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    Abstract - Prediction-based distributed parallel event-driven 
hardware description language simulation on multi-core 
computing platforms is a new promising approach to boost 
simulation performance. Traditional distributed parallel event-
driven simulation methods suffer heavy synchronization and 
communication overhead for transferring the signal data among 
local simulators, which could easily nullify most of the expected 
simulation speed-up from parallelization. In our approach, the 
signal data to be transferred is predicted first in each local 
simulation independently. No synchronization and 
communication incurs when the prediction succeeds, and the 
actual signal data transfer with synchronization and 
communication among the local simulators occurs only when the 
prediction fails. Therefore, as far as prediction accuracy remains 
high, the high simulation speed-up from the parallelization can 
be anticipated from the approach. In this paper, we have 
proposed the prediction-based distributed parallel event-driven 
timing simulation for a series of design changes in typical ECO 
flow. We also have performed the preliminary experimentation 
in actual design changes, obtained high prediction accuracy with 
real designs from industry and achieved significant speed-up gain 
from the proposed parallelization.  

Keywords—distributed parallel simulation; synchronization; 
communication; partitioning; simulator; simulation; verification; 
EDA 

I. INTRODUCTION 
 
Simulation has still remained the most popular verification 

method in chip designs because of ease of use, low cost, 100% 
signal controllability and observability, etc. Specifically, event-
driven Hardware Description Language (HDL) simulation is 
the most common technique used for functional and timing 
simulations [1]. However, event-driven simulation suffers from 
very low performance for complex design objects because of 
its inherently sequential nature. In chip designs, this has gotten 
much worse in gate-level simulation than Register Transfer 
Level (RTL) simulation because the number of simulation 
objects to be dealt with is much larger at gate-level than at RTL. 
But, the use of gate-level functional or timing simulation is still 
quite active and even increasing nowadays for many important 
reasons [16][17]. Some of them include verification 
requirement for designs having many asynchronous clocks, 
limitation of static functional and timing verification methods 
such as equivalence checking and static timing analysis, 
variability of deep sub-micron processing technology, etc. 

Therefore, event-driven HDL simulation is heavily used for 
both functional and timing verification. Usually, once the bug 
is found and fixed after a simulation run, another new 
simulation run is required with a new HDL code or netlist to 
ensure that the bug is correctly removed and no new bug is 
accidently brought. This process is iterated until the designers 
or verification engineers believe no more bugs exist in the 
design. In this sense, simulation in the design flow is a highly 
repeated process before and after a series of continuous design 
changes. 

 
Distributed parallel event-driven HDL simulation has been 

proposed to alleviate the low performance of sequential 
simulation [2][3][4]. Unfortunately, it has been not successful 
because of: i) difficulty in design partitioning; ii) heavy 
synchronization and communication overhead among modules 
imposed by the distributed environment, especially in gate-
level timing simulation; and iii) load balancing among the 
distributed simulation jobs. 

     
This paper consists of following; first we briefly mention 

the previous work and motivation in Section II, and explain our 
unique and noble approach to distributed parallel simulation in 
Section III. In next main section, we propose the prediction-
based distributed parallel event-driven timing simulation for a 
series of design changes in the typical ECO (Engineering 
Change Order) flow, and claim that the performance of gate-
level timing simulation could be greatly improved from the 
proposed approach. In Section V, we have performed some 
preliminary experiments with real SOC (System On Chip) 
designs from industry for demonstrating the expected benefit, 
followed by the conclusion and future work in Section VI.   

  

II. PREVIOUS WORK AND MOTIVATION 
 
The area of distributed parallel simulation is rich in 

literature. All known works concern traditional distributed 
parallel simulation, which is based on physical partitioning of 
the design into multiple sub-designs, assigned to individual 
local simulators. This simulation concept has been known 
since late 1980s as Parallel Discrete Event Simulation (PDES) 
[9]. The main issues in PDES are partitioning, synchronization 
and granularity. There are basically two types of 
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synchronization methods in distributed parallel simulation: 
conservative (lockstep based) and optimistic (rollback based).  
These two types differ in the way modules of the partitioned 
design communicate during simulation for synchronization. 
Their performance varies with the design and partition 
strategy, but usually the optimistic method is faster 
[9][10][11][12]. Most recently, Chatterjee [13] and Zhu [14] 
proposed the distributed parallel event-driven gate level 
simulation using general purpose GPUs (Graphic Processing 
Units). However, it could only handle gate level zero-delay 
simulation. It is known that it is not effective for the gate level 
timing simulation [15]. In conclusion, these methods are not 
practical, do not scale, and have performances depending 
heavily on optimal partitioning [18]. 
 

Recently, some Electronic Design Automation (EDA) 
vendors have introduced parallel event-driven HDL simulators 
for multi-cores [5][6][7][8]. Parallel HDL simulation with 
multi-core technology looks more promising than the original 
distributed parallel HDL simulation. In multi-core parallel 
simulation, (inter-module) communication can be 
accomplished by a straightforward fast memory read/write. 
However, the expected speed-up was observed only for a 
special class of designs, such as BIST (Built in Self Test) logic 
just for gate-level zero-delay simulation, and the speed-up 
curve quickly saturates with the number of available cores. 
The problem becomes particularly difficult for large number 
of cores, which quickly increases the global communication 
and synchronization overhead among partitioned sub-designs. 
It mainly comes from the fact that the difficulty of partitioning 
for distributed parallel simulation lies in simultaneously 
considering the reduction of the synchronization and 
communication overhead and load balancing among 
distributed simulation jobs. Due to the huge design size, much 
heavier synchronization and communication overhead, etc., 
the problem even gets much worse for gate-level timing 
simulation, where the stronger demand for high simulation 
performance exists, but its speed is even slower than that of 
gate-level zero-delay simulation at least by one order of 
magnitude.  

 
In summary, the success of traditional distributed parallel 

event-driven simulation on multi-core strongly depends on 
such “ideal” partitioning, which itself is a known intractable 
problem and therefore is impossible to apply to complex 
industrial large designs [18]. This is the main reason that 
multi-core parallel event-driven HDL simulators are not 
popular in the design community these days although there 
has been a great demand for increasing gate-level simulation 
performance on multi-core platforms.   

 

III. PREDICTION-BASED DISTRIBUTED PARALLEL EVENT-
DRIVEN HDL SIMULATION  

 
Yang [3][4] had proposed a new promising approach to 

boost up the simulation performance, prediction-based 

distributed parallel event-driven HDL simulation on multi-
core computing platforms. This approach is based on 
predicting input and output stimulus that need to be applied to 
module(s) in each local simulation (We will call each of 
individual simulation in distributed parallel simulation local 
simulation). How to accurately predict input and output values 
is explained in the next section.  
 

The predicted input values are stored in local memory and 
applied to the input ports of a local module assigned to a given 
simulator.  Then, the actual output values at the output ports of 
that module are compared on-the-fly with the predicted output 
values, also stored in a local memory. Figure 1 shows an 
example design consisting of two modules dependent on each 
other inputs. Simulating the modules in parallel requires 
predicting inputs for each of the two sub-modules.  

 
 

 

 

Figure 1: An example design with two dependent sub-modules 

Figure 2 shows two sub-modules being simulated in 
parallel on two cores. Each sub-module uses predicted inputs 
by default, while its actual outputs are compared against the 
predicted outputs (stored earlier in local memory). A 
multiplexer at each sub-module selects between the predicted 
inputs and the actual inputs. Note that, when both sub-
modules access their actual inputs from the other sub-module,  
synchronization and communication overhead incurs. 
 

 
 
 

  
 
 
 
 
 
 
 
 

Figure 2: Conceptual diagram of prediction-based distributed parallel event-
driven HDL simulation 

 
As long as the prediction is correct, communication and 

synchronization between two local simulations is completely 
eliminated. We call this phase of simulation the prediction 
phase. Only when the prediction fails, the actual input values, 
coming from the other local simulation, are used in simulation; 
we call this phase of simulation the actual phase. When 
prediction fails, each local simulation must roll back to the 
nearest checkpoint and is restarted from that point. This is 
possible by generating checkpoint, i.e., saving simulation state 
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or design state, during the simulation in the prediction phase. 
Note that, when parallel simulation enters the actual phase, it 
should try to return to the prediction phase as early as possible 
to attain the maximum speed-up. This is done by continuously 
comparing the actual outputs of all local simulations with their 
predicted outputs and counting the number of matches on-the-
fly. If the number of matches exceeds a predetermined value, 
the simulation is switched back to the prediction phase. 
Therefore, it is obvious that prediction accuracy is the most 
critical factor in this approach. Prediction accuracy near 100% 
will give almost linear speed-up even when the number of 
processor cores increases. 

 

IV. PREDICTION-BASED DISTRIBUTED PARALLEL EVENT-
DRIVEN TIMING SIMULATION FOR ECO DESIGN CHANGES  
 
As being mentioned in the previous section, having an 

accurate prediction data is imperative in the prediction-based 
distributed parallel event-driven HDL simulation. In [3], Yang 
had proposed one way to obtain the accurate prediction data, 
i.e., from the earlier simulation with the higher abstraction 
model. For example, if the prediction-based distributed 
parallel simulation is for gate-level simulation with a gate-
level netlist, the prediction data could be gathered from the 
earlier RTL functional simulation with the higher abstraction 
model, i.e., Verilog RTL design, from which the netlist is 
going to be synthesized. 

 
In this paper, we propose another way to obtain the 

accurate prediction data in the design flow. When we apply 
this prediction-based distributed parallel timing simulation at 
gate level for verifying design changes in ECO flow, our idea 
is to get it from signal dump from the earlier simulation before 
design change. For example, for doing the distributed parallel 
simulation with the example design in Figure 1 on two cores, 
all input and output ports of two sub-modules M1 and M2 are 
registered for signal dump. While simulating the design before 
design change, signal dumping is performed for those input 
and output ports of sub-module M1 and M2, and saved as the 
prediction data for later simulation after design change. Let’s 
assume that a bug in sub-module M1 is revealed from the 1st 
simulation, and its HDL source or netlist is modified for fixing 
it. Then, prediction-based distributed parallel timing 
simulation deployed for the 2nd simulation after design change 
will use this saved signal dump on the input and output ports 
of sub-modules M1 and M2 as the prediction data. 

 
As mentioned earlier, simulation is the highly iterated 

activities before and after a series of continuous design changes 
in the entire design phase. The application of distributed 
parallel HDL timing simulation to verify design changes in 
ECO flow could result in a profound benefit for reducing the 
total simulation time of all simulation runs, due to this 
repeating nature. Again, the key factor for boosting the 
simulation performance from the prediction-based distributed 
parallel simulation is the prediction accuracy. Intuitively, 

higher prediction accuracy for the prediction-based distributed 
parallel simulation in ECO flow is expected from less design 
change. For example, very high prediction accuracy could be 
expected from timing-only variant design changes keeping 
same functionality. But, there are other factors to consider. 
First, although there is a design change inside a module, it may 
only internally affect the module, but not at its output port and 
beyond. In other words, the effect of the change could not be 
propagated to any of its output port. If this is the case, the 
prediction accuracy of signal dump from the simulation before 
design change is 100%. This is the best scenario for prediction-
based distributed parallel simulation. Second, a design change 
inside a module could affect any of its output port, but not its 
input port. This is the case when there is no feedback 
connection from its output to its input, possibly through some 
other module(s), gates(s), etc. For this case, the prediction 
accuracy of input signal dump from the simulation before a 
design change is still 100%. But that of output signal dump is 
not 100%. Third, a design change inside a module could affect 
both its output and input port, when there is some feedback 
connection from its output to its input. For this, the prediction 
accuracy of signal dump from the simulation before design 
change is not 100%. This might be the worst scenario, and its 
prediction accuracy cannot be 100%. But, if its accuracy is still 
high, we could achieve the substantial speed-up from the 
distributed parallel simulation.  

 
Most design change(s) in ECO flow at the back-end design 

stage seldom changes the functional behavior of the 
corresponding sub-module globally in the entire simulation 
scenario. In fact, many ECO design changes are adjustments 
only for timing, e.g. buffer substitution, insertion, or removal, 
functionally equivalent but timing different cell substitution, 
cell re-placement, re-routing, etc. All of these ECO design 
change examples do not alter the functional behavior at all. 
Therefore, we intuitively know that the prediction accuracy 
for prediction-based distributed parallel event-driven timing 
simulation could be quite high in typical ECO flow. 

 
Besides reducing communication and synchronization 

overhead, another important factor to consider in distributed 
parallel simulation is load balancing. In fact, significant speed-
up from distributed parallel simulation is only possible by 
satisfying these two conditions simultaneously. Another 
benefit of applying the prediction-based distributed parallel 
event-driven timing simulation for ECO design changes is that 
a good load balancing could be easily known from a 
simulation run before design change. That is, while the 
prediction data is being collected during the simulation run 
before design change, the simulation load profiling for major 
design sub-blocks in design is also carried out. In this case, the 
prediction data being collected is the signal dump of all input 
and output ports of those major design sub-blocks. 

 
As any ECO design change, especially timing variant but 

function invariant design change seldom or never alter the 
simulation behavior drastically. The simulation load profiles 
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before and after design change should be pretty much the 
same. Therefore, as the simulation load of a new simulation 
run after design change could also be accurately predicted 
from that of the simulation run before design change, a good 
load balancing as well as the low communication and 
synchronization overhead could be anticipated from the 
prediction-based distributed parallel event-driven timing 
simulation in ECO flow. 

 
In series of successive ECO design changes, all remaining 

simulation runs except the 1st simulation run can utilize the 
signal dump of all input and output ports of the major design 
sub-blocks as the accurate prediction data for prediction-based 
distributed parallel simulation. To execute the 1st gate-level 
timing simulation run also in parallel fashion, the prediction 
data could be brought from the gate-level functional 
simulation, i.e. gate-level zero-delay simulation. Therefore, 
the entire timing simulation runs in ECO flow could be run in 
parallel, and we could expect that the total simulation time for 
entire ECO design changes is greatly reduced.      
 

In the next section, we have performed some preliminary 
experiment to justify our claims with real designs from 
industry.  

 

V. PRELIMINARY EXPERIMENTATION 
 
In this section, we provide some interesting preliminary 

experimental results for measuring the prediction accuracy and 
estimated speed-up from the proposed approach in ECO design 
change with real industrial designs. The ECO design changes 
are confined to timing variant but functional invariant. The 
Verilog simulator we used for the experiment is one of leading 
commercial Verilog simulators. The first test design in Table I 
is a BIST design. Here, a design change is a cell replacement 
for adjusting the timing while keeping the original functionality. 

 
For parallel simulation, the design is partitioned into 5 

pieces according to the simulation activities. To do this, the 
profiling feature in the commercial Verilog simulator had been 
used. 

 
First, we have measured the prediction accuracy from the 

ECO design change. The measuring procedure is the following; 
i) while running the simulation before the corresponding ECO 
design change with an original design, the prediction data is 
collected by dumping the signal values on all input and output 
ports of all modules at the partition boundary, ii) the ECO 
design change is performed, iii) while running the simulation 
after the corresponding ECO design change with a modified 
design, the actual data is collected by dumping the signal 
values on all input and output ports of same modules at the 
partition boundary, and iv) comparing the prediction data with 
the actual data. Note that this comparison should be event-by-
event basis. The resulting prediction accuracy in this case is 
99.9%. This means that during 99.9 % of the total simulation 

time each local simulation can be run independently without 
incurring any communication and synchronization. The 
communication and synchronization among five local 
simulations is required only for 0.1 % of the total simulation 
time. Other additional factors to be considered are checkpoint 
overhead, and rollback and restart overhead. In this design, 
only a single rollback is needed. By considering all these, the 
expected speed-up from the proposed method in the specific 
ECO design change is 5.12. It is pretty surprising and almost 
too good to believe. 

 
TABLE I. EXPERIMENTAL RESULT 1 

 
Design Name Prediction 

Accuracy 
(%) 

# of 
Partitions 

Expected Speed-
up from the 

proposed method 
BIST 99.9 5 5.12 

 
At first glance, it seems this 5.12x speed-up is by no means 

possible from any distributed parallel simulation with 5 
partitions. This is true for any traditional distributed parallel 
simulation methods that always require communication and 
synchronization during the entire simulation time. Then, how 
about for the proposed prediction-based distributed parallel 
simulation method? The answer is it is possible. The reason is 
the following. When each local simulation is run independently 
in the prediction mode, it is possible that even the speed of the 
slowest local simulation is greater than (the speed of the non-
parallel original simulation)/(# of partitions). In this design, 
the non-parallel original (single core) gate-level timing 
simulation takes 10,916 sec (wall clock time). In the proposed 
prediction-based distributed parallel simulation, the slowest 
local simulation running in the prediction mode only takes 
2,130 sec., which is shorter than a fifth of 10,916 sec. We think 
this comes from the fact that the smaller design avoids virtual 
memory trashing, which leads to low CPU utilization and 
degrades the system performance. Note that the unavoidable 
heavy communication and synchronization nullify this 
potential benefit in the traditional distributed parallel 
simulation. We believe that this is a very interesting and 
important finding that largely differentiates the proposed 
approach from others.  

 
TABLE II. EXPERIMENTAL RESULT 2 

 
Design Name Prediction 

Accuracy 
(%) 

# of 
Partitions 

Expected Speed-
up from the 

proposed method 
Mobile AP 99.6 8 Not Available 

 
The second test design is a state of art mobile Application 

Processor (AP) design from the industry. Again, a design 
change is a cell replacement for adjusting the timing while 
keeping the original functionality. For parallel simulation, the 
design is partitioned into 8 pieces according to the simulation 
activities. However, due to the security reason, unfortunately 
we have only measured the prediction accuracy from the ECO 
design change for the second design. It is shown in Table II. 

172Copyright (c) IARIA, 2013.     ISBN:  978-1-61208-308-7

SIMUL 2013 : The Fifth International Conference on Advances in System Simulation



Like the first design, the very high prediction accuracy has 
been observed for the second design, too.  

 
From the experiment with two real designs from the 

industry, we strongly believe that our prediction-based 
distributed parallel HDL simulation is very effective for 
boosting the simulation performance at least for timing-only 
variant ECO design changes.   
 

VI. CONCLUSION AND FUTURE WORK 
 
HDL simulation is a very iterated process before and after a 

series of design changes. Prediction-based distributed parallel 
HDL simulation is a new promising approach to parallelize the 
simulation. Its effectiveness heavily relies on the prediction 
accuracy. As near 100% accuracy can eliminate most of 
synchronization and communication overhead, the speed of 
parallel simulation could significantly be increased. In this 
paper, we have applied the prediction-based distributed parallel 
event-driven HDL timing simulation for ECO design changes 
in chip designs. 

 
We have experimentally shown that in the timing-only 

variant design changes the accurate prediction data for the 
distributed parallel simulation after design change could be 
obtained from the earlier simulation before design change, and 
contribute to the large decrease of communication and 
synchronization overhead. Therefore, almost linear speed-up 
from the parallelization could be anticipated. In the future, we 
would like to extend the application scope of this approach to 
the function variant design changes as well as timing-only 
variant design changes. Our final goal is to implement the 
prediction-based distributed parallel event-driven HDL 
simulation method on commercial Verilog simulators, and it is 
under investigation.  
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