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Abstract—Algorithmic trading strategies are most often evaluated
by running against historical data and observing the results. This
limits the evaluation scenarios to situations similar to those for
which historical data is available. In order to evaluate high fre-
quency trading systems in a broader setting, a different approach
is required. This paper presents an agent-based financial market
simulator that allows the exploration of market behaviour under
a wide range of conditions. Agents may simulate human and
algorithmic traders operating with different objectives, strategies
and reaction times and market behaviour can use combinations
of simulated and historical data. The simulator models the
market’s structure, allowing behaviours to be specified for market
makers and liquidity providers and other market participants.
The primary use of the system has been in the evaluation of
algorithmic trading strategies in a corporate setting, but other
uses include education and training as well as policy evaluation.
Keywords–Agent-Based Simulation, Financial Markets, High Fre-
quency Trading

I. INTRODUCTION
Algorithmic trading has grown rapidly around the globe

and has dramatically changed how securities are traded in
financial markets. According to a few reports [1]–[3], more
than 50% of the volume of U.S. equity markets in recent years
has been generated by algorithmic trading. In order to manage
risk exposure and optimize profit, algorithmic trading strategies
are generally evaluated for correctness and performance before
launching them in real markets. This is carried out in practice
through simulators. Existing simulators significantly rely on
real-time market data or historical data, typically recorded from
actual market for the purpose of back-testing trading models
during their development cycle. While this can provide traders
with valuable information, there are a number of pitfalls. First,
live market data is not always available, which restricts the use
of simulators to certain market hours. In addition, the trading
strategies tested do not have any impact to the market as they
can only follow the trend and their orders are simply executed
based on the current market conditions. Similar issues also
exist in back-testing approaches where trading strategies are
tested against existing data set with the problematic assumption
that the orders would not have changed the historical prices if
they were executed in the real market. Moreover, this approach
is limited by potential over-fitting. By refining the parameters
of a trading strategy on a particular period of historical data,
the results can become skewed and produce returns that can
never work again. Last, but not least, existing simulators
typically do not provide a standard protocol for interaction
with users. Instead, they require skills in specific programming
languages and demand trading strategies to be implemented

on top of proprietary Application Program Interfaces (APIs).
This can restrict the evaluation of trading strategies to a single
simulation environment. This issue can be seen in TT Sim [4].

We are motivated by the question of how to design and
implement a simulator that can support market simulation
research and is suitable for evaluation of algorithmic trading
strategies. The simulator should be independent of any par-
ticular data feed and be able to provide a realistic testing
environment by reproducing certain phenomena of a real
market. This would be beneficial to strategy testing as some
phenomena, such as the flash crash [5], are hard to predict
and do not occur often in real markets. Such phenomena can,
however, be imitated easily in the simulation environment.
Multiple users should be able to connect to the simulation
server at the same time, allowing them to not only assess the
viability of their trading strategies using pre-defined market
conditions, but also to create very specific ones that suit their
needs.

We present such a simulator that is intended to be useful
for evaluating trading strategies. It supports a variety of se-
curity types, including equities, futures, foreign exchange, and
options. The simulator may run a market consisting exclusively
of simulated (human or robotic) trading agents using different
trading strategies (e.g., to study algorithms or market effects),
or external participants (typically human) may log in and inter-
act with the simulated market (e.g., for training). Participants
(logged in users or simulated trading agents) can submit both
limit and market orders with different time-in-force, allowing
them to interact with the simulation environment as if they
were trading in a real market. At the same time, the simulator
adopts the Financial Information eXchange (FIX) protocol [6],
an open standard that is used extensively by global financial
markets. This allows multiple users to interact with the simula-
tion environment simultaneously and independently. In contrast
to other simulators that require testing trading strategies to
be built on top of proprietary APIs, our simulator uses open
protocols so can be integrated easily into their systems with
little modification. The simulator is able to run in two different
settings, each of which is useful in certain scenarios.

The first setting uses simulated trading agents, each of
which is able to adapt and react to real-time market events by
following selected pre-defined strategies. All of the agents are
configurable. By adjusting their configurations, we can create
very specific market conditions that would occur only rarely in
a real market. In addition, the agent-based simulator is able to
run at any time as the data are generated by the computerized
agents. The agent-based simulator is useful in that it allows
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Figure 1: Agent-based simulator architecture.

users to create desired market conditions where they can test
their trading strategies whenever it is needed.

In the second setting, the simulator receives live market
data from real exchanges and broadcasts this data to each user.
Orders that are submitted by users are executed based on the
current market conditions. This type of simulator is claimed
by some to be more realistic. Meanwhile, the real market data
simulator, in practice, has access to all the products available
in the markets, while in agent mode this is not feasible unless
there is a further configuration. We provide both these settings
to users to evaluate their trading strategies, and give them the
freedom to choose the one that is most suitable for their needs.
A demo of our simulator is available for download at [7].

The remainder of this article is organized as follows:
Section II presents the architecture of the simulator. Section
III discusses the more important design and implementation
details. Section IV illustrates a variety of scenarios where the
simulator is found useful. Section V compares the current
approach with related work. Finally, Section VI presents
conclusions and discusses directions for future work.

II. SIMULATOR ARCHITECTURE
We now present the framework of the simulator which

allows logged in traders to interact with artificial intelligent
agents. The framework currently consists of a matching en-
gine, a communication interface and a variety of simulated
trading agents. Figure 1 shows a high-level overview of the
architecture of the simulator. In the setting of using live market
data, the agents will be replaced with data streams from real
exchanges.

A. Matching Engine
The core of the simulator is a matching engine that accepts

in-bound orders from both logged in users and computerized
agents. It maintains a number of order books, each of which
records the interest of buyers and sellers in a particular security
and prioritizes their orders based on their price and arrival time
(e.g., first come first serve). Buy orders with the highest price
and sell orders with the lowest price are placed at the top.
This centralized order system continuously attempts to pair

(a)

(b)

Figure 2: Order book snapshots: (a) Before an order match (b)
After an order match.

buy and sell orders and trades are announced when certain
matching rules are satisfied.

Matching rules are implemented based on continuous dou-
ble auctions. An incoming buy order is first compared with the
best sell order in the order book. If there is a price match, a
trade will be generated at the best price. The matching engine
will then send execution reports to the issuers of the two
orders and announce a trade to all market participants. If the
new order is not completely filled, the matching engine will
try to fill the remainder of the order with the next highest
ranking order available from the opposite side. This procedure
is continued until either the new order is completely filled or
there are no more matches. Figure 2 shows snapshots of an
order book before and after an order match.

The matching engine also publishes quote updates to all
subscribers. This is a major challenge as the matching engine
must be able to process a high throughput of data with very
low latency and broadcast updates to many subscribers at once.
This requires us to design and implement a highly efficient
financial information protocol for communications.

B. Communication Interface
The Financial Information eXchange (FIX) protocol is an

electronic communication protocol, first introduced in 1992,
whose primary objective is to exchange real-time stock trading
data between entities. It has experienced a tremendous growth
over the past years and has become the de facto communica-
tions standard in global financial markets. FIX messages are
constructed with a number of fields, each given by a tag-value
pair and separated by a delimiter. Figure 4 shows an example
of a FIX message.

The simulator may run a market consisting exclusively of
simulated trading agents running algorithmic strategies (e.g., to
study algorithms or market effects), or participants (typically
human) may log in and interact with the simulated market
(e.g., for training). To allow multiple users to interact with our
simulator simultaneously and independently, we use the FIX
protocol. The simulator provides each user a designated port
for login and maintains a dedicated channel for communica-
tion. Upon receiving a FIX message, the simulator retrieves the
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Figure 3: A simulated price movement in which spread was
controlled by a Market Maker Agent. The pre-defined spread
limit was set to 0.05.

8=FIX.4.2|9=201|35=D|49=Broker_16|
56=MatchingEngine|52=20140301-20:42:37.426|
34=357256|1=Sim_Account|11=8321660696624948305|
21=1|55=TD.CA|54=1|38=31600|40=2|44=93.77|
60=20140301-20:42:37.426|59=0|100=*|167=CS|10=128|

Figure 4: An example of FIX NewOrderSingle message. The
original delimiters have been replaced by “|” for clarity. The
message represents a buy limit order attempting to purchase
31,600 shares of the security TD Canada Trust at or below
$93.77.

information by parsing the tag-value pairs and then processes
the message accordingly. All returning messages, including
execution reports and quotes, are also encoded as FIX format
before sending back to each user. Using the FIX protocol
also provides easy access to our simulator. Most users in
both industrial and academic algorithmic trading settings are
familiar with the FIX protocol or have it already implemented
in order to connect to financial markets. This makes it possible
to interact with our simulator with little modification to their
systems.

C. Simulated Trading Agents
A financial market is considered as a dynamic system

constituting a heterogeneous group of investors, each following
their own trading strategy in an attempt to gain superior return.
A considerable amount of effort in the past years has gone into
the pursuit of proper modelling of the financial market system.
One well-known method, which we adopt, is to use agent-
based modelling [8] where each computerized agent represents
a human or robotic trader, and agents compete with each
other. This determines the price of securities and consequently
forms a market. Since price fluctuations can depend on the
interactions of all the agents and on additional conditions that
did not take place in historical data, trading strategies can
be arguably more fully evaluated by this approach than in
the back-testing model [9]. In order to create various market
conditions that are suitable for testing, we have developed
five pre-defined types of agents that represent an important

Figure 5: A comparison of two simulations with different
liquidity taking.

subset of trading entities we observe in the real market. These
agents are able to adapt to the market and interact with users’
algorithmic trading strategies. We outline each of these types
of agent below. Other agents may be defined by programmed
extensions, but the pre-defined agents are often enough to
model desired scenarios.
Market Maker Agent The Market Maker Agent plays neu-
trally against the market and, as its name suggests, is an
imitation of the market makers that commonly exist in many
exchanges, such as TSX [10] and NASDAQ [11]. A market
maker’s primary objective is to enhance the liquidity and the
depth of the market, typically for a specific security. This
provides an efficient way to get into and out of the market for
small investments in the given security. Market makers also
contribute to the stability of the market. When the security
price is moving significantly up or down, the agent will post
a reasonable volume of offers in an attempt to counter the
trend. The Market Maker Agent is sensitive to price changes
on both sides and keeps monitoring the difference between the
bid and ask (the spread). If the difference exceeds a pre-defined
threshold, it will adjust its orders accordingly to reduce the
spread. Figure 3 shows a simulated price movement in which
spread was monitored by a Maker Maker Agent.
Liquidity Taker Agent The Liquidity Taker Agent takes liq-
uidity from the market by posting market orders that are often
immediately executed at the best available price. This is a
special type of agent as it can be used to introduce volatility
to the market. By increasing the size or the frequency of the
orders, it can potentially fill more orders from the opposite
side, which often causes the quoted prices to change dramati-
cally. Figure 5 shows a comparison of volatility between two
simulations. The settings were the same except in the second
simulation the Liquidity Taker Agent issues market orders at
a higher frequency.
Liquidity Provider Agent In contrast, the Liquidity Provider
Agent provides liquidity to the market by placing limit orders
to the market. A buy limit order can only be executed at
the specified price or lower and a sell limit order can only
be executed at the specified price or higher. By posting limit
orders on both sides without immediately triggering a trade,
it adds liquidity to the order book and consequently increases
the depth and the stability of the market.
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Figure 6: The user interface of Swift Agent configuration.

Random Agent The Random Agent uses no information about
the market and issues random orders at certain time intervals.
This type of agent can be used to create chaos in the simulation
environment as well as to investigate the cause of certain
market phenomena. At each time a Random Agent decides
whether to apply an action to the market, and if so, to which
side. The order quantity varies within a specified range and its
value is computed using a pseudo-random number generator.
The order price follows a standard normal distribution with
the mean at the current trade price and with a configurable
standard deviation.
Swift Agent We have also developed a special type of agent
that we call the Swift Agent. Compared to the other four
agents, a Swift Agent is more sophisticated in that it is able
to control the number of open orders it places. This prevents
the agent from exposing itself to too much risk, just as human
traders would also do in a real market. Meanwhile, by reducing
the number of open orders in the matching engine, this type
of agent lightens the burden on the simulation server and
consequently improves overall performance. In addition, the
agent is able to monitor the price fluctuations of the simulated
market. If the price variation exceeds a certain threshold, the
agent will attempt to place more orders on the opposite side
to counter the trend.

III. IMPLEMENTATION
We have built two types of simulators based on the

framework presented in Section II, and we explain their
implementations below.

A. Agent-Based Simulation
A variety of existing agent-based simulators work in a

synchronous way where all agents are placed in a waiting
queue. At any given time only one agent is active and the
rest are all in a “sleep” state. The active agent performs some
actions against a matching engine, notifies the next agent
to “wake up” and then transitions back to a “sleep” state.
Thus, the next agent is not allowed to do anything until the
active agent finishes its job. Clearly this typical mechanism
differs significantly from real-world environments, which are
continuous and asynchronous. In order to address this issue,
our agent-based simulator, in contrast, supports asynchronous
operation of agents so that a number of agents can perform a

variety of actions at the same time. In addition, our simulator
guarantees that all requests submitted by agents are processed
at the precise time of their arrival. This avoids accumulating
inaccuracies as the simulation evolves. Our simulator also
maintains the correct ordering of the requests. This allows
simulations to respect causality, and each agent can re-schedule
its future actions.

Each agent provides a succinct graphical user interface for
quick configuration and to adjust the parameters that define
every aspect. Figure 6 shows a snapshot of the graphical user
interface of the Swift Agent. By adjusting the configuration
of each agent or the proportion of each agent type, one can
develop a flexible, realistic, and efficient simulated market with
large number of different agents. Figure 7 shows a snapshot
of launching multiple agents in our simulation environment.

B. Live-Data Simulation
We now describe another type of simulator which uses

live data from real exchanges. Orders received from users
are matched against the current quoted prices in the market.
This provides users a risk-free environment to test their trading
strategies in a realistic setting (although, of course, orders in
the simulation do not affect the live market). As mentioned
earlier, prior real market data simulation technology already
exists. However, our simulator outperforms others in several
different aspects. First, it supports a variety of security types,
including equities, futures, foreign exchange and options, while
others typically allow only a single security type. Second,
compared to existing simulators such as the Penn Exchange
Simulator (see Section V), which pulls only snapshots of
the current markets at certain time intervals, our simulator
uses tick-by-tick data. This has a much finer granularity
and therefore can reflect the current market conditions more
precisely. Last, but not least, unlike existing simulators that
typically require programming skills in specific languages, our
simulator adopts the FIX protocol, which will ease the process
of integrating the simulator into other systems.

The throughput of the matching system is extremely im-
portant. One of the biggest challenges we have encountered
in the development of the simulator was the delivery of
the massive volume of real-time market data to the trading
agents and logged in participants. Following 100 products,
we could easily hit the limit of our server, which is about
1500 quotes per second. As the simulator needs to publish
the quotes to each of its subscribers, the number of quotes
that actually pass through the system could be significantly
larger. To improve performance, we use immutable objects
in the matching engine, allowing multiple threads to use the
data simultaneously without exclusive locking. We found this
eliminated significant overhead. In our experiments, we found
that the server was able to subscribe up to 350 products and
latency was not observed after a long run.

C. The Software
The components of the simulator were written primarily

in the C# programming language. We also adopted F# to
implement the message objects that passed through the system
as it has native support for immutability. In total, there were
137 classes with about 40,000 lines of code, and it took ap-
proximately 30 person-months to implement. The FIX protocol
that we adopted was version 4.2, which is currently prevalent
in industry. The simulation servers were deployed on Microsoft
Windows 2012 servers.
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Figure 7: A snapshot of launching multiple agents.

IV. USEFUL SCENARIOS
Both the agent-based and the live-data simulator have been

adopted by Quantica Trading, a company located in Kitchener,
Canada, which develops algorithmic trading software. They
have been deployed on production servers to provide immedi-
ate access to users both inside and external to the company.
Both have been extensively used by researchers and engineers
on a daily basis.

We have found, informally, the agent-based and live-data
simulators to be useful in the following scenarios.

A. Trading System and Strategy Testing
Testing of algorithmic trading strategies can be challenging

as there can be a variety of conditions that must be taken into
account. Some conditions, such as a market crash, may not
occur very often in a real market, but they are extraordinarily
costly when they do occur and so must be examined. With
the agent-based simulator, we can easily reproduce these
conditions, and variants, to test strategies. Figure 8 shows a
bubble created using our simulator.

We have also provided a list of special order books in
our simulator, each of which applies a deterministic rule
when executing orders, such as full fill, partial fill, slow fill
and etc. We found they were particularly useful for testing
trading systems which typically require deterministic input and
output. By issuing orders on a special testing security, we can
anticipate deterministic responses, which are very suitable for
black-box testing.

B. Education and Training
Our simulator has also been found useful for education

and training purposes. By executing trades in the risk-free
simulation environment, it facilitates trading drills designed
for new traders, allowing them to learn how to execute trades
and manage risk faster.

C. Software Demonstration
Our simulator is also suitable for software demonstration.

With round-the-clock access and risk-free testing, users can
present demonstrations of their software applications at their
convenience.

D. Evaluating Regulatory Effects
A simulator of the type we present also benefits users

beyond the high frequency trading world. High quality sim-
ulation is essential to improve the regulatory environment for
North American markets. At the moment, the true impact of
regulation cannot be completely understood until it is in effect
in the markets. This means that regulation can have unintended
consequences or not achieve its desired results. High-quality
simulation can help improve this, reducing risk of events such
as the “Flash Crash” of 2010 [5].

V. RELATED WORK
Building a simulation environment that is suitable for

evaluation of algorithmic trading strategies is a problem for
which there has been considerable previous work. We highlight
some notable relevant contributions here.

225Copyright (c) IARIA, 2014.     ISBN:  978-1-61208-371-1

SIMUL 2014 : The Sixth International Conference on Advances in System Simulation



Figure 8: A bubble created by our simulator.

One of the earliest attempts was perhaps the Santa Fe
Artificial Stock Market, which was initiated by Brian Arthur
and John Holland. Their objective was to build a financial
market with an ecological system where successful strategies
would persist and replicate, and weak strategies would go
away. The first version of the Santa Fe Artificial Stock Market
became available in early 1990s and was published in [12]. It
adopted agent-based modelling techniques but was operated
naı̈vely. A price was announced by a market maker to all
agents, then each agent submitted an order to buy or sell one
share of stock. Most times, this market was out of equilibrium
with either more buyers or sellers. The smaller of these two
sets would get satisfied while the other would get rationed [13].
An advanced version was later developed, adding extensive
modifications to the first version. It was able to generate several
features similar to actual financial data. However, it did not
support continuous execution mechanisms. Time was broken
into discrete time periods t = 1, 2, ...n, in each of which agents
were asked in a row to place an order in the market. This was
not realistic compared to a real market where each participant
can trade asynchronously. Meanwhile, human users were not
allowed to interact with simulated environment.

The Penn Exchange Simulator was another software simu-
lator for algorithmic stock trading. It received real-time order
book data from Island Electronic Crossing Networks, which
was provided in the form of snapshots of the top 15 limit orders
(price and volume) [14]. The data was polled approximately
every 3 seconds. Compared to other simulation platforms
that modelled order book based on price information alone
(i.e., quotes), the Penn Exchange Simulator provided a more
realistic environment for simulation. For this reason, it had
been chosen to be the testing platform of several Trading
Agent Competitions [15]–[17]. The Penn Exchange Simula-
tor accepted connection requests from users. In a multi-user
simulation environment, the orders were matched both with
other users’ orders and with the orders from the real market.
This allowed blending the internal and external markets. To
evaluate the performance of each user, the Penn Exchange
Simulator automatically computed various quantities of inter-
est, including profit and loss. The Penn Exchange Simulator
provided designated ports, to which a number of clients could
connect. Each client was allowed to perform a variety of
actions such as buy or sell orders, examine his or her profile,
and monitor market data. On the other hand, there were several

drawbacks. First, it supported limit orders only and did not
allow securities other than stocks. This restricted its use to test
certain trading strategies. Second, users with enough resources
could potentially take advantage of the data latency by gaining
access to a faster real-time data source. Last, but not least,
once trading strategies were fixed, users were not allowed to
intervene during the day.

The Investopedia Simulator [18] was a web-based simu-
lator whose primary purpose was to introduce people to the
stock market. It used market data from real exchanges in
order to imitate the experience of dealing with a real online
brokerage account. Each registered user was allocated with
certain amount of virtual cash and could issue trades based
on real market data. Similar to the Penn Exchange Simulator,
the Investopedia Simulator was only available during market
hours. In addition, as only manual orders were allowed, it was
not possible to test algorithmic trading strategies.

VI. CONCLUSIONS AND FUTURE DIRECTIONS
Recent market events, such as the “Flash Crash” and

the Knight Capital trading disruption [19], have once again
stressed the need to have a platform that is suitable to develop
and evaluate algorithmic trading strategies. We have presented
a financial market simulator that supports a full range of
security types and allows users to interact as if they were
trading in a real market. In addition, it adopts FIX as the com-
munication protocol, allowing multiple users to interact with
the simulation environment simultaneously and independently.
We have also presented several types of simulated trading
agents which represent a subset of traders observed in real
markets. All of these agents are configurable and, by adjusting
their parameters, very specific market conditions can be created
to explore certain market behaviours. We have found that in
a corporate setting that our simulator is useful in a number
of scenarios, including system testing, education, training, and
policy evaluation.

There are a few interesting directions that we would like
to pursue in the future. First, all the securities offered by
the current simulator are independent from each other, but
in a real market some are correlated. That is, if the price
of one security changes, the other security will move in
either the same or the opposite direction. In order to create a
more realistic simulation environment, we may compute how
securities move in relation to each other from historical market
data and use such correlations to guide the agents when they
interact with the simulator. This would allow prediction of the
price movement of multiple securities and consequently better
evaluate overall market conditions. Second, we may wish to
compare the simulated market with the actual one. This would
allow us to assess not only the fidelity of the trading strategies
employed by our agent models but also the possible impact
if they were deployed in a real market. Last, but not least,
it would be interesting to develop advising agents to provide
support to human traders when trading against real markets,
helping them reduce risk and optimize profit.
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