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Abstract—Since computers and software have spread into all 

fields of industry, extensive efforts are currently made in order 

to improve the safety by applying certain numerical solutions. 

For many engineering problems involving shock and impact, 

there is no single ideal numerical method that can reproduce 

the various regimes of a problem. An approach wherein 

different techniques may be applied within a single numerical 

analysis can provide the “best” solution in terms of accuracy 

and efficiency. This paper presents a set of numerical 

simulations of ballistic tests which analyze the effects of soda 

lime glass laminates. The goal is to find an appropriate solver 

technique for simulating brittle materials and thereby improve 

bullet-proof glass to meet current challenges. To have the 

correct material model available is not enough. In this work, 

the main solver technologies are compared to create a perfect 

simulation model for soda lime glass laminates. The calculation 

should match ballistic trials and be used as the basis for 

further studies. These numerical simulations are performed 

with the nonlinear dynamic analysis computer code ANSYS 

AUTODYN. 

Keywords-solver technologies; simulation models; brittle 

materials; optimization; armor systems. 

I. INTRODUCTION  

In the security sector, the partly insufficient safety of 
people and equipment due to failure of industrial 
components are ongoing problems that cause great concern. 
Since computers and software have spread into all fields of 
industry, extensive efforts are currently made in order to 
improve the safety by applying certain computer-based 
solutions. To deal with problems involving the release of a 
large amount of energy over a very short period of time, e.g., 
explosions and impacts, there are three approaches: As the 
problems are highly non-linear and require information 
regarding material behavior at ultra-high loading rates which 
is generally not available, most of the work is experimental 
and may cause tremendous expenses. Analytical approaches 
are possible if the geometries involved are relatively simple 
and if the loading can be described through boundary 
conditions, initial conditions, or a combination of the two. 
Numerical solutions are far more general in scope and 
remove any difficulties associated with geometry [1].  

For structures under shock and impact loading, numerical 
simulations have proven to be extremely useful. They 

provide a rapid and less expensive way to evaluate new 
design ideas. Numerical simulations can supply quantitative 
and accurate details of stress, strain, and deformation fields 
that would be very costly or difficult to reproduce 
experimentally. In these numerical simulations, the partial 
differential equations governing the basic physics principles 
of conservation of mass, momentum, and energy are 
employed. The equations to be solved are time-dependent 
and nonlinear in nature. These equations, together with 
constitutive models describing material behavior and a set of 
initial and boundary conditions, define the complete system 
for shock and impact simulations. 

The governing partial differential equations need to be 
solved in both time and space domains. The solution over the 
time domain can be achieved by an explicit method. In the 
explicit method, the solution at a given point in time is 
expressed as a function of the system variables and 
parameters, with no requirements for stiffness and mass 
matrices. Thus, the computing time at each time step is low 
but may require numerous time steps for a complete solution.  

The solution for the space domain can be obtained 
utilizing different spatial discretizations, such as Lagrange 
[2], Euler [3], Arbitrary Lagrange Euler (ALE) [4], or mesh 
free methods [5]. Each of these techniques has its unique 
capabilities, but also limitations. Usually, there is not a single 
technique that can cope with all the regimes of a problem [6]. 

This work will focus on brittle materials and transparent 
armor (consisting of several layers of soda lime float glass 
bonded to a layer of polycarbonate to produce a glass 
laminate). Using a computer-aided design (CAD) neutral 
environment that supports direct, bidirectional and 
associative interfaces with CAD systems, the geometry can 
be optimized successively. Native CAD geometry can be 
used directly, without translation to IGES or other 
intermediate geometry formats [7].  

The work will also provide a brief overview of ballistic 
tests to offer some basic knowledge of the subject, serving as 
a basis for the comparison and verification of the simulation 
results. Details of ballistic trials on transparent armor 
systems are presented. Here, even the crack formation must 
precisely match later simulations. It was possible to observe 
crack motion and to accurately measure crack velocities in 
glass laminates. The measured crack velocity is a 
complicated function of stress and of water vapor 
concentration in the environment [8]. 

236Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

mailto:ramezani@hsu-hh.de


The objective of this work is to compare current solver 
technologies to find the most suitable simulation model for 
brittle materials. Lagrange, Euler, ALE, and “mesh free” 
methods, as well as coupled combinations of these methods, 
are described and applied to a bullet-proof glass laminate 
structure impacted by a projectile. 

The results shall be used to improve the safety of ballistic 
glasses. Instead of running expensive trials, numerical 
simulations should be applied to identify vulnerabilities of 
structures. Contrary to the experimental results, numerical 
methods allow easy and comprehensive studying of all 
mechanical parameters. Modeling will also help to 
understand how the transparent armor schemes behave 
during impact and how the failure processes can be 
controlled to our advantage. By progressively changing the 
composition of several layers and the material thickness, the 
transparent armor will be optimized.  

After a brief introduction and description of the different 
methods of space discretization, there is a short section on 
ballistic trials, where the experimental set-up is depicted. The 
last section describes the numerical simulations. These 
paragraphs of analysis are followed by a conclusion.  

II. STATE-OF-THE-ART 

First approaches for optimization were already developed 
in 1999. Mike Richards, Richard Clegg, and Sarah Howlett 
investigated the behavior of glass laminates in various 
configurations at a constant total thickness [9]. Resulting 
from the experimental studies, numerical simulations were 
created and adjusted to the experimental results using 2D-
Lagrange elements only.  

Pyttel, Liebertz and Cai explore the behavior of glass 
upon impact with three-dimensional Lagrange elements [10]. 
In 2011, these studies were used to analyze crash behavior. 

In the same year, Zang and Wang dealt with the impact 
behavior on glass panels in the automotive sector [11]. In 
doing so, self-developed methods of numerical simulation 
were supposed to be compared with commercial codes. For 
the first time, mesh-free methods were applied, although 
these were not coupled with other solver technologies. 

In this study, different methods for the simulation of 
safety glass will be introduced. In so doing, the possibility of 
coupling various solver technologies will be discussed and 
illustrated by means of an example. For the first time, glass 
laminates will be modeled using coupled methods. 
Techniques previously applied, show considerable 
shortcomings in portraying the crack and error propagation 
in the glass. Mesh-free approaches, in turn, do not correctly 
present the behavior of synthetic materials. To overcome the 
shortcomings of these single-method approaches, this paper 
will present an optimal solution to the problem by combining 
two methods.  

III. METHODS OF SPACE DISCRETIZATION 

The spatial discretization is performed by representing 
the fields and structures of the problem using computational 
points in space, usually connected with each other through 
computational grids. Generally, the following applies: the 
finer the grid, the more accurate the solution. For problems 

of dynamic fluid-structure interaction and impact, there 
typically is no single best numerical method which is 
applicable to all parts of a problem. Techniques to couple 
types of numerical solvers in a single simulation can allow 
the use of the most appropriate solver for each domain of the 
problem [12]. The most commonly used spatial 
discretization methods are Lagrange, Euler, ALE (a mixture 
of Lagrange and Euler), and mesh-free methods, such as 
Smooth Particles Hydrodynamics (SPH) [13].  

A. Lagrange 

The Lagrange method of space discretization uses a mesh 
that moves and distorts with the material it models as a result 
of forces from neighboring elements (meshes are imbedded 
in material). There is no grid required for the external space, 
as the conservation of mass is automatically satisfied and 
material boundaries are clearly defined. This is the most 
efficient solution methodology with an accurate pressure 
history definition. The Lagrange method is most appropriate 
for representing solids, such as structures and projectiles. If 
however, there is too much deformation of any element, it 
results in a very slowly advancing solution and is usually 
terminated because the smallest dimension of an element 
results in a time step that is below the threshold level.  

B. Euler 

The Euler (multi-material) solver utilizes a fixed mesh, 
allowing materials to flow (advect) from one element to the 
next (meshes are fixed in space). Therefore, an external 
space needs to be modeled. Due to the fixed grid, the Euler 
method avoids problems of mesh distortion and tangling that 
are prevalent in Lagrange simulations with large flows. The 
Euler solver is very well-suited for problems involving 
extreme material movement, such as fluids and gases. To 
describe solid behavior, additional calculations are required 
to transport the solid stress tensor and the history of the 
material through the grid. Euler is generally more 
computationally intensive than Lagrange and requires a 
higher resolution (smaller elements) to accurately capture 
sharp pressure peaks that often occur with shock waves.  

C. ALE  

The ALE method of space discretization is a hybrid of 
the Lagrange and Euler methods. It allows redefining the 
grid continuously in arbitrary and predefined ways as the 
calculation proceeds, which effectively provides a 
continuous rezoning facility. Various predefined grid 
motions can be specified, such as free (Lagrange), fixed 
(Euler), equipotential, equal spacing, and others. The ALE 
method can model solids as well as liquids. The advantage of 
ALE is the ability to reduce and sometimes eliminate 
difficulties caused by severe mesh distortions encountered by 
the Lagrange method, thus allowing a calculation to continue 
efficiently. However, compared to Lagrange, an additional 
computational step of rezoning is employed to move the grid 
and remap the solution onto a new grid [6].  
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D. SPH 

The mesh-free Lagrangian method of space discretization 
(or SPH method) is a particle-based solver and was initially 
used in astrophysics. The particles are imbedded in material 
and they are not only interacting mass points but also 
interpolation points used to calculate the value of physical 
variables based on the data from neighboring SPH particles, 
scaled by a weighting function. Because there is no grid 
defined, distortion and tangling problems are avoided as 
well. Compared to the Euler method, material boundaries 
and interfaces in the SPH are rather well defined and 
material separation is naturally handled. Therefore, the SPH 
solver is ideally suited for certain types of problems with 
extensive material damage and separation, such as cracking. 
This type of response often occurs with brittle materials and 
hypervelocity impacts. However, mesh-free methods, such as 
Smooth Particles Hydrodynamics, can be less efficient than 
mesh-based Lagrangian methods with comparable 
resolution. 

Figure 1 gives a short overview of the solver 
technologies mentioned above. The crucial factor is the grid 
that causes different outcomes.  

The behavior (deflection) of the simple elements is well-
known and may be calculated and analyzed using simple 
equations called shape functions. By applying coupling 
conditions between the elements at their nodes, the overall 
stiffness of the structure may be built up and the 
deflection/distortion of any node – and subsequently of the 
whole structure – can be calculated approximately [15].  

Due to the fact that all engineering simulations are based 
on geometry to represent the design, the target and all its 
components are simulated as CAD models [16]. Therefore, 
several runs are necessary: from modeling to calculation to 
the evaluation and subsequent improvement of the model 
(see Figure 2). 

The most important steps during an FE analysis are the 
evaluation and interpretation of the outcomes followed by 
suitable modifications of the model. For that reason, ballistic 
trials are necessary to validate the simulation results. They 
can be used as the basis of an iterative optimization process.  

IV. BALLISTIC TRIALS 

Ballistics is an essential component for the evaluation of 
our results. Here, terminal ballistics is the most important 
sub-field. It describes the interaction of a projectile with its 
target. Terminal ballistics is relevant for both small and large 
caliber projectiles. The task is to analyze and evaluate the 
impact and its various modes of action. This will provide 
information on the effect of the projectile and the extinction 
risk.  

In order to develop a numerical model, a ballistic test 
program is necessary. The ballistic trials are thoroughly 
documented and analyzed – even fragments must be 
collected. They provide information about the used armor 
and the projectile behavior after fire which must be 
consistent with the simulation results. 

 
Figure 1.  Examples of Lagrange, Euler, ALE, and SPH simulations on an 

impact problem [14]. 

In order to create a data set for the numerical simulations, 
several experiments have to be performed. Ballistic tests are 
recorded with high-speed videos and analyzed afterwards. 
The experimental set-up is shown in Figure 3. Testing was 
undertaken at an indoor ballistic testing facility. The target 
stand provides support behind the target on all four sides. 
Every ballistic test program includes several trials with 
different glass laminates. The set-up has to remain 
unchanged.  

The camera system is a pco.dimax that enables fast image 
rates of 1279 frames per second (fps) at full resolution of 
2016 x 2016 pixels. The use of a polarizer and a neutral 
density filter is advisable, so that waves of some 
polarizations can be blocked while the light of a specific 
polarization can be passed. 

Several targets of different laminate configurations were 
tested to assess the ballistic limit and the crack propagation 
for each design. The ballistic limit is considered the velocity 
required for a particular projectile to reliably (at least 50% of 
the time) penetrate a particular piece of material [17]. After 
the impact, the projectile is examined regarding any kind of 
change it might have undergone. 

Figure 4 shows a 23 mm soda lime glass target after 
testing. The penetrator used in this test was a .44 Remington 
Magnum, a large-bore cartridge with a lead base and copper 
jacket. The glass layers showed heavy cracking as a result of 
the impact. 

 
Figure 2.  Iterative procedure of a typical FE analysis [15]. 

238Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation



 

 
Figure 3.  Experimental set-up. 

Close to the impact point is the region of comminution. 
The comminuted glass is even ejected during the impact. 
Radial cracks have propagated away from the impact point. 
The polycarbonate backing layer is deformed up to the 
maximum bulge height when the velocity of the projectile is 
close to the ballistic limit. A large amount of the 
comminuted glass is ejected during the impact. Several 
targets of different laminate configurations were tested to 
assess the ballistic limit and the crack propagation for each 
design.  

Cracks propagate with a velocity up to 2500 m/s, which 
is similar to the values in the literature. The damage of a 
single glass layer starts with the impact of the projectile 
corresponding to the depth of the penetration. The 
polycarbonate layers interrupt the crack propagation and 
avoid piercing and spalling. The first impact of a .44 
Remington cartridge does not cause a total failure of our 23 
mm soda lime glass target. Fragments of the projectile can be 
found in the impact hole. The last polycarbonate layer 
remains significantly deformed. 

The results of the ballistic tests were provided prior to the 
simulation work to aid calibration. In this paper, a single trial 
will illustrate the general approach of the numerical 
simulations.  

 
Figure 4.  Trial observation with a 23mm glass laminate. 

 

V. NUMERICAL SIMULATION 

The ballistic tests are followed by computational 
modeling of the experimental set-up. Then, the experiment is 
reproduced using numerical simulations. Figure 5 shows a 
cross-section of the ballistic glass and the projectile in a 
CAD model. The geometry and observed response of the 
laminate to ballistic impact is approximately symmetric to 
the axis through the bullet impact point. Therefore, a 2D 
axisymmetric approach was chosen. 

Numerical simulation of transparent armor requires the 
selection of appropriate material models for the constituent 
materials and the derivation of suitable material model input  
data. The laminate systems studied here consist of soda lime 
float glass, polyurethane interlayer, polyvinyl butyral and 
polycarbonate. Lead and copper are also required for the .44 
Remington Magnum cartridge.  

The projectile was divided into two parts - the jacket and 
the base - which have different properties and even different 
meshes. These elements have quadratic shape functions and 
nodes between the element edges. In this way, the 
computational accuracy as well as the quality of curved 
model shapes increases. Using the same mesh density, the 
application of parabolic elements leads to a higher accuracy 
compared to linear elements (1st order elements). 

Different solver technologies have been applied to the 
soda lime glass laminate. The comparison is presented in the 
following chapter.   

A. Solver Evaluation 

Before the evaluation starts, it has to be noticed that the 
Euler method is not suitable for numerical simulations 
dealing with brittle materials. It is generally used for 
representing fluids and gases, for example, the gas product of 
high explosives after detonation. To describe solid behavior, 
additional calculations are required. Cracking cannot be 
simulated adequately and the computation time is relatively 
high. For this reason, the Euler (and as a result the ALE) 
method will not be taken into consideration. 

 
Figure 5.  CAD model. 
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Figure 6.  Lagrange method. 

1) Lagrange method: Figure 6 shows the simulation 

with a single Lagrange solver in the first iteration procedure. 

This method, as mentioned before, is well-suited for 

representing solids like structures and projectiles. The 

advantages are computational efficiency and ease of 

incorporating complex material models. The polyurethane 

interlayer, polyvinyl butyral and polycarbonate are 

simulated adequatly. While the soda lime glass also deforms 

well, the crack propagation cannot be displayed suitably 

with this solver.  

2) Mesh free Lagrangian method (SPH): The mesh free 

Lagrangian method is not appropiate for simulating bullet-

proof glass. The crack propagation and failure mode of the 

soda lime glass are very precise. The problem here however 

is the simulation of the layers. The particles do not provide 

the necessary cohesion (see Figure 7). They break easily and 

then lose their function. However, the SPH method requires 

some of the particles to locate current neighboring particles, 

which makes the computational time per cycle more 

expensive than mesh based Lagrangian techniques. Also, the 

mesh free method is less efficient than mesh based 

Lagrangian methods with comparable resolution. 

 
Figure 7.  Mesh free Lagrangian method (SPH). 

  

 
Figure 8.  Coupled multi-solver approach (Lagrange and SPH). 

3) Coupled multi-solver approach (Lagrange and SPH): 

The coupled multi-solver approach uses SPH for the soda 

lime glass and Langrange for the polyurethane interlayer, 

polyvinyl butyral and polycarbonate. The crack propagation 

can be simulated precisely. The deformation of the last layer 

is accurately displayed and the failure mode matches the 

ballistic trial. Figure 8 illustrates the simulation result for 

this case. 

B. Simulation Results 

With the coupled multi-solver and optimized material 
parameters, the simulation results adequately mirror the 
observations made in the ballistic experiments. 
Fragmentation and crack propagation are almost equal to the 
ballistic test shown in Figure 4.  

 
Figure 9.  Crack propagation in a coupled multi-solver simulation model. 
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Figure 9 illustrates the development of fracture after 10, 

20, 50, and 70 μs due to shear induced micro-cracking 
(damage) in the glass during the penetration process. Note 
that the failure of the glass in the second and third layers 
spreads from the glass / polyurethane interlayers back 
towards the oncoming projectile. This rapid material failure 
is owed to a reduction in material strength as rarefaction 
waves from the interface reduce the confining pressure [17].  

Small fragments are automatically deleted from the 
program to reduce computing time. Regarding the protection 
level of our structures, these fragments are hardly important. 

The projectile is subject to a significant deformation. It 
gets stuck in the target and loses kinetic energy. Figure 10 
compares the numerical simulation of a .44 Remington 
impact with the experimental result. 

A clear hole, 45-50 mm in diameter, is generated in the 
glass / polyurethane layers of the laminate. A comminuted 
region of glass, shows highly cracked and completely 
crushed material, of around 20 mm in diameter in the first 
layer which extends to around 120 mm in diameter in the last 
layer. Hence, the simulated diameter of comminution is 
almost identical to that observed experimentally. Even the 
delamination of the layers can be reproduced in the 
simulation. The predicted height of the bulge from the flat 
region of the polycarbonate is 28 mm compared to 
approximately 8 mm observed in the ballistic trials. In the 
simulation, comminuted glass is caught between the bullet 
and the polycarbonate layer. This leads to a larger 
deformation. In reality, comminuted glass is ejected during 
the impact. The polycarbonate dishes from the edge of the 
support clamp to form a prominent bulge in the central 
region. Therefore, reducing the instantaneous geometric 
erosion strain of the soda lime glass will significantly 
improve results. Owed to the adopted calibration process, 
these simulation results correlate well with the experimental 
observations. 

 

 
Figure 10.  Comparison between simulation results and ballistic trial. 

VI. CONCLUSION 

This work demonstrated how a small number of well-
defined experiments can be used to develop, calibrate and 
validate solver technologies used for simulating the impact 
of projectiles on complex armor systems and brittle 
materials.  

Existing material models were optimized to reproduce 
ballistic tests. High-speed videos were used to analyze the 
characteristics of the projectile – before and after the impact. 
The simulation results demonstrate the successful use of the 
coupled multi-solver approach. The high level of correlation 
between the numerical results and the available experimental 
or observed data demonstrates that the coupled multi-solver 
approach is an accurate and effective analysis technique. 

New concepts and models can be developed and easily 
tested with the help of modern hydrocodes. The initial design 
approach of the units and systems has to be as safe and 
optimal as possible. Therefore, most design concepts are 
analyzed on the computer. FEM-based simulations are well-
suited for this purpose. Here, a numerical model has been 
developed which is capable of predicting the ballistic 
performance of soda lime glass / polycarbonate transparent 
armor systems. Thus, estimates based on experience are 
being more and more replaced by software.  

The gained experience is of prime importance for the 
development of modern armor. By applying the numerical 
model a large number of potential armor schemes can be 
evaluated and the understanding of the interaction between 
laminate components under ballistic impact can be 
improved. 
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