and end simulation at tn = 11 hours (the given results
are extracted from [15]), our approach is still very efficient,
although our simulations are carried out on personal computer
well-equipped (Intel Core(TM) 2 Duo CPU 3.0). In fact,
the design of our model, which is based on a non-modular
approach and in which cells are modeled with state variables,
makes the main difference with the approaches that design
cells with atomic models.

The simulation of our model uses a small size of heap
memory, which increases essentially according to the size
of cell space (cell space with 1000x1000 cells consumes 44
MB). A dynamic structure could be used to design the cell
space instead of a static one by keeping temporary in memory
only active cells, in order to optimize the computations and to
manage efficiently the heap memory.

VII. CONCLUSION

In this paper, we privileged the non-modular approach to
model the forest fire spread using DEVS instead of partial-
modular and modular ones; so, we avoid in our modeling
the classical rule that consists on designing each cell with
an atomic model and we decide to incorporate it as a state
variable of the forest fire spread model. Note that this model
is designed using the object-oriented paradigm, which allows
to design this state variable with an object instance.

The simulation of the proposed model gives correct results
by analyzing the simple conducted scenarios. On the other
hand, simulation performances (execution time and heap mem-
ory) are more advantageous than those given by the modular
and partial-modular implementations of DEVS-Fire. In the
near future, we will compare our non-modular model with
other forest fire spread models and real fire cases in order to
validate the given results. The main difficulty will consist in
reproducing real fires for which it is difficult to collect accurate
data (fuels, landscape, wind direction, and wind speed) [17].

Currently, we are working to introduce fuzzy logic rules
of terrain (slope and aspect), weather and vegetation to im-
prove the computation of the ROS parameter which influences
mainly the behavior of fire and to solve the problem of
accurate data for modeling the input data of the simulation.
This will give more significant results and insights to firemen.

REFERENCES

[1] L. V. Bertalanffy, General System Theory. Dunod edition, 1973.
[2] P. A. Fishwick, Simulation model design and execution: building digital

worlds. Prentice hall, 1995.
[3] X. Hu, Y. Sun, and L. Ntaimo, “Devs-fire: Design and application

of formal discrete event wildfire spread and suppression models,”
Simulation: Transactions of the Society for Modeling and Simulation
International, vol. 88, no. 3, March 2012, pp. 259–279.

[4] B. P. Zeigler, Theory of Modeling and Simulation. Wiley&Son, 1976.

[5] N. Giambiasi, B. Escudé, and S. Ghosh, “Gdevs: A generalized dis-
crete event specification for accurate modeling of dynamic systems,”
Simulation: Transactions of the Society for Modeling and Simulation
International, vol. 17, no. 3, September 2000, pp. 120–134.

[6] G. Wainer and N. Giambiasi, “Application of the cell-devs paradigm
for cell spaces modelling and simulation,” Simulation: Transactions of
the Society for Modeling and Simulation International, vol. 76, no. 1,
January 2001, pp. 22–39.

[7] B. P. Zeigler, H. Praehofer, and T. G. Kim, Theory of Modeling and
Simulation. Academic Press, 2000.

[8] F. A. Shiginah and B. P. Zeigler, “A new cell space devs specification:
Revewing the parallel devs formalism seeking fast cell space simula-
tions,” Simulation Modelling Practice and Theory, vol. 19, no. 5, May
2011, pp. 1267–1279.

[9] R. O. Weber, “Modelling fire spread through fuel beds,” Progress in
Energy and Combustion Science, vol. 17, no. 1, 1991, pp. 67–82.

[10] L. Hernandez Encinas, S. Hoya White, A. Martin del Rey, and G. Ro-
driguez Sanchez, “Modelling forest fire spread using hexagonal cellular
automata,” Applied Mathematical Modelling, vol. 31, no. 6, June 2007,
pp. 1213–1227.

[11] A. Muzy, J. J. Nutaro, B. P. Zeigler, and P. Coquillard, “Modeling and
simulation of fire spreading through the activity tracking paradigm,”
Ecological Modelling, vol. 219, no. 1–2, November 2008, pp. 212–225.

[12] B. Nader, J. B. Filippi, and P. A. Bisgambiglia, “An experimental frame
for the simulation of forest fire spread,” in Proceedings of the 2011
Winter Simulation Conference, December 2011, pp. 1010–1022.

[13] Y. Sun and X. Hu, “Performance measurement of devs dynamic structure
on forest fire spread simulation,” in Proceedings of the AI, Simulation
and Planning in High Autonomy Systems (AIS 2007), February 2007,
pp. 75–80.

[14] ——, “Performance measurement of dynamic structure devs for large-
scale cellular space models,” Simulation: Transactions of the Society for
Modeling and Simulation International, vol. 85, no. 5, May 2009, pp.
335–351.

[15] ——, “Partial-modular devs for improving performance of cellular
space wildfire spread simulation,” in Proceedings of the 2008 Winter
Simulation Conference, December 2008, pp. 1038–1046.

[16] M. Hamri and L. Baati, “On using design patterns for devs modeling
and simulation tools,” in Proceedings of the 2010 Spring Simulation
Multiconference-Symposium Theory of Modeling Simulation-DEVS
Integrative MS symposium, April 2010, doi:10.1145/1878537.1878664.

[17] F. Gu, X. Hu, and L. Ntaimo, “Towards validation of devs-fire wild-
fire simulation model,” in Proceedings of the 2008 Spring simulation
multiconference, April 2008, pp. 355–361.

136Copyright (c) IARIA, 2013. ISBN: 978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation

