
Virtualized Sensor System: an Access Unification and Software-defined Sensors

Naoki Aoyama

Graduate School of Engineering,
Nagoya Institute of Technology,

Nagoya-shi, 466-8555 Japan
Email: naoki@moss.elcom.nitech.ac.jp

Yonghwan Kim

Graduate School of Engineering,
Nagoya Institute of Technology,

Nagoya-shi, 466-8555 Japan
Email: kim@nitech.ac.jp

Yoshiaki Katayama

Graduate School of Engineering,
Nagoya Institute of Technology,

Nagoya-shi, 466-8555 Japan
Email: katayama@nitech.ac.jp

Abstract—As the growth and the spread of Internet of Things
(IoT), various context-aware applications, which determine their
behaviors based on the recognized context, are widely studied
and developed. To develop such applications, an application
programmer has to understand every sensor’s specification, e.g.,
access method (i.e., how to get a current value), for handling
all the necessary sensors. Moreover, even some sensors are the
same types, e.g., temperature sensors, they may have different
units of values, hence, the unification of each sensor’s unit may
be required. These make some inexperienced programmers hard
to develop context-aware applications. In this paper, we present
a novel middleware named Virtualized Sensor System (VSS), which
provides some features for application programmers as follows:
(i) provides unified methods to access every sensor in the system
without any knowledge of their specifications, and (ii) can create
new software-defined sensors by composing of some hardware
sensors. To help to create a new software-defined sensor, we present
a new markup language, Virtual Sensor Markup Language (VSML).
Our proposed system VSS and markup language VSML can make
the developments of the context-aware applications using various
sensors easy even if an application programmer is inexperienced
in them.

Keywords–Sensor Middleware; Sensor Virtualization; Software-
defined Sensor; Support for Application Developments; Internet of
Things.

I. INTRODUCTION

Background and contribution of this study, and related
works are introduced in this section.
A. Background and Contribution

As the growth and the spread of Internet of Things (IoT)
[1]-[3], various context-aware applications, which determine
its behavior based on the recognized context, are widely stud-
ied and developed [4]. Context-aware applications can provide
more flexible services to users based on their current context
(e.g., their locations, activity history, or their environments),
hence, more context-aware applications, especially using vari-
ous sensors, are expected to emerge. However, the emergence
of new various sensors may make many programmers difficult
to develop applications, because they should understand every
sensor’s specification to develop a context-aware application
using these new sensors. This implies that to make sensors
easy to use regardless of the specifications of new sensors is
an important issue. And as context-aware applications become
more multifaceted, some specific sensors which do not exist
but may be useful for some limited applications can be
demanded. For example, there can be application programmers
who want to use a water vapor capacity sensor which can be

Virtualized 

Sensor System

Sensor

Users

a request

past sensor data

calculated data 

using some other 

sensors

a request

a request

sensor data

(a)

(b)

(c)

Figure 1. Proposed system in this paper

calculated using one thermometer (i.e., temperature sensor) and
one hygrometer (i.e., humidity sensor) and there also can be
some other programmers who want to use a new motion sensor
consisting of several motion sensors which are referred in a
particular order. There are several problems for application
programmers to develop applications using various sensors.
Here, we mainly focus on the following three issues: (a) how
to acquire data from sensors of various specifications, (b) how
to refer to past data of sensors, and (c) how to use data from
sensors which do not actually exist but can be defined using
some other sensors. To solve the three issues mentioned above,
in this paper, we present a new middleware named Virtualized
Sensor System (VSS) which provides three helpful features for
sensor users as follows: (a) a function for unifying access
methods and data formats, (b) a database for managing all
the past data from sensors, and (c) a function for creating
software-defined sensors. From these features of our proposed
system, sensor users can easily access all sensors using unified
methods, even their past data, regardless of the actual existence
of them (see Figure 1).

B. Related Works

A system for unifying interfaces of IoT devices using SQL
query is proposed [6]. In [6], Unified IoT Device Query (UDQ)
system allows application programmers to use an unified
interface for using sensors. UDQ system is capable of unifying
interfaces of only hardware sensors. However, to use some
calculated data using some hardware sensors, an application
programmer has to implement some methods for its calculation
and accession for all the necessary sensors.

A system to manage network-connected sensors by ap-
plying Simple Network Management Protocol (SNMP) tech-
nology is also proposed [7]. The data generated by network-
connected sensors which are managed by SNMP are stored in
virtual database called Management Information Base (MIB).

14Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments



SNMP agents have MIBs, and they output the data in response
to requirements from SNMP managers. SNMP managers are
able to access MIBs that SNMP agents have by using com-
mands defined in SNMP. However, only hardware sensors can
be managed in the system proposed in [7], and the system
does not allow users to define new sensors’ data which are
calculated by data that hardware sensors generate.

A middleware named Global Sensor Networks (GSN) [8]
for processing sensor data in sensor networks is proposed. GSN
enables users of GSN to define new sensors through an XML-
based language. A new sensor defined by a user of GSN is
called a virtual sensor. Application programmers can acquire
data from new sensor networks consisting of defined virtual
sensors in the same way. However, the XML-based language
which is used in GSN makes a user of GSN difficult to define
a virtual sensor which is referred in a particular order because
a user of GSN cannot specify conditions which determine the
order directly. VSS provides a way to express a sensor which is
referred in a particular order to users of VSS, and users of VSS
can define such sensors easier than users of GSN (i.e., users
of VSS can direcly define such sensors). For example, a new
temperature sensor that notifies to users when the following
event occurs can be defined by users of VSS easier: an event
that sensor’s data generated by a hardware temperature sensor
drops below 20 degrees only after sensor’s data generated by
the same sensor becomes greater than 20 degrees.

A network simulator for Wireless Sensor Network (WSN)
named Configurable Multi-Layer WSN (CML-WSN) is pro-
posed in [9]. Each node in WSN has a capability for sensing
and ad-hoc network is constructed based on each node’s
communication range. One of the main problems of ad-hoc
networks is that there is no infrastructure, so the routes change
dynamically. This may cause a decrease in quality of services,
much power consumption, or security problems. As a result,
communication problems, e.g., packet loss, can be occurred.
To address the problems, CML-WSN allows users to create
network topologies, configure devices, inject packets, and
change network settings. However, different points between
CML-WSN and VSS are the features which are provided to
sensor users, and VSS provides methods to users of VSS that
make developments of applications easy.
C. Organization of this paper

The rest of the paper is structed as follows. We introduce
some preliminaries to help to understand our work in Section
II. Section III presents our proposed system VSS and its
prototype system is presented in Section IV. A conclusion and
future works are given in Section V.

II. PRELIMINARIES

Preliminaries to help to understand our work are introduced
in this section.
A. Sensors

In this paper, we call a device generating any digital data
which can be processed by any computational entities a sensor,
this means that sensors considered in this paper have wider
meaning than typical sensors. For example, we can consider
OpenWeatherMap [5], which is a web-based service providing
weather information, as a sensor even no hardware sensor
exists. We call any devices or services generating any digital
data an actual sensor.

Sensor

data

requests

(a) Pull

conditions

Sensor

data
(when conditions are satisfied)

(b) Push

Figure 2. Pull and Push data acquisition

B. Two acquisition types: Pull and Push
Pull: A pull acquisition is an acquisition method to acquire
sensor data immediately whenever it is requested.
Push: A push acquisition is an acquisition method to acquire
sensor data by notification from sensors when one or more
preset conditions by the sensor user are satisfied.

These imply that a pull and a push acquisition can be
expressed as an active and a passive acquisition respectively.
These two acquisition types are depicted in Figure 2.

C. Software-defined Sensor
In this paper, we call a sensor which is created by compos-

ing of actual sensors a software-defined sensor. For example,
a water vapor capacity sensor which can be calculated using
one temperature sensor and one humidity sensor, and a motion
sensor consisting of several motion sensors, which are referred
in a particular order are both software-defined sensors. Unified
methods provided to sensor users as an API enable sensor users
to use actual sensors and software-defined sensors in the same
way. We call a user who defines a software-defined sensor in
order to provide its data to sensor users a system manager.
We present an XML-based language named Virtual Sensor
Markup Language (VSML) which enables system managers
to define new software-defined sensors. We call a file written
in VSML a virtual sensor definition file. We assume that there
are processes which interpret virtual sensor definition files and
create requested software-defined sensors at all times.

III. PROPOSED SYSTEM: VSS

A design and an implementation of proposed system VSS
are introduced in this section.
A. Overview of VSS

An overview of VSS is shown in Figure 3. VSS has four
main layers in order to solve requests from sensor users illus-
trated in Figure 1. Firstly, sensor users can use virtual sensors
in VSS using two acquisitions (Pull and Push) regardless of the
specifications of the sensors due to Unifying Data Acquisition
Layer. Secondly, VSS enables sensor users to use unified data
formats due to Unifying Data Format Layer. Thirdly, VSS
enables sensor users to use all the past data due to Data
Management Layer. Finally, VSS enables sensor users to use
software-defined sensors defined by system managers due to
Creating Software-Defined Sensors (S.D.S) Layer.

To help to understand the features of our proposed system,
we give an example scenario here. Assume that there are two
different temperature sensors denoted by t1 and t2 respectively
and two different humidity sensors denoted by h1 and h2. And
we also assume a sensor user who considers to implement
a context-aware application using these all sensors and two
additional special sensors as follows: (a) a sensor outputs the

15Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments



Requests for storing

sensor data

Sensor

Users

Unifying Data Acquisition Layer

Requests for using

virtual sensors
Sensor

data

Requests for acquiring

sensor data

Sensor

data

Data Management Layer

・・・

Unifying Data Format Layer Creating S.D.S Layer

Sensor

data

Actual Sensors

Requests 

for acquiring

sensor data

Sensor

data

Requests for storing

sensor data

Figure 3. Architecture of our proposed system VSS

average value of two temperature values which are generated
by two different temperature sensors a year ago respectively,
and (b) a sensor of the same function as the sensor (a)
using two different humidity sensors. Let t3 (resp. h3) be the
former one (resp. the latter one). Note that the temperature
sensors t1 and t2 are actual sensors but t3 is a software-
defined sensor in this case. If the sensor user arranges all
these 6 sensors, the user must understand the specifications
of 4 actual sensors, and has to maintain database for storing
sensor data from at least 1 year ago. The sensor user easily
uses all sensors introduced above using the API provided by
VSS even the user never knows these sensors’ specifications.
Particularly, Unifying Data Format Layer unifies all sensors’
data formats and units. Note that the data format and the
unit depend on the specification of each sensor. Thus, the
sensor user does not need to know the specifications of 4
actual sensors. Data Management Layer maintains all sensors’
data, hence the sensor user can access the sensor data a
year ago. Creating S.D.S Layer allows users to create any
software-defined sensors freely, so the sensor user can create
two software-defined sensors in this case. Finally, Unifying
Data Format Layer provides many access methods for virtual
sensors in the system as an API. This layer allows the sensor
user to acquire sensors’ data easily. These all layers are
illustrated in Figure 3. As the example scenario introduced
above, our proposed system VSS offers many helpful layers
for sensor users who want to develop applications (especially,
context-aware applications) using various sensors. The detail
of each layer will be explained in the next subsection.

B. Layers which construct VSS
VSS consists of four layers as shown in Figure 3. Each layer

in Figure 3 consists of one or more modules, and each module
in any layers is a function, which consists of the following
three components: (a) input data, (b) steps of an execution,
and (c) output data. Note that any implementations of each
layer in Figure 3 is encapsulated from any modules in another
layer.

1) Unifying Data Format Layer: Modules in Unifying Data
Format Layer receives sensor data from actual sensors, and
converts the format of the sensor data into the predetermined
unified format.

2) Data Management Layer: Data Management Layer
manages all sensor data received from drivers in Unifying Data
Format Layer. Each sensor data received in Data Management
Layer is stored in its local database with its received time as its
timestamp. Data Management Layer realizes the following two

acquisition types: (a) returns sensor data which is maintained
in its local database when it requested, and (b) returns sensor
data which is maintained in its local database when its received
data is changed.

3) Unifying Data Acquisition Layer: Modules in Unifying
Data Acquisition Layer receive requests from sensor users and
realize the two types of acquisition (Pull and Push).
Pull: A module for pull acquisitions requests the most recent
sensor data before the specific time which is requested by a
sensor user to Data Management Layer, and forwards it to the
sensor user.
Push: A module for push acquisitions receives a sensor’s
name (consisting of a sensor’s type, a unit of output data, and
a datetime), a condition, and an event handler in advance, and
when this layer detects satisfactions of conditions required by
sensor users, the module notifies sensor users by calling event
handlers specified by them.

4) Creating S.D.S Layer: Creating S.D.S Layer creates
software-defined sensors defined by virtual sensor definition
files, and these sensors can be used as actual sensors. Creat-
ing S.D.S Layer maintains virtual sensor definition files and
interpret them. Creating S.D.S Layer bring sensor data which
are necessary for calculations from Data Management Layer,
calculate data using them, and send calculated sensor data
back to Data Management Layer. System managers can define
two types of software-defined sensors, combination-type and
sequence-type, using VSML. When a system manager sends
a virtual sensor definition file to VSS, Creating S.D.S Layer
creates a software-defined sensor based on a type which is
written in the file. Two types of specifications for system
managers to define software-defined sensors using VSML are
presented in the following paragraphs.
Combination type: Modules for combination-type software-
defined sensors have three roles. Firstly, these modules bring
sensor data which are necessary for calculations from Data
Management Layer. Secondly, these modules calculate data
using current sensors’ values. Finally, these modules send
calculated data to Data Management Layer. System managers
define a combination-type software-defined sensor by speci-
fying the following three items: (a) a description of one or
more method names of pull acquisition (i.e., which sensor data
are used for calculations), (b) a formula for calculations (i.e.,
how to calculate data specified in (a)), (c) a description of
metadata consisting of the following three items: (i) a sensor’s
type (e.g., temperature), (ii) a unit of output data, and (iii) a
data type which implies that defined sensor data consists of
only a datetime, or consists of a value and a datetime.
Sequence type: Modules for sequence-type software-defined
sensors have three roles. Firstly, these modules maintain each
sensor’s state in its local storage. Secondly, these modules
transit the state if necessary referring received sensor data in
its chronological order. Finally, this state transition determines
the output data and its output timing, and these modules send
the determined output data by the state transition to Data
Management Layer. In this paper, a state transition table is used
for maintaining a history of sensor data to create sequence-type
software-defined sensors. System managers define a sequence-
type software-defined sensor by specifying the following three
items: (a) a description of one or more method names of
push acquisition (i.e., which conditions are used for state

16Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments



transitions), (b) a description of a state transition table (i.e.,
how to determine output data using conditions specified in
(a)), (c) a description of metadata consisting of the following
three items: (i) a sensor’s type (e.g., temperature), (ii) a unit
of output data, and (iii) a data type which implies that defined
sensor data consists of only a datetime, or consists of a value
and a datetime.

C. Implementation of VSS
In this subsection, we explain the implementation of each

module in each layer, presented in the previous subsection, in
our proposed system VSS.

1) Unifying Data Format Layer: Unifying Data Format
Layer maintains sensor drivers. Each driver is corresponding
to each actual sensor in one-to-one. When a driver receives
sensor data from its corresponding actual sensor, the driver
converts the format of the sensor data into the predetermined
unified format. Each driver sends sensor data and its corre-
sponding metadata to Data Management Layer. A metadata
consists of a sensor’s name, a sensor’s type, a unit of output
data, and a data type which implies that the output data may
change or not. A metadata of each actual sensor is generated
and sent by its corresponding driver.

2) Data Management Layer: Data Management Layer
maintains a local database for storing sensor data and metadata.
It stores all the sensor data received from Unifying Data
Format Layer and Creating S.D.S Layer to its local database
with its timestamp (i.e., receipt time of sensor data), and it
sends corresponding sensor data to a module in Unified Data
Acquisition Layer or Creating S.D.S Layer when it requested.

3) Unifying Data Acquisition Layer: Unifying Data Acqui-
sition Layer consists of two modules for the two acquisition
types introduced in Section III.B. A module for pull acquisi-
tions provides a method for using pull acquisition illustrated in
Section III.B.3) to sensor users. A module for push acquisitions
consists of two components, a module for judging conditions,
and an Event-Condition-Action (ECA) rule database. The ECA
rule is a rule for an event-driven action. An ECA rule is
generally represented by the following syntax: On Event If
Condition Do Action, which means that when the Event occurs,
if a system satisfies the Condition, then the system executes
the Action. A module for judging conditions receives ECA
rules specified by sensor users. An ECA rule received by a
sensor user consists of the following three components: (a) a
sensor’s name for an Event, (b) an expression which includes
the sensor’s name specified in the Event for a Condition,
and (c) an event handler which is called when the Condition
is satisfied for an Action. For example, when a sensor user
requests to call an event handler when the output value from
one sensor T becomes greater than 20, a module for judging
conditions meets the requirement if the user assigns T > 20
as a Condition. An algorithm for push acquisitions is executed
as the following steps.

(Step1) When a sensor user sends a sensor’s name, a condi-
tion, and an event handler to the module for judging conditions,
a module for judging conditions registers the received sensor’s
name as an Event, the received condition as a Condition, and
the received event handler as an Action. This set of an Event,
a Condition, and an Action is registered as an ECA rule. The
module for judging conditions stores every ECA rule to its
database. (Step2) Whenever each sensor’s name registered as

ECA rule

database

A module for

judging conditions

Sensor

Users

Data management Layer

A module for

push acquisitions

Step1

Step4

Step2

Step3

Figure 4. A module for push acquisitions

an Event outputs a data with its timestamp, the module for
judging conditions acquires it from Data Management Layer.
(Step3) When the module for judging conditions acquires
new data from a sensor registered as an event, it checks
the conditions referring the corresponding ECA rules in ECA
rule database. If the conditions are satisfied, the module for
judging conditions proceeds the next step, Step4. (Step4) The
module for judging conditions determines each event handler
corresponding the ECA rules, and call it.

Diagrams which illustrate how steps of proposed algo-
rithms proceed are depicted in Figure 4, 5, and 6. One or more
arrows of the same color as the frame color of the ellipse
surrounding each step ID illustrated inside it represent the
corresponding dataflow described in an algorithm. A diagram
for verifying the different steps of the above algorithm is
illustrated in Figure 4.

4) Creating S.D.S Layer: Creating S.D.S Layer consists of
the following four components: (a) virtual sensor definition
files, (b) a module for interpreting virtual sensor definition
files, (c) a module for combination-type software-defined sen-
sors, and (d) a module for sequence-type software-defined
sensors. Specifications of the module (a) are presented in
subsection III.B, and the module (b) can be implemented
with an XML parser, e.g., Document Object Model (DOM),
which is available as an API. And two implementations which
realize two modules, (c) and (d), are presented in the following
paragraphs.
Combination type: A module for combination-type software-
defined sensors consists of the following two components: (a)
a module for interpreting virtual sensor definition files, and
(b) a module for exchanging data with Data Management
Layer and calculating data using values which are got from
Data Management Layer based on those definition files. The
module (b) consists of for corresponding one combination-
type software-defined sensor. For example, we assume that
two sensors A and B exist in the system. In this case, a
system manager can create a new sensor C as a software-
defined sensor which returns the average value of the output
values of two sensors A and B. The formula to calculate the
output value of C is maintained by the above module (b). An
algorithm for a combination-type software-defined sensor is
executed as the following steps.

(Step1) A system manager sends a virtual sensor definition
file (shortly, definition file) to VSS. The definition file includes
(a) a list of methods for acquiring the values of the sensors
which are necessary for calculating a new value, (b) a formula
for a calculation, and (c) metadata of the required sensors.
These are stored in the module for calculations. (Step2) The
module for calculations gathers all the sensor values using

17Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments



A system

manager

a virtual sensor

definition file

contents of the 

definition file

A module for interpreting definition files

Data Management Layer

A module for 

initializing current

sensor values

Step1

A module for 

calculations

using current

sensor values

A formula and 

current sensor 

values

Step2 Step3

Step4

A module for calculations

Figure 5. A module for calculations

methods in the definition file, and calculate the value using
the gathered values referring the formula in the definition files.
This value is stored in this module temporarily. (Step3) The
module for calculations sends a request to send the corre-
sponding sensor values whenever they are updated to Data
Management Layer. This implies that a push acquisition from
Data Management Layer is realized by this request. Whenever
the module for calculations receives a new sensor data, the
module for calculations enqueues it to its local maintaining
queue. (Step4) If the local queue is not empty, the module for
calculations dequeues one sensor value and calculates a new
value again referring the stored formula. This new value is
compared with the value stored temporarily in Step3, and the
newly calculated value is sent to Data Management Layer as a
new updated value if it is different with the temporary value.
Otherwise, the new value is discarded. This process will be
repeated until its local queue becomes empty.

A diagram for verifying the different steps of the above
algorithm is illustrated in Figure 5.
Sequence type: A module for sequence-type software-defined
sensors consists of the following two components: (a) a
module for interpreting virtual sensor definition files, and (b)
a module for exchanging data with Data Management Layer
and transiting its current state based on those definition files.
The module (b) consists of each module for corresponding
one sequence-type software-defined sensor defined by system
managers. For example, when a system manager defines a
software-defined sensor T which sends sensor data to Data
Management Layer based on state transitions shown in TABLE
I, a module for state transitions maintains a state transition
table and a current state of the table. The value ϵ in TABLE
I represents that no data is sent to Data Management Layer
even if the condition is satisfied.

TABLE I. AN EXAMPLE OF STATE TRANSITION TABLE

Source Destination Condition Output

0 1 T > 20 ϵ
1 0 T < 20 ”return20”
1 2 T > 21 ϵ
2 1 T < 21 ”return21”

Note that every state transition in a module for state
transitions implies that the module for state transitions transits
the current state which is represented with a source to the state
which is represented with a destination defined by a system
manager. An algorithm for a sequence-type software-defined
sensor is executed as the following steps.

A system

manager

a virtual sensor

definition file

contents of the 

definition file

A module for interpreting definition files

Data Management Layer

A module for 

initializing 

a current state

Step1

A module for

state transitions

using 

a current state

A state transition

table and

a current state

Step2

Step3

A module for state transitions

Figure 6. A module for state transitions

(Step1) A system manager sends a virtual sensor definition
file (shortly, definition file) to VSS. The definition file includes
(a) a list of methods for acquiring the conditions of the sensors
which are necessary for transiting a current state, (b) a state
transition table consisting of the following four items: (i) a
state which represents a source, (ii) a state which represents a
destination, (iii) sensor data which is sent to Data Management
Layer when the transition from the source to the destination
occurs, and (iv) a method name of a push acquisition, (c)
an initial state name of the state transition table specified
in (a), and (d) metadata of the required sensors. These are
stored in the module for state transitions. The initial state
is set as a current state of the state transition table. (Step2)
The module for state transitions sends a request to send
the corresponding conditions whenever they are satisfied to
Data Management Layer. This implies that a push acquisition
from Data Management Layer is realized by this request.
Whenever the module for state transitions receives a new
sensor data, the module for state transitions enqueues the
condition which is satisfied in this case to its local maintaining
queue. (Step3) If the local queue is not empty, the module
for state transitions dequeues one condition. The module for
state transitions updates the current state with the state which
represents destination referring the stored state transition table
and the current state. If the state transition occurs by the
condition and data which is specified by a system manager
is a string of letters except for a special symbol ϵ referring the
stored state transition table, the module for state transitions
sends the data to Data Management Layer. This process will
be repeated until its local queue becomes empty.

A diagram for verifying the different steps of the above
algorithm is illustrated in Figure 6.

IV. PROTOTYPE SYSTEM

We implement the prototype system of our proposed sys-
tem to verify its operation.
A. Environment of the prototype system

The prototype system has three kinds of sensors: a tem-
perature sensor (BD1020HFV), a temperature and humidity
sensor (DHT11), and three motion sensors (Grove-PIR Motion
Sensor) as shown in Figure 7.

In our prototype system, all the layers of VSS are imple-
mented using Java, and we use the file system of Windows
10, NTFS, for the database of Data Management Layer.
WatchService [10], which is provided by a basic library of

18Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments



Arduino

Uno Rev3

BD1020

HFV

SensorShield

-EVK-001
+

Grove-PIR

Motion Sensor

Grove-PIR

Motion Sensor

Grove-PIR

Motion Sensor

Arduino

Uno Rev3
Ethernet

Shield2
+

Grove

Base Shield
+

DHT11

Figure 7. Hardware sensors used in the prototype system

Java, is used for detecting changes of sensor data in Data
Management Layer. The environment of the prototype system
is shown in TABLE II.

TABLE II. EXPERIMENTAL ENVIRONMENT

CPU Intel Core i5 6500 3.20GHz
OS Windows 10

RAM DDR4 8 GB
JRE 1.8.0_172-b11

As an example of the software-defined sensor, we introduce
a new software-defined sensor which varies its output value by
the sequence of the output of three different motion sensors
(see Figure 8).

B. Latency for push acquisitions
We confirm the average latency of push acquisitions, and

as a result, we found that the average latency is 3.65ms in
the case of prototype system. We expect to estimate latencies
which are confirmed in other environments of implementations
of VSS.

V. CONCLUSION AND FUTURE WORKS

In this paper, we proposed VSS which provides unified
methods to access any sensor regardless of their specifications,
and can create new software-defined sensors by composing of
one or more actual sensors.

To verify the operations of our proposed system VSS, we
implemented the prototype system, and we found our system
is operated well and push acquisitions have practically low
latency in the case of our prototype system. However, some
problems can be considered if our system is implemented in
the distributed manner, e.g., a system consisting of two or
more computational entities which are connected by networks.
Especially, there are several important issues which have to be
discussed in an implementation of Data Management Layer.
For example, we may consider the following issues: (a) a
fault-tolerance; a system guarantees its availability even if
some nodes in the system fail, and (b) load balancing; to
ensure a reliability of the system, a load of each node should
be balanced as possible. Finally, we also consider that how
to implement a sequence-type software-defined sensor can
consistently process the message from every sensor in the
actual order in which it is sent.

REFERENCES
[1] S. Madakam, R. Ramaswamy, and S. Tripathi, ”Internet of Things

(IoT): A Literature Review,” Journal of Computer and Communications,
volume 3, pp. 164-173, 2015.

<VirtualSensor name="multimotion" type="sequence">
<states>
<statename>0</statename>
<statename>1</statename>
<statename>2</statename>

</states>
<initialstate>
<statename>0</statename>

</initialstate>
<functions>
<function>
<source>0</source>
<condition>watchMotionUpdate("MOTIONa",

currenttime, "change")</condition>
<output>a</output>
<destination>1</destination>

</function>
<function>
<source>1</source>
<condition>watchMotionUpdate("MOTIONb",

currenttime, "change")</condition>
<output>ab</output>
<destination>2</destination>

</function>
<function>
<source>2</source>
<condition>watchMotionUpdate("MOTIONc",

currenttime, "change")</condition>
<output>abc</output>
<destination>0</destination>

</function>
</functions>
<description>
<sensortype>motion</sensortype>
<datatype>string</datatype>
<unit>null</unit>

</description>
</VirtualSensor>

Figure 8. A definition of a new motion sensor

[2] S. Pote, ”Internet of Things Applications, Challenges and New Tech-
nologies,” International Conference on Advances in Computer Tech-
nology and Management (ICACTM), At Pimpri Chinchwad, Pune, pp.
45-51, Feb 2018.

[3] Z. K. A. Mohammeda, and E. S. A. Ahmedb, ”Internet of Things
Applications, Challenges and Related Future Technologies,” World
Scientific News, Vol. 67, pp. 126-148, 2017.

[4] M. Baldauf, S. Dustdar, and F. Rosenberg, ”A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
Vol. 2, Issue 4, pp. 263-277, June 2007.

[5] OpenWeatherMap, URL: https://openweathermap.org/ [retrieved: Jan-
uary, 2019].

[6] S. Kinoshita, Y. Kuga, and O. Nakamura, ”Unifying Interfaces of
IoT Devices Using SQL Query (in Japanese),” Information Process-
ing Society of Japan Multimedia, Distributed, Cooperative, and Mo-
bile(DICOMO) Symposium, pp. 1036-1041, 2016.

[7] H. Hui-Ping, X. Shi-De, and M. Xiang-Yin, ”Applying SNMP Tech-
nology to Manage the Sensors in Internet of Things,” The Open
Cybernetics & Systemics Journal, pp. 1019-1024, 2015.

[8] K. Aberer, M. Hauswirth, and A. Salehi, ”The Global Sensor Networks
middleware for efficient and flexible deployment and interconnection
of sensor networks,” Swiss Federal Institute of Technology, Lausanne
(EPFL), Tech. Rep., pp. 1-21, 2006.

[9] C. Del-Valle-Soto, F. Lezama, J. Rodriguez, C. Mex-Perera, and E. M.
de Cote, ”CML-WSN: A configurable multi-layer wireless sensor net-
work simulator,” Applications for Future Internet: International Summit,
pp. 91-102, AFI 2016, Puebla, Mexico, May 25-28, 2016.

[10] WatchService, URL:https://docs.oracle.com/javase/7/docs/api/java/nio/
file/WatchService.html [retrieved: January, 2019].

19Copyright (c) IARIA, 2019.     ISBN:  978-1-61208-692-7

SMART ACCESSIBILITY 2019 : The Fourth International Conference on Universal Accessibility in the Internet of Things and Smart Environments


