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Abstract—This paper presents ideas for design, 

implementation and results of creation of computerised semi-

natural simulators of the different heterogeneous objects. The 

presented approach extends well known solutions for object 

simulators creation using the program generation technique. 

Simultaneous co-design of the control system and the simulator 

is explained as well. Both stand-alone and distributed objects 

and control systems are included in the presented work. 

Examples of different implementation of the presented 

approach are presented. 
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I.  INTRODUCTION 

Computer-based simulators of many different complex 
objects are a reality today. They have become a reality with 
the expansion of cheap computers since the 80’s of the 20

th
 

century. The observation of many different implementations 
and approaches to simulators creations are available 
[1][2][3]. 

Large-scale hazardous objects like planes and nuclear 
power plants have been simulated for decades. Simulation of 
various real systems has multiple advantages compared to 
experimenting and use of the actual system. Some of the  
advantages are: the possibility to train the personnel to 
operate various types of machines; to use such simulations in 
preparations and optimizations of control algorithms; to 
repeat and analyse specific situations. 

The two main classes of simulators – fully numerical 
simulators and physical simulators mark the boundaries. The 
first one implements a kind of mathematical model (any 
type). MATLAB® is a very good example of this approach 
[8].  The second one is physical (material) emulation of the 
object. There are a lot of simulators between these two 
endmost types. Now, we can find Hardware-in-the-loop 
(HIL) [9], Software-in-the-loop (SIL) [8], Agent-based 
simulators [10] and other approaches to simulators building 
inside the boundaries mentioned above.  HIL and SIL are a 
bit opposite because HIL means that one implements a 
simulation of the object when the controller is ready-for-use. 
The SIL means that one has a computer-based model of the 
object and puts in the same environment the code of the 
controller and runs the two together only numerically. The 
Agent-based simulation is a new adoption of the component-
oriented programming design approach and can be discussed 
in this paper as a way how to present distributed/de-
centralized systems and to implement their simulations. 

All these simulators implement some model of the object 
and communicate somehow with the controller or 
experimental environment.  

A brief examination of the papers and on-line materials 
today shows many different simulators and simulation 
environments [4][5][6]. 

One of the definitions of control systems architecture 
concerns their geographical position. The variants are 
‘concentrated/centralized’ and ‘distributed’ control systems.  
When we talk about distributed control systems their 
architecture reflects the structure of the object – distributed 
on the level of parameters (huge objects) or distributed as 
points of control. In both cases the control system is 
influenced by the communication network and all delays 
introduced by it, loss of packets, etc. [3]. Using the presented 
below approach both concentrated and distributed systems 
will be covered.  

The paradigm for program generation of many kinds of 
software is not new. Its implementation in the area of control 
systems varies in aspects and mathematical background but 
has a stable place in today’s methodologies. Here we will 
discuss the version of program generation when the target 
system is build using pre-programmed library components 
which are only instantiated and linked in the real 
implementation. The full code-generation like the one used 
in MATLAB Embedded Studio [8] or ADA [11][12] based 
real-time systems is out of the scope of this paper. 

The approach presented in this paper is focused on using 
one and the same tool (program generator) to design both the 
HIL-type “semi-natural” object simulator and the control 
system.   

The name “semi-natural” means that the simulator is not 
only a computer, running the object model and connected to 
the controller via its physical interface, but additionally that 
the simulator can include parts of the real object’s hardware. 
In this case we have something that is mostly a simulator but 
has some elements of an emulator. 

The present paper is structured as follows: Section II 
resents the proposed connection between control systems, 
objects and their simulators; Section III presents a short 
description of the used program generator and the formal 
model implemented by it; Section IV presents the 
implementation and analyses of several objects and their 
simulators; Section V is the conclusion.    
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II. BACKGROUND OF THE PRESENTED APPROACH 

To implement a simulator using mathematical models of 
the object is an old and widely used idea. To implement an 
object emulator is a very old idea, too. To implement a 
simulator using both a mathematical model and elements of 
some physical hardware is a more recent one.  To implement 
a simulator using a physical interface, which is the same as 
the original object interface is a much newer idea. It has been 
possible to do that only for the last 20 years when both 
computer hardware and peripheral devices became cheap 
enough and versatile. To implement a simulator for a 
distributed object is an old idea but it has been possible to 
implement it only in the last few years after the advance in 
communications and especially in guaranteed real-time 
communications.  

A complex control system has a structure similar to that 
shown in Figure 1.  

 
Figure 1.  General structure of a multi-layered control system. 

Here, we assume the object to be a single one. Later, we will 
discuss how that view can be expanded for distributed 
objects. When we implement a computerized simulator with 
a real peripheral device, we can present it on the diagram 
shown in Figure 2. 

When we combine both a control system and a simulator, 
the resulting diagram looks like the one shown in Figure 3.  

This approach allows different ways to simulate the 
object to be used:  

 full simulation using a physical interface of the 
same type as the real object (and possibly 
including parts of hardware from the object); 

 partial simulation using a physical interface,  
emulating the real interface; 

 partial simulation using signal exchange based 
on a type of networking. 

In [1], several different variants for simulation are 
described but here we discuss only those that include parts of 
real physical hardware. 

In all cases, if the object and/or control system has HMI 
it is presented “as is” in the couple “control system-
simulator”. 

Discussing simulation of a distributed object, we have to 
include simulation of its distributiveness in the object 
properties. Depending on the type of the distributiveness we 

can simulate transport delays, internal status (as temperature) 
propagation delays and inequalities, distribution of process 
run (like conveyor and machinery near it) and so on. The 
complexity of that simulation can be higher than the 
complexity of the control system. This complexity increases 
in the case shown in Figure 3, when the control system and 
the simulator are connected via an additional “line” for 
activity synchronisation. 

III. THE PRGEN – PROGRAM GENERATOR FOR 

DISTRIBUTED CONTROL SYSTEMS AND OBJECT SIMULATORS 

The program generator used for establishing a simulation 
model is designed for creating distributed real-time control 
systems. It has been implemented in many different versions 
over the years [14][15][16]. It is based on an extended 
Moore machine implementing specific actions in each node 
of the state machine. Specific elements of its design reflect 
the possibility to generate both stand-alone and distributed 
systems. The generated distributed systems can operate as a  
“virtual mono-machine” or as a component-based (or agent-
based) system. A graph representation of the control 
algorithms is chosen. The system can be described by its 
activities. Each activity is a separate thread. The activity 
thread consists of two different graphs: 

 A State Transition Graph (STG) – a graph model for 
modelling the finite automaton, describing the general 
behaviour of the activity thread. The graph is 
represented like statechart described in [17]. 

 A Signal Flow Graph (SFG) – a graph model 
representing the signal transformation flow (the 
dataflow [18]). It is built by Function blocks, very 
similar to Simulink®. It is mainly used to model the 
continuous part of the system, to handle the I/O and 
communication drivers and to calculate complex 
predicates used in transitions of the State Transition 
Graph. 

A. State Transition Graphs 

Each system node has at least one activity thread. This 
thread is implemented by its STG defining the logical 
behaviour (although there are some implementations 
containing only one state with an infinite loop to itself). The 
STG has one entry point (initial node) with no other function 
than pointing where exactly the execution of the STG should 
start when the system is started. For each state of the STG 
one or more SFGs can be attached. For each state one or 
more transitions should be defined. A transition to the same 
state is acceptable. Decision making for transition to be 
performed is based on an associated to each state Binary 
Decision Diagram (BDD). Values for the BDD’s predicates 
are taken from the node SFGs.  

For each STG, an execution period is defined, defining 
how often the graph activates and executes its current state. 
The execution period can be modified if necessary during 
runtime (e.g., when the system is in idle/power-down state 
scanning inputs and refreshing outputs at a high rate are not 
necessary). 

There are two types of transitions defined: synchronous 
and asynchronous. When a synchronous transition is 

Layer III – Functional control 

Layer II – Control of an integrated 

subsystem 

Layer I – Control of a single object 

or an isolated subsystem 

Object
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executed the graph execution stops and the task goes in sleep 
mode until the execution period expires. When an 
asynchronous transition is activated, the task goes directly to 
execution of the state following the transition, without 
waiting for the period to expire. 

B. Signal Flow Graphs 

The SFG models the data flow of the system. Typically 
the SFG entry points are Function blocks representing I/O 
drivers, communication drivers or in specific cases data 
calculated by other SFGs. Then the data is passed to other 
Function blocks, which make transformations, check 
constraints and conditions and produce output for I/O 
drivers, communication, user visualization, database logging, 
etc. Each Function block in the SFG is executed only once 
per SFG execution. This is ensured by the connections 
between them. There are two types of connections: activating 
and non-activating. The SFG execution starts with Function 
blocks which do not have activating inputs. After their 
execution, the remaining blocks are checked for activation. 
The blocks that have all their activating inputs set, start 
execution and continue until the last block of the SFG 
finishes its job. 

Each Function Block (FB) can have up to three types of 
inputs and two types of outputs.  

The inputs of FB can be: Link Inputs (activating or non-
activating); Parameter Inputs; Internal State Inputs. Each 
input can be linked to only one data source. An input which 
takes data from two different sources (e.g. from the outputs 
of two separate preceding FBs) is not available.   

FBs can have two types of outputs. Static outputs – can 
be a data source of unlimited number of link inputs. Point to 
point outputs – cannot be a data source of inputs. Instead, 
they can be linked to a static input and change their value. 

All inputs and outputs can hold matrix values, allowing 
complex system models to be generated.  

What makes this implementation different from many 
others is that a communication subsystem is implemented as 
a number of communication modules using both logical and 
physical data exchange protocols. Using this approach the 
general model of the implemented system – control or 
simulator, is virtual mono-machine. The communication bus 
is implemented hidden, but observable [20][22]. 

Extended description of the model of the presented 
program generator can be found in [14][19]. 

IV. SIMULATOR PROJECTS 

Hereafter, we will present three different objects where 
the control system and the simulator were implemented 
using the presented approach. All objects have dominantly 
analogue behaviour, but they are very different in size and 
general complexity. A comparison between the implemented 
control system and simulators will be provided as well. 

These objects are a fuel tank farm, a business building 
and a machine for making sausages (food industry). The first 
two objects are big distributed objects and the third one is a 
stand-alone machine.  The following points will be discussed 
for each object: 1) why we need to build a simulator; 2) real 
object structure; 3) how the simulator is built, and 4) 

problems when the program generator was used to 
implement the simulator and how they were solved. 

A. Tank farm control system and simulator 

The tank farm control system includes the loading and 
unloading of tanks, calculation of the available fuel based on 
several different measured parameters, control of the pipe 
system. The control system is built by using an industrial 
OPC-based system connected to the field devices via 
Profibus connections (both DP and PA).  

The need to invest time and money in a simulator of the 
tank farm has several dimensions: 1) it is used to design and 
tune different elements and the integrated control system; 2) 
it is used to train operative personnel; 3) it is used to analyse 
situations like leaks, inconsistency between different meters, 
etc. 

Each tank has several integrated sensors for external and 
internal temperature, density, height of the fuel in the tank. 
Internal temperature is measured using distributed 
(multipoint) thermometer measuring temperature in several 
points on different depth in parallel. The density meter and 
level (height) of the fuel is traversed in the fuel starting from 
level 0 and finishing at the bottom of the tank. The pipe 
system includes mass-meter computerized devices and valve 
control. Valves can control fuel flow but they do not have 
internal position stabilization and have to be controlled by 
the main system. A general view of a tank, its 
sensors/actuators and pipes, is shown in Figure 4.  

Having more than 10 different tanks and a large number 
of pipes makes the control and measurement task rather 
complicated. All tank sensors and actuators were connected 
to the upper level control system via Profibus PA in 
compliance with explosion hazardous areas safety 
requirements. Massmeters and valves as specific hardware 
were simulated using other mixed SW-HW simulators of the 
devices. With this simulating environment in mind, a 
construction for object simulation was built. The structure of 
the multilayered tank simulator is shown in Figure 5.  

The tank simulator is built using the program generation 
approach. It is generated by the program generator using 
building blocks from the block library (pre-programmed and 
pre-compiled elements like “PID-controller”, “first-order 
filter”, “ADC driver”, etc.). As has been said, the tank 
simulator is a multi-layered system. Each element is 
simulated separately. Every local simulator is implemented 
using Single Board Commuter (SBC) with an ARM core and 
the necessary peripheral devices. Each SBC is driven by 
RTOS and the real-time part of the program generator – the 
RT interpreter and communication library.  

Every low-level element is connected to the upper level 
simulator layer which coordinates them, implements an 
upper-level tank model and logic and supports 
communication to the upper levels of the system simulator. 
Thus, every complex tank simulator operates as a component 
of components. Using this approach and combining this 
simulator for every tank with simulators for connecting pipes 
and switching valves, we designed and implemented the tank 
farm simulator. The implemented simulator operated in 
various types of modes for normal and abnormal operation, 
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to work in real-time and simulated time-flow with the control 
system. It covered the following areas of use: 

 Control functions test and tuning (control 
system tests, tuning and development); 

 Operators education/training; 

 Abnormal situations analyses. 
The main problems of the implemented simulator were 

two: 1) the Profibus network; 2) the number of elements to 
be simulated.  

The Profibus communication has one positive side – it 
has a well-known traffic scheme and communication load 
and introduced delays can be calculated. It has one drawback 
– it is very hard to simulate in a real environment because 
developing of a Profibus slave is a hard, slow, specific and 
expensive task. To avoid this problem we implemented 
Master-Slave network over RS 422 media with an upper 
level protocol similar to the Profibus. All delays were 
included in the network modules. Removing Profibus from 
the system for simulation purposes we switched all sensors 
and actuators to other (supported by them) networks. 

The solution of the problem with the number of the 
simulated elements was solved using an approach from the 
computer science. We had several tank types, valve types, 
pipe types and communication links. A template 
configuration for every different type of device was created.   
An instance of every specific device was parameterized and 
loaded into a SBC. All SBCs were connected following the 
connection scheme.  Thus, implementing each template only 
once and configuring it for every specific instance all 
simulator elements were built. Based on the component-
based system structure, they were connected one-by-one to 
the controller. This allowed the design group to verify and 
validate the solution starting from low and going to high 
system complexity. 

B. Business building simulator 

The next object that will be presented is a business 
building. It has many different stores, restaurants and other 
objects. 

The decision to build a simulator for building control 
purposes was taken for several reasons: 1) experiments with 
the real equipment are possible and real data were collected 
but they are expensive and after the beginning of the official 
object exploitation some of them became impossible 
(because they include measuring devices of utility companies 
– electricity, water); 2) Experiments with different scenarios 
of exploitation are impossible on the real object; 3) training 
of the exploitation personnel has to be done periodically; 4) 
the building owner needs an experimental field test for 
malfunction and abnormal situation analyses.  

Building control and data acquisition included electricity 
load control, all separate electricity, water and heat metering 
devices for every object, implementation of a number of 
scenarios for lighting, heating and other equipment control, 
control for abnormal situations and functioning, full time 
system log, etc. The building has several hundred sensors – 
smart or simple, several hundred actuators, switchers and 
intelligent output devices. This complex object has multi-
layered requirements for exploitation. This requires a multi-

layered control system. Simulation and testing of the full 
control system is impossible using standard approaches for 
computer simulation. 

The designed simulator consists of many low-level 
simulators for every single object. Controlled sub-objects can 
be separated in several classes of similarity. A single 
template for every object class was designed. After that they 
were instantiated and parameterized. The final structure is 
similar to that shown in Figure 3. The final simulator system 
has to have about 3000 different function blocks for 7 
computational and 3 logical low-level configurations and 2 
upper levels implementing simulation of integrated 
functions. It is very hard to implement such a system. That is 
why the simulator size was reduces to 1/10 of the real size 
but including all computational and logical structures. 
Additionally, modules were implemented simulating human 
streams, some behavioural scenarios, and abnormal 
situations in the electricity and water supply (malfunctions 
injectors). All simulation modules were implemented using 
SBC ARM-based computers with the appropriate physical 
periphery and communication. From a generalized point of 
view the controlled object is a heterogeneous distributed 
discrete-event system including a number of analogue inputs 
and outputs and several sub-objects of analogue type of 
functionality. Many of the controlled elements communicate 
to the controller via MBUS. The structure of the MBUS 
connections is shown in Figure 6.  

The control system includes a number of PLCs connected 
to their upper level (a SCADA system running on an 
industrial PC computer).  

 
Figure 6.  MBUS to MODBUS connection 

Every control loop is simulated by implementing an 
object model running on the SBC under RT OS and the real-
time interpreter of the generated by the program generator 
configuration. One of the most important features of the 
simulator is the ability to be re-loaded with different system 
internal statuses (contexts) and to re-execute situations which 
have happened and have been logged. Additionally, the 
simulator can run in parallel with the real system in fast time 
and to predict the object behaviour. The implemented 
integral HMI was used to train building operators to 
understand and control its functioning and all included 
subsystems. Additionally, full database for process logging is 
included. 

As in the previous example, one of the problems was the 
fact that simulation of a MBUS slave is hard. Fortunately, 
we did not need to simulate it to test functional 
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implementation. There are a lot of MODBUS simulators for 
the upper level implementations.  The communication library 
of the program generator was extended with modules 
implementing upper levels of MODBUS protocol. They 
were connected to the simulator of the low-level pulse 
sensors. The transmission from the simulation pulse module 
to MODBUS module was done using substitution of MBUS 
by I

2
C, but following the scheme in Figure 6. All upper 

layers were kept as they were. 
 

C. Food industry machine simulator 

The third object that will be presented is a relatively 
small system from the food industry. It is a machine for 
making sausages.  The size of the machine is about 2×2×3 m. 
It has very non-linear behaviour depending on many 
uncontrollable external disturbances – size and quantity of 
the prepared sausages or meat, quality of the bran for the 
smoke generator, variations of the current voltage and others. 
The mathematical model of the machine is statistical. It is a 
typical non-linear object with internally distributed 
parameters. Experiments with this machine are expensive 
and more over they are in-repeatable in general. Testing of 
the controller and its software is hard. It was decided to 
design and implement an object simulator to prepare an 
experimental environment with predictable behaviour and 
make testing and tuning of all control equipment repeatable. 
The simulator was based (as before) on a SBC computer 
with physical periphery as the real object. All analogue and 
discrete signals were implemented using process I/O devices 
with high resolution and precision. The mathematical model 
of the object was implemented using library modules from 
the program generator library. Additionally, a 
communication channel to the upper level of the simulator 
was implemented, which was used to set different parameters 
of the model (to switch between different sausages and meats 
and to simulate differences between different pieces of them 
in the machine). Using this component approach and 
program generation a simulator was built which covered the 
real machine behaviour up to 98%. The controller was 
designed to meet all project requirements. The main problem 
in this simulation was to build-in enough possibilities to 
induce disturbances in the object but, because this is mostly 
mathematical and logical and not a hardware problem. The 
controller was implemented using standard modules from 
program generator’s library. The only problem was to 
connect triggers activating these modules and their re-
parameterization to the upper level of the implemented 
simulator. Using external data lines similar to the ones 
shown in Figure 3 this was implemented.  

 

V. ANALYSES OF THE PRESENTED APPROACH FOR 

SIMULATORS IMPLEMENTATION USING PROGRAM 

GENERATION 

In the paper, three different objects and the approach to 
designing their simulators were demonstrated. One is a small 
but very complex food machine, the second is a huge 
distributed dominantly discrete object (a business building) 

and the third is a heterogeneous distributed object including 
transport delays, a lot of non-linearites and additionally 
several problems in communication simulation. All designed 
simulators were of the type ‘semi-natural’ or ‘partial 
emulators’. They include both specific and general-purpose 
hardware and operate in real-time software. The presented 
objects are very different. These simulators are based on one 
and the same approach – a component design using an 
automated tool, a program generator. This generator 
produces a system configuration that is executed by the real-
time system. All hardware for the simulators is similar – 
SBC with ARM processors and physical periphery of the 
type similar to the real object hardware interface. Depending 
on the object size the real simulator is implemented using 
one or several SBCs. They are connected to the implemented 
control system via analogue, discrete, pulse and 
communication interfaces.  

Analyses of the complexity of the implemented 
simulators compared with the control system show that they 
are on similar levels. In all three situations the design phase 
of the simulator facilitating the good understanding, 
modelling and design of the control system. The possibility 
to use simulators running with time speed different form the 
real time enabled both fast checks of situations and real-time 
prediction of eventual dangerous object behaviour to be 
conducted. The numerical nature of the simulators and 
control systems enables situation analyses using system logs 
and other status information for events that have happened. 
Education and training of operators of those systems is based 
on the same principles. The main difference is the size of the 
simulator. Hardware implementation depends on the number 
of inputs, outputs and communication lines to be simulated. 
The possibility of the program generator to build templates 
and to instantiate them by sets of real parameters speeds up 
many times the generation of systems with big number of 
similar elements (as every component-based system).  

Comparing the time necessary for the simulators building 
we will say that the most hard for design from the modelling 
point of view was the food machine simulator. The most 
time consuming was the building simulator because it had 
the biggest number of I/Os and real elements to be simulated 
even using template instantiation.  

VI. CONCLUSION 

The paper presented an approach to building object 
simulators using program generators and one and the same 
toolset for the control system and simulator implementation. 
The presented semi-natural simulators enabled the control 
system and the simulator to be designed simultaneously. This 
approach reduces the investments and risks in the design and 
implementation phases of the control system design. The 
possibility to use that implemented simulator not only for 
control system tests but for personnel training and for events 
and abnormal situations analyses makes them a helpful, 
relatively inexpensive tool with great flexibility and 
versatility. The difference from other HIL is the ability to 
include easily parts of the real hardware together with the 
simulated one. 
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Figure 2. General structure of a multi-layered semi-natural simulator. 
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Figure 3. Combined structure “control system ↔ simulator” 

 
 

Figure 4. Fuel tank – general structure and sensors/actuators 
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Figure 5. Fuel tank – simulator structure 
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