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Abstract—The evolving field of social simulation is diversifying
the degree of complexity of published works, from simple models
to large scale simulations with millions of agents. In this context,
available platforms are divided between the ones favoring easy
to use interfaces and the development of prototyping, and others
created for simulating large scenarios with high computing costs.
The later group is truly diverse, based on the way executions
are accelerate and the wide range of technologies that they can
support. The cost of this increase in performance is a steep
learning curve, as the users of these platforms need to have ad-
vanced programming skills in order to deal with code complexity.
Pandora is a novel open-source framework designed to fill the
gap between these approaches. A twin interface in Python and
C++ offers the same interface to users developing prototypes as
well as projects with High-Performance Computing requirements.
The need for parallel programming knowledge is also skipped
through the automated generation, during compilation time, of
needed code for shared and unshared memory distribution using
OpenMP and MPI. A set of different helpers (unit testing,
georeferencing support) and analytical tools complement the
basic framework in order to facilitate the tasks of development,
testing and analyzing any type of Agent-Based Model. Pandora’s
flexibility is exemplified through different projects that have
introduced GPU acceleration, georeferenced data and cloud
computing to the framework.

Keywords–Agent-Based Models; Social Simulation; High-
Performance Computing; Parallel programming; Multi-Agent Sys-
tems

I. INTRODUCTION

The disciplines studying human behavior are being in-
creasingly interested on the use of Agent Based Models
(ABMs) as virtual laboratories to explore and validate their
research hypotheses. This trend has determined the appearance
of a growing number of platforms specifically designed to
assist projects creating this kind of models. At the same
time, the diversification of case studies and requirements has
created a bifurcation between platforms created to implement
prototypes and simple models and those designed to face
advanced requirements, specially regarding the acceleration of
the execution.

The first group of platforms tends to emphasize easy to
use interfaces, and a quick learning curve that allows for
producing models in a short span of time. These features are
extremely interesting for a sensible part of the community of
social scientists, as it allows to create, deploy and explore
simulations with little or non-existent previous programming
experience. The powerful capability of creating models without
expert programming skills explains the success of platforms

such as NetLogo [1], MASON [2] and Repast Simphony [3].
Similar features are provided by Model Driven Engineering
platforms, such as INGENIAS [4] and modelling4all [5].

The drawback of this approach is scalability. Graphical
tools and dynamic programming languages are not focused
on this aspect of software engineering, and they tend to
have serious efficiency issues. This is not relevant for simple
models, but as the complexity of a model grows the idea of
switching towards more efficient programming languages takes
importance. This decision has a major impact in the model.
Advanced programming skills are required for this task, as
languages such as Java or C++ have a steep learning curve.
Besides, this decision not always affect the programming
language but also the platform chosen to create the ABM.
In particular, the Application Programming Interface (API) of
the different platforms can be extremely different, even when
the programmer is replicating an existing model. Finally, the
change of programming language is not enough improvement
on efficiency when the models contain a large number of agents
with complex behavior; in this case, the better approach is to
choose a platform capable of distributing the execution of a
simulation.

Parallel programming is one of the most challenging as-
pects of software development. In particular, the distribution
of an ABM is strongly dependent on the nature of the problem
to model and the properties of the system (degree of interaction
between agents, complexity of behavior, etc.). There is no
optimal way to distribute any kind of ABM, because their
dynamics are extremely diverse. For this reason there are
different strategies that could split an ABM execution amongst
different computer nodes, but none of them will be universally
optimal. The only possible solution is to provide a set of
different techniques that can be applied to similar problems.
This idea is the basis of different initiatives like GridABM [6],
a framework of template solutions for distributing these type
of simulations.

All this diversity of models and software platforms implies
that any project involving ABMs must carefully evaluate
existing options, considering its primary goals. If a wrong
platform is chosen it will be difficult to fix the problem, and
this could have a major impact on the success or failure of
the project. This also applies when there is a high degree
of uncertainty or requirements change over the span of the
project, situations that can easily happen in the context of
research. The Repast suite [7] is currently the only solution to
this issue, as it offers a wide arrange of different tools to use,
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from graphical modelling to distributed executions. However
this is not an optimal solution, as the most advanced tool in
terms of computation (Repast-HPC) does not share the same
code or language than the rest.

The discussed issues can be transformed in a set of
requirements for an all-purpose ABM platform:

• Rapid prototyping in a dynamic programming lan-
guage

• An alternate interface providing access to efficient
version of the same functionality

• The user should be able to analyze their models with
a wide array of analytical tools, including spatial
analysis, statistics and visualization.

• Parallel execution, not only of different runs but also
of a single, CPU-demanding, simulation.

• The switch between sequential and distributed execu-
tions should not translate into a re-implementation of
the model or in learning the complexities of parallel
programming.

This paper presents Pandora, an open-source ABM frame-
work designed to deal with the varied needs of modellers and
fill the gap between prototyping and advanced simulations.
This innovative platform has a flexible architecture capable
of providing the tools needed to create any type of ABM
and execute it in any environment in a transparent way. This
includes dynamic prototyping, automated parallel execution
and analytical tools.

Next Section describes the different tasks involved in the
creation of an ABM, that any framework should cover. Next,
we describe the general structure of the platform, before
focusing on the core concepts of the design fulfilling the
requirements. The paper closes with a discussion on the present
and future of the platform.

II. CREATING AN AGENT-BASED MODEL

The methodologies used to create agent-based simulations
are as diverse as their goals [8]. The set of utilities and
analytical tools needed to implement, explore and publish an
ABM makes a strong case for using a general framework
capable of providing functionality for all these tasks. This
software platform should provide enough flexibility to go from
exploratory models to predictive simulations using the same
code. On the other hand social simulations are usually created
inside interdisciplinary initiatives, and this has an important
impact in the different steps of the methodology. The general
work-flow for this development, independently of the platform,
can be summarized as followed:

1) Definition of a research question
2) General definition of a model using Overview, Design

Concepts and Details (ODD) protocol [9], Unified
Modelling Language (UML) [10] or similar mod-
elling tools)

3) Development of a prototype using a dynamic pro-
gramming language

4) Exploratory visualization and verification of results

5) If needed, implementation of an efficient version of
the model

6) Design and execution of a set of experiments
7) Analysis and dissemination of results

This classical modelling methodology is not the only way
to create ABMs. Software engineering practices are increas-
ingly being used in the field; for this reason, the framework
should not force the user to create their models with a partic-
ular methodology, and it could be interesting to have support
for agile methodologies, including the use of Test-Driven
Development, intensive refactoring and collective ownership
of the code of [11][12].

III. GENERAL DESIGN

The general architecture of Pandora is shown in Figure 1.
The abstract classes World and Agent are the core of the library,
as they form the content of any model. The first one manages
the different layers of continuous information that define
the environment of the simulation. Following Geographical
Information Systems modelling practices the environment is
defined as a set of raster maps (bi-dimensional matrices of
values), that can have read-only data and are encapsulated in
instances of the class StaticRaster. They are complemented
by DynamicRasters, whose values that can be modified over
the span of the simulation. The class Config also provides the
functionality needed to initialize any ConcreteWorld, usually
from an eXtensible Markup Language (XML) file with all the
parameters of a run (duration, size of the map, output directory,
etc).

The Agent class encapsulates any entity of the model with
internal state, decision making processes and behavior. Any
ConcreteAgent needs to define at least a method updateState
that is executed every time step as well as serialize, where its
state will be stored in a file using the Hierarchical Data Format
(HDF5) protocol [13].

Figure 1. Class diagram of the framework

A set of different utilities and helpers provides function-
ality to load georeferenced data, log relevant information
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and generated pseudo-random numbers needed for stochastic
processes. This architecture is specifically designed to host
any potential ABM, from simple prototypes to complex and
realistic models. Next sections define the different solutions
that have been implemented to deal with the requirements, in
particular (a) dynamic/static programming, (b) analytical tools
and (c) scalability.

IV. TWIN PROGRAMMING INTERFACE

One of the most important requirements for this platform
is to facilitate the transition between simple and complex
simulation environments. Pandora implements its functionality
in C++, which can be accessed from a two-headed interface
in C++ and Python. The first interface offers an efficient
version that can also be distributed in a computer cluster,
while the flexibility of Python allows any user with minimal
programming skills to develop a model from scratch. The link
between both interfaces uses the library boost-python, that
provides a clear way of binding Python calls to C++ classes
and functions.

As an example of the flexibility provided by this solution,
a simple Agent that moves randomly can be defined in C++
as:

c l a s s Bas i cAgen t : p u b l i c Agent
{
p u b l i c :
Bas i cAgen t ( c o n s t s t d : : s t r i n g & i d ) : Agent ( i d ) {}
˜ Bas i cAgen t ( ) {}

vo id u p d a t e S t a t e ( ) {
Point2D<i n t> n e w P o s i t i o n = g e t P o s i t i o n ( ) ;
n e w P o s i t i o n . x += g e t U n i f o r m D i s t V a l u e (−1 ,1 ) ;
n e w P o s i t i o n . y += g e t U n i f o r m D i s t V a l u e (−1 ,1 ) ;

i f ( ge tWor ld ( ) . c h e c k P o s i t i o n ( n e w P o s i t i o n ) )
{

s e t P o s i t i o n ( n e w P o s i t i o n ) ;
}

}
} ;

The same behavior is achieved in Python using this code:
c l a s s Bas i cAgen t ( Agent ) :

d e f i n i t ( s e l f , i d ) :
Agent . i n i t ( s e l f , i d )

d e f u p d a t e S t a t e ( s e l f ) :
n e w P o s i t i o n = s e l f . g e t P o s i t i o n ( )
n e w P o s i t i o n . x += random . r a n d i n t (−1 ,1)
n e w P o s i t i o n . y += random . r a n d i n t (−1 ,1)

i f s e l f . ge tWor ld ( ) . c h e c k P o s i t i o n ( n e w P o s i t i o n ) :
s e l f . p o s i t i o n = n e w P o s i t i o n

Any code can be translated from one version to the other,
as both languages are designed to implement the Object-
Oriented paradigm and the interface to Pandora’s functionality
is exactly the same. An important side-effect of this solution is
the maintainability of the framework. There is no duplicated
functionality between version of the framework in different
programming languages, as both interfaces call the same C++
code (i.e., complete examples can be found at [14]. This
approach decreases the number of lines, thus diminishing the
potential appearance of bugs in the code. In addition, both

interfaces are checked by two unit testing suites, one using
the basic python testing framework and the other one with
the boost unit test toolbox. Finally, the analytical tools are
common for both interfaces, as models implemented with any
of the languages serializes result files with identical format, as
they are calling the same serialization methods.

V. MULTIPLE SCHEDULERS

ABMs are developed to explore a wide array of research
questions. In essence any scenario where micro behaviors
generate macro dynamics can be modelled with this technique.
At the same time, there is a key component of any ABM that
must be present in all possible models: the scheduler. This is
the process that updates the set of agents and the environment
that together form the model, and manages issues like the
order of execution of the agents, and the way they interact
with the other components (i.e., other agents, layers of raster
maps, etc.). The heterogeneity of problems to be modelled
suggest that there is no optimal scheduling algorithm. For
example, a scheduler that proofs efficient in the sequential
execution of simple models in a laptop will probably be
incapable of managing distributed simulations with millions
of agents. Besides, the way agents interact with each other is
quite different, depending on the purpose of the model. For
example, agents living in spatially structured models will have
a completely different interaction with other entities than a
model guided by social networks. The consequence of the
flexibility of the ABM concept is that there is no optimal
general strategy for a platform’s scheduler.

The relevance of this issue grows exponentially when
dealing with distributed executions [15]. Each agent needs to
gather knowledge from the surrounding environment, including
raster maps and other agents, before making any decisions.
The agents then execute their decision-making processes and
modify the environment. These mechanics translate, in terms
of parallelization, in the need of sharing several layers of
environmental data and agents between computer nodes, at
every single time step. Furthermore, the execution of the
agents’ actions cannot usually be distributed within a single
computer node (i.e., OpenMP), because there can be several
conflicts related to agents accessing and modifying the same
data at the same time.

Pandora’s design follows the philosophy of versatility, com-
bining the software engineering patterns bridge and factory
method [16], as shown in Figure 2.

Figure 2. Class diagram of the Scheduling system

Any functionality of the base class World that needs to
update the environment or the agents is delegated to the
class Scheduler. Custom Schedulers implement different ways
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to manage these tasks without implying a change in the
Application Program Interface (API) of the framework. The
user only needs to specify the preferred Scheduler in the code.
This is done as follows for multithreaded execution in a single
computer (using OpenMP):

Concre teWor ld wor ld ( c o n f i g , wor ld . useOpenMPSingleNode ( ) ) ;

or spatial distribution in different computer nodes using
Message Passing Interface (MPI) and OpenMP:

Concre teWor ld wor ld ( c o n f i g , wor ld . u s e S p a c e P a r t i t i o n ( ) ) ;

The solution also provides a clear interface for advanced
users to develop their own schedulers if they need particular
solutions for their models. In any case, the Bridge pattern
allows that any Scheduler can be used in the execution of any
simulation. This is particularly useful for exploring a model
in different scales, as quick scenarios will use multithreading
while the largest ones can be deployed in a High-Performance
Computing (HPC) infraestructure.

A. Parallel execution

The only current Scheduler of Pandora designed for dis-
tributed execution is based on spatial partition. Each computer
node owns a section of the entire simulated scenario, contain-
ing the different landscape data as well as the agent. This is
one of the most popular ways of distributing an ABM, as is
also the solution adopted by Repast-HPC [7].

The world of the simulation is evenly divided among
computer nodes, and each one of them owns a section of
the environment, as well as the agents located inside its
boundaries. This layout is depicted in Figure 3. Information
in the border between adjacent nodes (raster maps and agents)
is communicated to neighbours every time step execution, in
order to keep up-to-date data in the entire scenario. The size of
this buffer border is defined as the maximum interaction range
of any agent, being the absolute horizon of actions of any
component of the simulation. The solution is scalable, given
the fact that every computer node will need to communicate,
at most, with 8 neighbouring nodes (if nodes own rectangular
regions), independently of the total size of the simulation. On
the other hand communication must be local, as agents can
only communicate inside a given interaction range.

Figure 3. Spatial partitioning of an ABM. Each color represents the section
of the world owned by a different computer node.

This solution does not solve to problem that two agents
living in different computer nodes can modify the same
bordering data at the same time. This potential collision can
be avoided by different technique, but most of them can

be computationally intensive (e.g., rollbacks). This overhead
is affordable if agent behavior is CPU intensive and the
possibility of conflict is low, but this is seldom the case with
ABMs.

Pandora’s spatial partition scheduler uses a simpler ap-
proach. The spatial section owned by a computer node is split
into four equal parts numbering 0 to 3, as seen in Figure 4. The
agents inside 0 sections are executed simultaneously; as they
are not adjacent there is no possibility of collision between
their actions. Once all 0’s are finished, modified border data is
sent to the neighbors, and a new section will begin its execution
(1, 2 and finally 3). Once all of them are executed, the entire
state of the simulation is serialized and a new time step can
be evaluated.

Figure 4. Each computer node is divided into four different sections, that are
executed sequentially

The pitfall of this solution is that agents in section 0 will
always be executed before agents in sections 1-3. Depending
on the model the consequences of this effect can be nonexis-
tent, or introduce artifacts in the outcome. As usual, a careful
choice between the different strategies is needed, based on
the existing scenario; Pandora provides the way to implement
and use any existing algorithm designed to distribute ABMs
[17][18][19].

B. Simultaneous execution of agents

Simulation performance can also be increased using the
complete set of CPU cores of every computer node to simul-
taneously execute the agents. Again, the problem of collisions
between agents’ actions must be solved. Performance analysis
showed that most of the execution time is spent when agents
(1) gather information, (2) choose a particular set of behaviors,
and (3) execute them. All ABM platforms mix these phases
in a single method, executed by every agent every time step:
tick in Netlogo [1], step in MASON [2] and RePast [20].

Agents do not modify anything in phases (1) and (2), as
they just evaluate potential course of actions depending on
existing data; if we separate them from the action’s executions
they can be simultaneously executed without risk of collisions.

Pandora uses this approach to split the step of an agent in
three different methods. In the first one, updateKnowledge, an
agent cannot modify the environment or other agents; it only
gathers information. In the second one, selectAction, the agent
executes her decision-making process to chooses an action
Once every agent has chosen what she wants to do Pandora
executes the actions of the agents sequentially. Finally, the
third method that a user can specify is updateState, where any
agent can modify its internal state evaluating the results of her
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actions. This cycle Explore - Decide - Apply allows Pandora to
distribute the execution amongst different Central Processing
Unit (CPU) cores of a node, as the first two methods are
declared const in C++ to be thread-safe, while the third one
is executed sequentially.

This structure seems more complicated than just defining
one method but, from a theoretical point of view, the division
of an agent’s execution in these three phases is more consistent
than the traditional ABM approach. The single method imple-
mentation mixes the different stages of an agent’s cycle, that
should be correctly specified while building the model (see
Figure 5). Dividing the execution in these phases avoids this
issue, forcing coherence during the transition from theory to
code.

Finally, from a theoretical point of view this solution is
more elegant, as it matches the definition of an intelligent agent
[21].

Figure 5. The execution cycle of an agent

To conclude, a performance analysis of Pandora’s schedul-
ing system [15], both in (a) supercomputers and (b) cloud HPC
infraestructures. Results show again the diversity of challenges
that any ABM platform need to face, as its execution in (b) is
optimal when the balance between intensity of communication
and CPU needs are shifted towards the later, while (a) is
needed if the model has a high degree of interaction.

VI. ANALYSIS

Any ABM framework is not complete without a set of tools
to assist experiment design and analysis. Pandora’s develop-
ment team has created Cassandra [22], a GUI tool to help the
user to perform the required tasks, from exploring a single
run to the exploration of parameter space across thousands of
executions.

A. Single run examination

The graphical interface allows to visualize the spatiotem-
poral dynamics of a model, as can be seen in Figure 6. This
feature is useful to detect general patterns, as the user can
check and track, at any given moment, the state of the different
agents and layers of information.

B. Parameter space exploration

The Laboratory tool allows to define and run an exper-
iment, based on the values that the used defines for each
input parameter specified in the configuration. An HDF5 file
is generated by each run, that are parsed in order to extract
the needed summary statistics for the analysis.

Figure 6. Spatial visualization of a single run

C. Exploratory Data Analysis

The output produced by thousands of ruins of an stochastic
ABM can be extremely complex to study, and visual analytics
can be an optimal choice to explore preliminary results [23].
At the present Cassandra includes two interactive tools: (a)
heat maps to compare particular parameter values and (b) time
series for understanding temporal dynamics, as seen in Figure
7.

Figure 7. Exploratory visualization toolbox depicting the same set of runs
with a heatmap and time series

D. Output

The final step is the use of the analytical toolbox to collect
data from the dynamics of the system in different formats that
can be used by different applications (i.e., Comma Separated
Values for Statistical packages, GeoTiff and Shapefiles for
Geographical Information Systems, etc.). Additional outputs
ready to be used in publications and reports are composite
mosaics encapsulating several runs in any video format, as
well as Google Earth georeferenced movies.

VII. CONCLUSIONS AND FUTURE WORK

The popularization of social simulation has increased in
recent years the number and features of open-source ABM
platforms [24]. This trend, while common and positive in any
scientific software community, has been one of the reasons
why replicability is scarce [25]. This issue is combined with
a limited use of software engineering to control the quality of
scientific code [26].

In addition, there is a technical gap between exploratory
models created for theoretical research and realistic models
developed for hypothesis testing and prediction. The first class
of ABMs are implemented by social scientists in platforms
with little or non-existent capability for multiplatform exe-
cution, while the second type of models is created by pro-
grammers with advanced programming skills in other software
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packages, and deployed in powerful hardware infrastructures.
The paradox is that simple simulations cannot be distributed
without a major coding effort, while distributed simulations
are not easily executed in a standard computer. Pandora closes
this gap in the increasingly diversified environment of social
simulation; it provides enough flexibility to be extended by
any user requirement, while maintaining its role of an all-
purpose platform that can be used with any kind of model
and/or infraestructure.

This versatility has been shown in a wide array of scenar-
ios, from simple models exploring theoretical issues [27] to
realistic simulations executing complex behavior for thousands
of agents and parameter configurations [28][29]. Its use has
also been extended through additional functionality like the use
of Graphics Processing Unit (GPU) acceleration for particular
agent actions [30], advanced decision-making processes using
Markov Decision Processes [27] or its deployment in cloud
HPC infraestructures [15]. Next steps include the development
of a network-based scheduler, binary installation packages and
additional visualization tools.
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