
Program Generation Approach to

Semi-Natural Simulators Design and Implementation

Emanuil Kirilov Markov, Vesselin Evgueniev Gueorguiev, Ivan Evgeniev Ivanov

Technical University Sofia, TUS

Sofia, Bulgaria

e-mail: {emarkov, veg, iei}@tu-sofia.bg

Abstract—This paper presents ideas for design,

implementation and results of creation of computerised semi-

natural simulators of the different heterogeneous objects. The

presented approach extends well known solutions for object

simulators creation using the program generation technique.

Simultaneous co-design of the control system and the simulator

is explained as well. Both stand-alone and distributed objects

and control systems are included in the presented work.

Examples of different implementation of the presented

approach are presented.

Keywords – semi-natural simulation; program generation;

distributed control system; hardware-in-the-loop.

I. INTRODUCTION

Computer-based simulators of many different complex
objects are a reality today. They have become a reality with
the expansion of cheap computers since the 80’s of the 20

th

century. The observation of many different implementations
and approaches to simulators creations are available
[1][2][3].

Large-scale hazardous objects like planes and nuclear
power plants have been simulated for decades. Simulation of
various real systems has multiple advantages compared to
experimenting and use of the actual system. Some of the
advantages are: the possibility to train the personnel to
operate various types of machines; to use such simulations in
preparations and optimizations of control algorithms; to
repeat and analyse specific situations.

The two main classes of simulators – fully numerical
simulators and physical simulators mark the boundaries. The
first one implements a kind of mathematical model (any
type). MATLAB® is a very good example of this approach
[8]. The second one is physical (material) emulation of the
object. There are a lot of simulators between these two
endmost types. Now, we can find Hardware-in-the-loop
(HIL) [9], Software-in-the-loop (SIL) [8], Agent-based
simulators [10] and other approaches to simulators building
inside the boundaries mentioned above. HIL and SIL are a
bit opposite because HIL means that one implements a
simulation of the object when the controller is ready-for-use.
The SIL means that one has a computer-based model of the
object and puts in the same environment the code of the
controller and runs the two together only numerically. The
Agent-based simulation is a new adoption of the component-
oriented programming design approach and can be discussed
in this paper as a way how to present distributed/de-
centralized systems and to implement their simulations.

All these simulators implement some model of the object
and communicate somehow with the controller or
experimental environment.

A brief examination of the papers and on-line materials
today shows many different simulators and simulation
environments [4][5][6].

One of the definitions of control systems architecture
concerns their geographical position. The variants are
‘concentrated/centralized’ and ‘distributed’ control systems.
When we talk about distributed control systems their
architecture reflects the structure of the object – distributed
on the level of parameters (huge objects) or distributed as
points of control. In both cases the control system is
influenced by the communication network and all delays
introduced by it, loss of packets, etc. [3]. Using the presented
below approach both concentrated and distributed systems
will be covered.

The paradigm for program generation of many kinds of
software is not new. Its implementation in the area of control
systems varies in aspects and mathematical background but
has a stable place in today’s methodologies. Here we will
discuss the version of program generation when the target
system is build using pre-programmed library components
which are only instantiated and linked in the real
implementation. The full code-generation like the one used
in MATLAB Embedded Studio [8] or ADA [11][12] based
real-time systems is out of the scope of this paper.

The approach presented in this paper is focused on using
one and the same tool (program generator) to design both the
HIL-type “semi-natural” object simulator and the control
system.

The name “semi-natural” means that the simulator is not
only a computer, running the object model and connected to
the controller via its physical interface, but additionally that
the simulator can include parts of the real object’s hardware.
In this case we have something that is mostly a simulator but
has some elements of an emulator.

The present paper is structured as follows: Section II
resents the proposed connection between control systems,
objects and their simulators; Section III presents a short
description of the used program generator and the formal
model implemented by it; Section IV presents the
implementation and analyses of several objects and their
simulators; Section V is the conclusion.

132Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

II. BACKGROUND OF THE PRESENTED APPROACH

To implement a simulator using mathematical models of
the object is an old and widely used idea. To implement an
object emulator is a very old idea, too. To implement a
simulator using both a mathematical model and elements of
some physical hardware is a more recent one. To implement
a simulator using a physical interface, which is the same as
the original object interface is a much newer idea. It has been
possible to do that only for the last 20 years when both
computer hardware and peripheral devices became cheap
enough and versatile. To implement a simulator for a
distributed object is an old idea but it has been possible to
implement it only in the last few years after the advance in
communications and especially in guaranteed real-time
communications.

A complex control system has a structure similar to that
shown in Figure 1.

Figure 1. General structure of a multi-layered control system.

Here, we assume the object to be a single one. Later, we will
discuss how that view can be expanded for distributed
objects. When we implement a computerized simulator with
a real peripheral device, we can present it on the diagram
shown in Figure 2.

When we combine both a control system and a simulator,
the resulting diagram looks like the one shown in Figure 3.

This approach allows different ways to simulate the
object to be used:

 full simulation using a physical interface of the
same type as the real object (and possibly
including parts of hardware from the object);

 partial simulation using a physical interface,
emulating the real interface;

 partial simulation using signal exchange based
on a type of networking.

In [1], several different variants for simulation are
described but here we discuss only those that include parts of
real physical hardware.

In all cases, if the object and/or control system has HMI
it is presented “as is” in the couple “control system-
simulator”.

Discussing simulation of a distributed object, we have to
include simulation of its distributiveness in the object
properties. Depending on the type of the distributiveness we

can simulate transport delays, internal status (as temperature)
propagation delays and inequalities, distribution of process
run (like conveyor and machinery near it) and so on. The
complexity of that simulation can be higher than the
complexity of the control system. This complexity increases
in the case shown in Figure 3, when the control system and
the simulator are connected via an additional “line” for
activity synchronisation.

III. THE PRGEN – PROGRAM GENERATOR FOR

DISTRIBUTED CONTROL SYSTEMS AND OBJECT SIMULATORS

The program generator used for establishing a simulation
model is designed for creating distributed real-time control
systems. It has been implemented in many different versions
over the years [14][15][16]. It is based on an extended
Moore machine implementing specific actions in each node
of the state machine. Specific elements of its design reflect
the possibility to generate both stand-alone and distributed
systems. The generated distributed systems can operate as a
“virtual mono-machine” or as a component-based (or agent-
based) system. A graph representation of the control
algorithms is chosen. The system can be described by its
activities. Each activity is a separate thread. The activity
thread consists of two different graphs:

 A State Transition Graph (STG) – a graph model for
modelling the finite automaton, describing the general
behaviour of the activity thread. The graph is
represented like statechart described in [17].

 A Signal Flow Graph (SFG) – a graph model
representing the signal transformation flow (the
dataflow [18]). It is built by Function blocks, very
similar to Simulink®. It is mainly used to model the
continuous part of the system, to handle the I/O and
communication drivers and to calculate complex
predicates used in transitions of the State Transition
Graph.

A. State Transition Graphs

Each system node has at least one activity thread. This
thread is implemented by its STG defining the logical
behaviour (although there are some implementations
containing only one state with an infinite loop to itself). The
STG has one entry point (initial node) with no other function
than pointing where exactly the execution of the STG should
start when the system is started. For each state of the STG
one or more SFGs can be attached. For each state one or
more transitions should be defined. A transition to the same
state is acceptable. Decision making for transition to be
performed is based on an associated to each state Binary
Decision Diagram (BDD). Values for the BDD’s predicates
are taken from the node SFGs.

For each STG, an execution period is defined, defining
how often the graph activates and executes its current state.
The execution period can be modified if necessary during
runtime (e.g., when the system is in idle/power-down state
scanning inputs and refreshing outputs at a high rate are not
necessary).

There are two types of transitions defined: synchronous
and asynchronous. When a synchronous transition is

Layer III – Functional control

Layer II – Control of an integrated

subsystem

Layer I – Control of a single object

or an isolated subsystem

Object

133Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

executed the graph execution stops and the task goes in sleep
mode until the execution period expires. When an
asynchronous transition is activated, the task goes directly to
execution of the state following the transition, without
waiting for the period to expire.

B. Signal Flow Graphs

The SFG models the data flow of the system. Typically
the SFG entry points are Function blocks representing I/O
drivers, communication drivers or in specific cases data
calculated by other SFGs. Then the data is passed to other
Function blocks, which make transformations, check
constraints and conditions and produce output for I/O
drivers, communication, user visualization, database logging,
etc. Each Function block in the SFG is executed only once
per SFG execution. This is ensured by the connections
between them. There are two types of connections: activating
and non-activating. The SFG execution starts with Function
blocks which do not have activating inputs. After their
execution, the remaining blocks are checked for activation.
The blocks that have all their activating inputs set, start
execution and continue until the last block of the SFG
finishes its job.

Each Function Block (FB) can have up to three types of
inputs and two types of outputs.

The inputs of FB can be: Link Inputs (activating or non-
activating); Parameter Inputs; Internal State Inputs. Each
input can be linked to only one data source. An input which
takes data from two different sources (e.g. from the outputs
of two separate preceding FBs) is not available.

FBs can have two types of outputs. Static outputs – can
be a data source of unlimited number of link inputs. Point to
point outputs – cannot be a data source of inputs. Instead,
they can be linked to a static input and change their value.

All inputs and outputs can hold matrix values, allowing
complex system models to be generated.

What makes this implementation different from many
others is that a communication subsystem is implemented as
a number of communication modules using both logical and
physical data exchange protocols. Using this approach the
general model of the implemented system – control or
simulator, is virtual mono-machine. The communication bus
is implemented hidden, but observable [20][22].

Extended description of the model of the presented
program generator can be found in [14][19].

IV. SIMULATOR PROJECTS

Hereafter, we will present three different objects where
the control system and the simulator were implemented
using the presented approach. All objects have dominantly
analogue behaviour, but they are very different in size and
general complexity. A comparison between the implemented
control system and simulators will be provided as well.

These objects are a fuel tank farm, a business building
and a machine for making sausages (food industry). The first
two objects are big distributed objects and the third one is a
stand-alone machine. The following points will be discussed
for each object: 1) why we need to build a simulator; 2) real
object structure; 3) how the simulator is built, and 4)

problems when the program generator was used to
implement the simulator and how they were solved.

A. Tank farm control system and simulator

The tank farm control system includes the loading and
unloading of tanks, calculation of the available fuel based on
several different measured parameters, control of the pipe
system. The control system is built by using an industrial
OPC-based system connected to the field devices via
Profibus connections (both DP and PA).

The need to invest time and money in a simulator of the
tank farm has several dimensions: 1) it is used to design and
tune different elements and the integrated control system; 2)
it is used to train operative personnel; 3) it is used to analyse
situations like leaks, inconsistency between different meters,
etc.

Each tank has several integrated sensors for external and
internal temperature, density, height of the fuel in the tank.
Internal temperature is measured using distributed
(multipoint) thermometer measuring temperature in several
points on different depth in parallel. The density meter and
level (height) of the fuel is traversed in the fuel starting from
level 0 and finishing at the bottom of the tank. The pipe
system includes mass-meter computerized devices and valve
control. Valves can control fuel flow but they do not have
internal position stabilization and have to be controlled by
the main system. A general view of a tank, its
sensors/actuators and pipes, is shown in Figure 4.

Having more than 10 different tanks and a large number
of pipes makes the control and measurement task rather
complicated. All tank sensors and actuators were connected
to the upper level control system via Profibus PA in
compliance with explosion hazardous areas safety
requirements. Massmeters and valves as specific hardware
were simulated using other mixed SW-HW simulators of the
devices. With this simulating environment in mind, a
construction for object simulation was built. The structure of
the multilayered tank simulator is shown in Figure 5.

The tank simulator is built using the program generation
approach. It is generated by the program generator using
building blocks from the block library (pre-programmed and
pre-compiled elements like “PID-controller”, “first-order
filter”, “ADC driver”, etc.). As has been said, the tank
simulator is a multi-layered system. Each element is
simulated separately. Every local simulator is implemented
using Single Board Commuter (SBC) with an ARM core and
the necessary peripheral devices. Each SBC is driven by
RTOS and the real-time part of the program generator – the
RT interpreter and communication library.

Every low-level element is connected to the upper level
simulator layer which coordinates them, implements an
upper-level tank model and logic and supports
communication to the upper levels of the system simulator.
Thus, every complex tank simulator operates as a component
of components. Using this approach and combining this
simulator for every tank with simulators for connecting pipes
and switching valves, we designed and implemented the tank
farm simulator. The implemented simulator operated in
various types of modes for normal and abnormal operation,

134Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

to work in real-time and simulated time-flow with the control
system. It covered the following areas of use:

 Control functions test and tuning (control
system tests, tuning and development);

 Operators education/training;

 Abnormal situations analyses.
The main problems of the implemented simulator were

two: 1) the Profibus network; 2) the number of elements to
be simulated.

The Profibus communication has one positive side – it
has a well-known traffic scheme and communication load
and introduced delays can be calculated. It has one drawback
– it is very hard to simulate in a real environment because
developing of a Profibus slave is a hard, slow, specific and
expensive task. To avoid this problem we implemented
Master-Slave network over RS 422 media with an upper
level protocol similar to the Profibus. All delays were
included in the network modules. Removing Profibus from
the system for simulation purposes we switched all sensors
and actuators to other (supported by them) networks.

The solution of the problem with the number of the
simulated elements was solved using an approach from the
computer science. We had several tank types, valve types,
pipe types and communication links. A template
configuration for every different type of device was created.
An instance of every specific device was parameterized and
loaded into a SBC. All SBCs were connected following the
connection scheme. Thus, implementing each template only
once and configuring it for every specific instance all
simulator elements were built. Based on the component-
based system structure, they were connected one-by-one to
the controller. This allowed the design group to verify and
validate the solution starting from low and going to high
system complexity.

B. Business building simulator

The next object that will be presented is a business
building. It has many different stores, restaurants and other
objects.

The decision to build a simulator for building control
purposes was taken for several reasons: 1) experiments with
the real equipment are possible and real data were collected
but they are expensive and after the beginning of the official
object exploitation some of them became impossible
(because they include measuring devices of utility companies
– electricity, water); 2) Experiments with different scenarios
of exploitation are impossible on the real object; 3) training
of the exploitation personnel has to be done periodically; 4)
the building owner needs an experimental field test for
malfunction and abnormal situation analyses.

Building control and data acquisition included electricity
load control, all separate electricity, water and heat metering
devices for every object, implementation of a number of
scenarios for lighting, heating and other equipment control,
control for abnormal situations and functioning, full time
system log, etc. The building has several hundred sensors –
smart or simple, several hundred actuators, switchers and
intelligent output devices. This complex object has multi-
layered requirements for exploitation. This requires a multi-

layered control system. Simulation and testing of the full
control system is impossible using standard approaches for
computer simulation.

The designed simulator consists of many low-level
simulators for every single object. Controlled sub-objects can
be separated in several classes of similarity. A single
template for every object class was designed. After that they
were instantiated and parameterized. The final structure is
similar to that shown in Figure 3. The final simulator system
has to have about 3000 different function blocks for 7
computational and 3 logical low-level configurations and 2
upper levels implementing simulation of integrated
functions. It is very hard to implement such a system. That is
why the simulator size was reduces to 1/10 of the real size
but including all computational and logical structures.
Additionally, modules were implemented simulating human
streams, some behavioural scenarios, and abnormal
situations in the electricity and water supply (malfunctions
injectors). All simulation modules were implemented using
SBC ARM-based computers with the appropriate physical
periphery and communication. From a generalized point of
view the controlled object is a heterogeneous distributed
discrete-event system including a number of analogue inputs
and outputs and several sub-objects of analogue type of
functionality. Many of the controlled elements communicate
to the controller via MBUS. The structure of the MBUS
connections is shown in Figure 6.

The control system includes a number of PLCs connected
to their upper level (a SCADA system running on an
industrial PC computer).

Figure 6. MBUS to MODBUS connection

Every control loop is simulated by implementing an
object model running on the SBC under RT OS and the real-
time interpreter of the generated by the program generator
configuration. One of the most important features of the
simulator is the ability to be re-loaded with different system
internal statuses (contexts) and to re-execute situations which
have happened and have been logged. Additionally, the
simulator can run in parallel with the real system in fast time
and to predict the object behaviour. The implemented
integral HMI was used to train building operators to
understand and control its functioning and all included
subsystems. Additionally, full database for process logging is
included.

As in the previous example, one of the problems was the
fact that simulation of a MBUS slave is hard. Fortunately,
we did not need to simulate it to test functional

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

B
U

S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

B
U

S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

B
U

S

In
te

gr
at

ed
 p

ul
se

se
ns

or
 w

ith
 M

B
U

S

MBUS concentrator

MODBUS to upper level

135Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

implementation. There are a lot of MODBUS simulators for
the upper level implementations. The communication library
of the program generator was extended with modules
implementing upper levels of MODBUS protocol. They
were connected to the simulator of the low-level pulse
sensors. The transmission from the simulation pulse module
to MODBUS module was done using substitution of MBUS
by I

2
C, but following the scheme in Figure 6. All upper

layers were kept as they were.

C. Food industry machine simulator

The third object that will be presented is a relatively
small system from the food industry. It is a machine for
making sausages. The size of the machine is about 2×2×3 m.
It has very non-linear behaviour depending on many
uncontrollable external disturbances – size and quantity of
the prepared sausages or meat, quality of the bran for the
smoke generator, variations of the current voltage and others.
The mathematical model of the machine is statistical. It is a
typical non-linear object with internally distributed
parameters. Experiments with this machine are expensive
and more over they are in-repeatable in general. Testing of
the controller and its software is hard. It was decided to
design and implement an object simulator to prepare an
experimental environment with predictable behaviour and
make testing and tuning of all control equipment repeatable.
The simulator was based (as before) on a SBC computer
with physical periphery as the real object. All analogue and
discrete signals were implemented using process I/O devices
with high resolution and precision. The mathematical model
of the object was implemented using library modules from
the program generator library. Additionally, a
communication channel to the upper level of the simulator
was implemented, which was used to set different parameters
of the model (to switch between different sausages and meats
and to simulate differences between different pieces of them
in the machine). Using this component approach and
program generation a simulator was built which covered the
real machine behaviour up to 98%. The controller was
designed to meet all project requirements. The main problem
in this simulation was to build-in enough possibilities to
induce disturbances in the object but, because this is mostly
mathematical and logical and not a hardware problem. The
controller was implemented using standard modules from
program generator’s library. The only problem was to
connect triggers activating these modules and their re-
parameterization to the upper level of the implemented
simulator. Using external data lines similar to the ones
shown in Figure 3 this was implemented.

V. ANALYSES OF THE PRESENTED APPROACH FOR

SIMULATORS IMPLEMENTATION USING PROGRAM

GENERATION

In the paper, three different objects and the approach to
designing their simulators were demonstrated. One is a small
but very complex food machine, the second is a huge
distributed dominantly discrete object (a business building)

and the third is a heterogeneous distributed object including
transport delays, a lot of non-linearites and additionally
several problems in communication simulation. All designed
simulators were of the type ‘semi-natural’ or ‘partial
emulators’. They include both specific and general-purpose
hardware and operate in real-time software. The presented
objects are very different. These simulators are based on one
and the same approach – a component design using an
automated tool, a program generator. This generator
produces a system configuration that is executed by the real-
time system. All hardware for the simulators is similar –
SBC with ARM processors and physical periphery of the
type similar to the real object hardware interface. Depending
on the object size the real simulator is implemented using
one or several SBCs. They are connected to the implemented
control system via analogue, discrete, pulse and
communication interfaces.

Analyses of the complexity of the implemented
simulators compared with the control system show that they
are on similar levels. In all three situations the design phase
of the simulator facilitating the good understanding,
modelling and design of the control system. The possibility
to use simulators running with time speed different form the
real time enabled both fast checks of situations and real-time
prediction of eventual dangerous object behaviour to be
conducted. The numerical nature of the simulators and
control systems enables situation analyses using system logs
and other status information for events that have happened.
Education and training of operators of those systems is based
on the same principles. The main difference is the size of the
simulator. Hardware implementation depends on the number
of inputs, outputs and communication lines to be simulated.
The possibility of the program generator to build templates
and to instantiate them by sets of real parameters speeds up
many times the generation of systems with big number of
similar elements (as every component-based system).

Comparing the time necessary for the simulators building
we will say that the most hard for design from the modelling
point of view was the food machine simulator. The most
time consuming was the building simulator because it had
the biggest number of I/Os and real elements to be simulated
even using template instantiation.

VI. CONCLUSION

The paper presented an approach to building object
simulators using program generators and one and the same
toolset for the control system and simulator implementation.
The presented semi-natural simulators enabled the control
system and the simulator to be designed simultaneously. This
approach reduces the investments and risks in the design and
implementation phases of the control system design. The
possibility to use that implemented simulator not only for
control system tests but for personnel training and for events
and abnormal situations analyses makes them a helpful,
relatively inexpensive tool with great flexibility and
versatility. The difference from other HIL is the ability to
include easily parts of the real hardware together with the
simulated one.

136Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

ACKNOWLEDGMENT

Parts of the presented work are funded by the Bulgarian
NSF under DRNF02/3 project.

REFERENCES

[1] J. A. Carrasco and S. Dormido, Analysis of the use of industrial
control systems in simulators: State of the art and basic guidelines,
ISA Transactions, Volume 45, no. 1, January 2006, pp. 295-312

[2] A. Negahban and J. S. Smith, Simulation for manufacturing system
design and operation: Literature review and analysis, Journal of
Manufacturing Systems, Volume 33, Issue 2, April 2014, pp. 241–
261

[3] W. Li, X. Zhang, and H. Li, Co-simulation platforms for co-design of
networked control systems: An overview, Control Engineering
Practice vol.23, 2014, pp. 44–56

[4] The Rapid Automotive Performance Simulator (RAPTOR),
http://www.swri.org/4org/d03/vehsys/advveh/raptor/default.htm [last
accessed: 08.08.2014].

[5] M. Pasquier, M. Duoba, and A. Rousseau, Validating Simulation

Tools for Vehicle System Studies Using Advanced Control and

Testing Procedure, http: //www.autonomie.net/docs/6 -
papers/validation/validating_simulation_tools.pdf [last accessed:

08.08.2014].

[6] IAEA, Use of control room simulators for training of nuclear power
plant personnel, Vienna, 2004, IAEA-TECDOC-1411, ISBN 92–0–
110604–1.

[7] M. Johnstone, D. Creighton, and S. Nahavandi, Enabling Industrial
Scale Simulation / Emulation Models, In Proceedings of the 2007
Winter Simulation Conference, 2007, pp. 1028-1034.

[8] MathWorks, Generate and verify embedded code for prototyping or
production, http://www.mathworks.com/embedded-code-generation/,
[last accessed: 08.08.2014].

[9] J. A. Ledin, Hardware-in-the-Loop Simulation, Embedded Systems
Programming, Feb. 1999, pp. 42-60.

[10] C. Macal and M. J. North. Agent-based modeling and simulation. In
Proceedings of the 2009 Winter Simulation Conference, ed. M. D.
Rossetti, R. R. Hill, B. Johansson, A. Dunkin, and R. G. Ingalls,
Piscataway, New Jersey: Institute of Electrical and Electronic
Engineers, Inc., 2009, pp. 86-98.

[11] D. A. Watt and B. A. Wichmann, W. Findlay, "Ada: Language and
Methodology." Prentice-Hall, 1987

[12] A. Burns and A. Wellings, Real-Time Systems and Programming
Languages (Fourth Edition) Ada 2005, Real-Time Java and C/Real-
Time POSIX, April 2009, Addison Wesley Longmain, ISBN: 978-0-
321-41745-9

[13] N. Baldzhiev, V. Bodurski, V. Gueorguiev, and I. E. Ivanov,
Implementation of Objects Simulators and Validators using Program
Generation Approach, DESE 2011, Dubai, UAE, December 2011

[14] C. K. Angelov and I. E. Ivanov, “Formal Specification of Distributed
Computer Control Systems (DCCS). Specification of DCCS
Subsystems and Subsystem Interactions”. Proc. of the International
Conference “Automation & Informatics’2001”, May 30 - June 2,
2001, Sofia, Bulgaria, vol. 1, pp. 41-48.

[15] I. E. Ivanov and K. Filipova, “Integrated scheduling of
heterogeneous CAN and Ethernet-based hard Real-Time network”,
Proc. of IEEE spring seminar 27th ISSE, Annual School Lectures,
Bulgaria, 2004,vol. 24, pp.481-485

[16] I. E. Ivanov and V. Georgiev, “Formal models for system design”,
Proc. of IEEE spring seminar 27th ISSE, Annual School Lectures,
Bulgaria, 2004,vol. 24, pp. 564-568

[17] D. Harel, “Statecharts: A visual formalism for complex systems”
Science of Computer Programming 8 (1987), pp. 231-274

[18] K. M. Kavi and B. Buckles, “A Formal Definition of Data Flow
Graph Models” IEEE Transactions on computers. vol. C-35, no. 11,
November, 1986

[19] I. E. Ivanov, “Control Programs Generation Based on Component
Specifications”, PhD thesis, 2005, Sofia, (in Bulgarian)

[20] C. K. Angelov, I. E. Ivanov, and A. A. Bozhilov. Transparent Real-
Time Communication in Distributed Computer Control Systems.
Proc. of the International Conference “Automation &
Informatics’2000”, Oct. 2000, Sofia, Bulgaria, vol.1, pp. 1-4

[21] A. Dimov, I. E. Ivanov, and K. Milenkov, "Component-based
Approach for Distributed hard Real-time Systems", Information
Technologies and Control, 2, 2005

[22] A. Dimov and I. E. Ivanov, Towards development of adaptive
embedded software systems, Proceedings of TU Sofia, vol. 62,
book.1, 2012, pp. 133-140

Figure 2. General structure of a multi-layered semi-natural simulator.

Simulator (part 1)
Simulator (part 2)

Discrete I/O
Simulator (part 3)

Analog I/O

I2C or other

industrial interface

I2C or other

industrial interface

Simulator (part N)
any I/O

Simulator – upper layer

Simulator - HMI

137Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 3. Combined structure “control system ↔ simulator”

Figure 4. Fuel tank – general structure and sensors/actuators

Layer I – Control of a single object

or an isolated subsystem

Layer III – Functional coordination

Layer II – Control of an integrated subsystem

SCADA layer and HMI

S
y

n
ch

ro
n

iz
at

io
n

 i
n

te
rf

ac
e

co
n

tr
o

l
sy

st
em

 ↔
 s

im
u

la
to

r

S
y

n
ch

ro
n

iz
at

io
n

 i
n

te
rf

ac
e

co
n

tr
o

l
sy

st
em

 ↔
 s

im
u

la
to

r

Simulator (part 1)
Simulator (part 2)

Discrete I/O
Simulator (part 3)

Analog I/O

I2C or other

industrial interface

I2C or other

industrial interface

Simulator (part N)
any I/O

Simulator – upper layer

Simulator - HMI

Layer I – Control of a single object

or an isolated subsystem

Layer I – Control of a single object

or an isolated subsystem

Layer I – Control of a single object

or an isolated subsystem

Integrated sensor

To
external , T

o
internal

fuel depth, fuel temperature

(in several points)

Input pipe

Output pipe

Massmeter

Massmeter

Flow control valve

Flow control valve

Network line to upper

level control system

138Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

Figure 5. Fuel tank – simulator structure

Massmeter and valve
integrated
simulator

M
as

sm
et

er

p
ro

to
co

l

V
al

v
e

p
ro

to
co

l

Massmeter and valve
integrated
simulator

M
as

sm
et

er

p
ro

to
co

l

V
al

v
e

p
ro

to
co

l

Input pipe simulator Output pipe simulator

In
te

g
ra

te
d

 s
en

so
r

-

si
m

u
la

to
r

Tank simulator – upper layer

Network line to upper

level control system

Network line to upper

level simulator

139Copyright (c) IARIA, 2014. ISBN: 978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation

