
Model-based Visualization of Execution Traces and Testing Results

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: (bernard, lpeyton)@uottawa.ca

Mohamed Alhaj
Computer Engineering Department

Al-Ahliyya Amman University
Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract— Support for model-based visualization of execution
traces in testing tools is limited at best, even though model-
based approaches to specifying and visualizing behavior are
well known and commonly used in the development of software
applications. There has been active research on generating test
scripts from formal models of behavior, but most testing tools
in industry have little or no support for structuring test results
based on behavior models. We present an approach for
extending the Testing and Test Control Notation version 3
(TTCN-3) test results message sequence chart feature to
address this problem. TTCN-3 is a test specification and test
implementation language owned by European
Telecommunications Standards Institute (ETSI). This
leverages TTCN-3 support of the with-statement language
construct to allow for custom configuration of the test results
display. The approach is illustrated with two examples: testing
a communication protocol used for controlling multimedia
sessions called Session Initiation Protocol (SIP) and testing an
avionics flight management system.

Keywords-Software modeling; Behavior modeling; Software
testing; Automated Testimg; TTCN-3.

I. INTRODUCTION
This paper extends, updates, and provides more detail on

earlier research results presented at the International
Conference on Trends and Advances in Software
Engineering [1].

Support for model-based visualization of execution traces
in testing tools is limited at best, even though model-based
approaches to specifying and visualizing behavior are well
known and commonly used in the development of software
applications. There has been active research on generating
test scripts from formal models of behavior, but most testing
tools in industry have little or no support for structuring test
results based on behavior models.

We present an approach for extending the TTCN-3 test
results message sequence chart feature to address this
problem. This leverages TTCN-3 support of the with-
statement language construct to allow for custom
configuration of the test results display. TTCN-3 is a test
specification and test implementation language created by
industry and academia experts at the European
Telecommunications Standards Institute (ETSI) [2]. TTCN-
3 is a powerful scripting language that is employed to test
web applications [3], composite applications enabled in SOA
[4]. It also has been extended to web penetration testing that

involves- SQL injection and XSS attacks [5]. Using
separation of concerns modeling principle, TTCN-3
separates the Abstract Test Suite (ATS) from the
coding/decoding and communication, and presentation
details; providing powerful matching mechanism that
separates behavior and the conditions governing the
behaviors and there by promoting systematic approach to
testing. This separation of concern between ATS and
Adapter Test Layer provides full portability of test suites,
making them independent of platform implementation [6].

The approach is illustrated with two examples: testing a
SIP protocol and testing an avionics flight management
system.

 Model-based specification of behavior while developing
software applications can be done using interaction diagrams
in the Unified Modeling Language (UML) [7], message
sequence charts (MSC) in the Specification and Description
Language (SDL) [8] and use case maps (UCM) in the User
Requirements Notation (URN) [9]. The relationship between
model-based specifications of behavior and testing is well
understood [10]. A UML Testing Profile has been developed
to support model driven testing [11] that has been mapped to
test languages like Junit [12] and TTCN-3 [13]. Automatic
generation of test scripts from models has been an active area
of research using UML interaction diagrams [14], UCM [15]
and MSC [16].

Figure 1 shows an example of a simple MSC diagram
using Pragmadev Studio [17]. Such a diagram enables the
software engineer to visualize the behavior of a system even
before it has been implemented giving them the possibility to
detect design flaws early with model checking [18]. MSC
diagrams and UML interaction diagrams are similar, and
MSC diagrams can be derived from UCM diagrams [19]
[20]. MSC diagrams have been used to address security
[21], conformance [22], performance [8] and business
processes [9] as well as concurrency and real-time
processing [7].

Testing tools that are currently available on the market do
not adequately support for structuring test results in
relationship to model-based specifications. Test frameworks,
like Junit, which are oriented towards unit tests, have no
built-in support at all for MSC or similar diagrams.
Formally modelled test frameworks, like TTCN-3, are
oriented towards integrated component-based system testing
and do have basic support for message sequence charts.
Unfortunately, the available support is not sufficient when

296

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

working with complex, structured data. TTCN3; however,
does provide advantages over frameworks like Junit, with
strong typing, a powerful matching mechanism, and a
separation of concerns between the abstract test specification
layer and the concrete layer that handles coding/decoding
data, which can result in significant code reuse [23].

Figure 1. Simple MSC

Figure 2 shows the test results for a particular test script

in the TTWorkbench tool from Spirent [24]. It is displayed
in the context of an MSC diagram. There is similar support
for displaying results in the context of an MSC diagram in all
the industry tools that support the TTCN-3 standard,
including Testcast from Elvior [25], Tester from PragmaDev
[17] and the open source tool Titan that was originally
developed at Ericsson [26] [26] before being made available
as an Eclipse project. However, the TTworkbench tool is
significant because it is the only one that compares the test
oracle (the expected response message) against the data
received from the system under test (SUT) and flags any
mismatches in red.

Figure 2. Test results as MSC

While all of these tools are able to display test results in

the context of a basic MSC diagram, it is of limited use for

visualizing, analyzing and navigating test results in a
productive fashion. Typically, the “MessageType” shown in
Figure 2 is complex structured data. Displaying only the type
of the structured data does not really provide useful
information for understanding what has gone wrong.

Figure 3. Detailed message content display

To see the actual data, the user has to click on one of the

arrows in the diagram and the content or value of the
message is shown in a separate window (Figure 3 above). It
is difficult to understand the error, without being able to see
the step by step details of the data involved in each message
that leads to the error. This requires a tedious message by
message inspection for each arrow in the MSC diagram. On
the other hand, there is too much data in a complex data type
to display all the data for each message arrow in Figure 2.

Note that a model MSC and a test result MSC may not be
identical. A model MSC may contain alternate behavior as
shown in Figure 4, while the test result MSC is by definition
only a trace through the model MSC that would traverse only
one of the branches of the alternative behavior.

Figure 4. Complex Model MSC

We would like to address this MSC visualization

problem by enabling custom configuration of the MSC
diagram so that only a specified subset of the data will be
displayed in order to provide the tester with an overview of
the test results and the flow of data from message to
message. That way, only the most critical messages need to
be clicked on to view the full details in a separate window.
To achieve this goal we found that we can use the TTCN-3
standard extension mechanism, which allows the tester to

297

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

give instructions to the execution tools without having to
change the syntax or the semantics of the TTCN-3 language
itself.

The paper is organized as follows: Section II presents the
TTCN-3 concept of template; Section III presents the
Selecting data fields to display in TTCN-3; Section IV
presents two application examples: testing SIP protocol and
testing an avionics flight management system; and section V
presents the conclusion.

II. TTCN-3 CONCEPT OF TEMPLATE
The central concept of TTCN-3 is the template language

construct that enables the specification of both test stimuli
and test oracles as structured data in a single template. This,
in turn, is used by the TTCN-3 built-in matching mechanism
to compare the values of a template to the actual values
contained in the response message. This is supported for
both message-based and procedure-based communication.
More importantly, the template has a precise name and is a
building block that can be re-used to specify the value of an
individual field, or it can be re-used by another template that
specifies a modification to its values. This is a concept of
inheritance.

TTCN-3 has a data typing capability mostly because
early applications of TTCN-3 were in the telecommunication
sector where data typing is common in order that various test
events could share parts of data. In this case, these data types
would be abstract, independent from any coding/decoding
considerations. Abstract data has the advantage of enabling
generic matching mechanisms that are applicable to any kind
of application. For example, splitting data into fields of a
structured data type enables easy referencing to a specific
field for all sorts of manipulations.

The data string: “abcd10xyz” could be split into 3 fields
of a structured data type with its use after decoding into a
variable:

type record MyType
{
 charstring field_1,
 integer field_2,
 charstring field_3
}

var MyType myVar :=
{
 field_1 := “abcd”,
 field_2 := 10,
 field_3 := “xyz”
};

This approach is more efficient than, for example, an
assertion statement used in JUnit such as:

assertTrue(substring(response_string,
0,4).equals(“abcd”);

An example, to illustrate re-usability of template consists
in specifying the templates for the sender and the receiver
entities separately:

template charstring
entityA_Template:= “abcd@xyz.com”;
template charstring
entityB_Template:= “pqr@uvw.com”;

A stimuli message can then be specified by re-using them
as:

template MessageType stimuli_1 := {
sender := entityA_Template,
receiver := entityB_Template,
payload := “it was a dark and stormy
night”
}

The response template can itself reuse the above entity
addresses by merely reversing the roles of (sender and
receiver):

template MessageType response_1 := {
sender := entityB_Template,
receiver := entityA_Template,
payload := “nothing to fear”
}

The TTCN-3 template modification language construct
can be used to specify more stimuli or responses for the same
pairs of communicating entities:

template MessageType stimuli_2
modifies stimuli_1 :=
{
payload := “the sun is shining at
last”
}

Templates can then be used either in send or receive
statements to describe behaviors in the communication with
the SUT. Such behavior can be sequential, alternative or
even interleaved behavior and can make use of timers to
check for lost messages. The TTCN-3 receive statement does
more than just receiving data in the sense of traditional
general purpose languages (GPL). It compares the data
received on a communication port with the content of the
template specified. The following abstract specification
means that upon sending template stimuli_1 to the SUT, if
we receive and match the response message to the template
response_1 we decide that the test has passed. Instead, if we
receive and match instead the alt_response template we
decide that the test has failed and finally if the timer expires
we decide that the test is inconclusive.

Timer myTimer(5.0);
myPort.send(stimuli_1);
alt
{

[] myPort.receive(response_1){

298

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 setverdict(pass)}
[] myPort.receive(alt_response){

 setverdict(fail)}
[] myTimer.timeout {

 Setverdict(inconc)}
}

The use of structured data types for describing message
content is not new as we already mentioned, but their
internal representation in a generic way has the advantage to
allow a generic matching mechanism. In other words, instead
of specifying multiple assertions, all the fields of the
template are checked at once without any additional effort
from the test designer.

III. SELECTING DATA FIELDS TO DISPLAY
The central concept of our approach is to use the

standard TTCN-3 extension capabilities that can be
specified at the abstract layer using the with-statement
language construct. TTCN-3 extensions were included in
the TTCN-3 standard to allow tools to handle various non-
abstract aspects of a test such as associated codecs and
display test results in the most appropriate way the user
desires. While the language is standardized, there is no
standardization on how a tool operates and, in particular,
how it displays test results.

Most of the TTCN-3 tools provide test results in the form
of an XML file. This enables users to customize their own
proprietary test results display and to store test results in a
file for later consultation. We wanted to avoid having to re-
develop the MSC display software and especially the
message selection mechanism that displays the detailed
structured data table. We also wanted to maintain
consistency between the abstract and concrete layers for the
TTCN-3 tool. As a result, we decided to modify the TTCN-
3 test execution source code to handle the extensions we
specified using the with-statement language construct. This
approach is a first in TTCN-3 tools. We updated the display
software source code to display data values as configured by
the user using the with-statement language construct. This
ensured that the existing detailed data features when
clicking on the arrows of the MSC were preserved.

Here, we use the template definition itself and its
associated with-statement in the abstract layer as a way to
specify the field values that will be displayed in the MSC
diagram during test execution since the template is used by
the matching mechanism. The grammar in Bachus Naur
Form (BNF) for the TTCN-3 with-statement is as follows:

455.WithStatement::=WithKeyword
WithAttribList

456.WithKeyword ::= "with"

457.WithAttribList::="{"
MultiWithAttrib "}"

458.MultiWithAttrib::=
{SingleWithAttrib [SemiColon]}

459.SingleWithAttrib ::=
AttribKeyword [OverrideKeyword]
[AttribQualifier]FreeText

460.AttribKeyword::=EncodeKeyword
|VariantKeyword|DisplayKeyword
|ExtensionKeyword|OptionalKeyword

461.EncodeKeyword ::= "encode"

462.VariantKeyword ::= "variant"

463.DisplayKeyword ::= "display"

464.ExtensionKeyword ::= "extension"

465.OverrideKeyword ::= "override"

466.AttribQualifier ::= "("
DefOrFieldRefList ")"

467.DefOrFieldRefList ::=
DefOrFieldRef {"," DefOrFieldRef}

468.DefOrFieldRef ::=
QualifiedIdentifier |((FieldReference
| "[" Minus "]")
[ExtendedFieldReference]) |AllRef

469.QualifiedIdentifier ::=
{Identifier Dot} Identifier

470.AllRef ::= (GroupKeyword
AllKeyword [ExceptKeyword "{"
QualifiedIdentifierList"}"]) |
((TypeDefKeyword |TemplateKeyword
|ConstKeyword |AltstepKeyword
|TestcaseKeyword |FunctionKeyword
|SignatureKeyword |ModuleParKeyword)
AllKeyword [ExceptKeyword"{"
IdentifierList"}"])

In the above BNF, we can observe the definition of the
DisplayKeyword on line 463. Unfortunately, this display
construct cannot be used for our purposes. Effectively, what
is meant by display is the way a given identifier is
displayed. The example below given in the standard is very
clear means that the type name “MyService” will be
displayed in the test execution results log as “ServiceCall”.

type record MyService
{
 integer i,
 float f

299

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

}
with { display "ServiceCall" }

In the following example, where we are testing some
database content for information about cities that is a well
multi-layered data structure with fields and sub-fields, we
have used the extension keyword defined in line 464 of the
above BNF as follows.

template CityResponseType response_1
:= {

location :=
{

 city := "ottawa",
 district := "ontario",
 country := "canada"

},
statistics :=
{

 population := 900000,
 average_temperature := 10.3,
 hasUniversity := true

}
}
with
{extension
"{display_fields
{
 location {city},
 statistics {population}
}}";
}

The above TTCN-3 with-statement uses the standard
TTCN-3 extension keyword. It contains a user definition
that is represented as a string. The content of this string is
not covered by the TTCN-3 syntax but by syntax defined by
the user. Thus, it is the responsibility of the user to handle
syntax and semantic checking of that string’s content. First,
within this string, we have defined a keyword called
display_fields to indicate that the extension specification is
about selecting the fields to display. Then, we specify a list
of fields and subfields of the data type being used to display.
The curly brackets indicate the scope of subfields. In the
above example, we specified that we want to see the city
subfield of the location field and the population subfield of
the statistics field. This hierarchy is necessary because
various fields may have subfields with identical names.

We have implemented this feature on the Titan [26]
open-source TTCN-3 execution tool software since this
feature requires modifying the source code of the tool. None
of the commercial TTCN-3 tool vendors make their source
code available. Two areas of the Tool’s source code (see
Figure 5) were modified:

 The source code for the GPL executable code
generator that will propagate the selected fields to
display while generating execution logs.

 The TTCN-3 test case management code that
generates the Execution results log used by the
MSC display software.

Figure 5. Structure of a TTCN-3 tool

This did not require modification of the TTCN-3 parser

since the content of the with-statement is user defined, thus
not modifying the grammar of the TTCN-3 language.
However, the user definition turns up in the parse tree that is
used for test execution code generation. It is during this
code generation that we take into account this extension for
the display specification. Most TTCN-3 test execution is
based on execution code generated in a general-purpose
language (GPL) like Java for TTworkbench or C++ for
Titan and PragmaDev studio and multiple strategies for
TestCast. The general principle of the GPL generated code
is to transform the abstract TTCN-3 definitions into
executable GPL code. For example, in the TITAN tool, the
abstract TTCN-3 template definition response_1 shown
previously becomes a series of C++ definitions, one for
defining constants and the other to define the template
matching mechanism as follows:

static const CHARSTRING cs_7(2,
"75"),
cs_2(6, "canada"),
cs_8(6, "france"),
cs_4(8, "new york"),
cs_3(13, "new york city"),
cs_1(7, "ontario"),
cs_0(6, "ottawa"),
cs_6(5, "paris"),
…

300

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The above definitions are in turn used to generate the
C++ source code for the template definition as follows
where, for example, the city field gets assigned the cs_0
constant that represents the string “ottawa”:

static void post_init_module()
{
TTCN_Location
current_location("../src/NewLoggingSt
udyStruct.ttcn3", 0,
TTCN_Location::LOCATION_UNKNOWN,
"NewLoggingStudyStruct");
current_location.update_lineno(42);

#line 42
"../src/NewLoggingStudyStruct.ttcn3"
template_request__1.city() = cs_0;
template_request__1.district() =
cs_1;
template_request__1.country() = cs_2;
current_location.update_lineno(48);

#line 48
"../src/NewLoggingStudyStruct.ttcn3"
{
LocationType_template& tmp_0 =
template_response__1.location();
tmp_0.city() = cs_0;
tmp_0.district() = cs_1;
tmp_0.country() = cs_2;
}

We use the same technique of C++ variable definitions
to pass on the value of our field display definitions since at
run-time, the parse tree is no longer available. Test results
are written in a log file. The TTCN-3 MSC feature reads
that same log file to build and display the MSC itself. Here
this is illustrated by calling TITAN function log_event_str()
using the string value of the display_fields extension as
defined in the template being used as follows:

alt_status
AtlasPortType_BASE::receive(const
CityRequestType_template&
value_template, CityRequestType
*value_ptr, const COMPONENT_template&
sender_template, COMPONENT
*sender_ptr)
{
…

TTCN_Logger::log_event_str(":
extension {display_fields { location
{city}, statistics { population,
average_temperature}}}
@NewLoggingStudyStruct.CityRequestTyp
e : "),

my_head->message_0->log(),
TTCN_Logger::end_event_log2str()),
msg_head_count+1);
…

In that generated source code, only the display_fields
string and the data type are shown as strings. The content of
the message itself is found in the variable my_head-
>message_0. Here the log() method will actually write all
the fields with name and value in the log file.

Using the above source code, during the test execution,
the Titan tool writes a log file that contains the matching
mechanism results, i.e., the field names and instantiated
values of the TTCN-3 template but also after the code
modifications, the display_fields specifications as follows:

09:33:49.443373 Receive operation on
port atlasPort succeeded, message
from SUT(3): extension {
display_fields { location {city},
statistics { population,
temperature}}}

@NewLoggingStudy.CityResponseType :
{ city := "ottawa", district :=
"ontario", country := "canada",
population := 900000,
average_temperature := 10.300000,
hasUniversity := true
} id 1

The above data is used by the MSC display tool
(Eclipse) and shows two different kinds of information. The
first is the content of our display_fields definition and the
second is the full data that was received and matched. In
fact all we had to do was to prepend the field selection logic
to the actual log data that remained unchanged. The first
will enable the MSC display software to extract the
requested fields data and to display it as shown in Figure 13
(at the end of this paper), while the second one is used for
the detailed message content table that is obtained
traditionally by clicking on the selected arrow of the MSC
diagram as shown in Figure 3.

In the open source Titan tool, the execution code is
written in C++, but actual Eclipse-based MSC display is
written in Java. Thus we had to modify the Java code that
displays the MSC as well.

It should be noted that this implementation is valid for the
Titan tool only. Each tool vendor has different coding
approaches and would require different code generation
strategies. Unfortunately, since they do not make their
source code available, all we can do is to strongly encourage
these tool vendors to implement our MSC display approach.

IV. APPLICATION EXAMPLES
We have worked on two examples, both drawn from

industrial applications we were involved with. The first

301

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

example is a widely used abstract test suite for the SIP
protocol that has a very complex structured data type. It
illustrates the benefits of our MSC display approach because
in this case, it is obvious that it is totally impossible to
display all the fields of a SIP message, especially since most
of them are optional and would contain no values. The
second example is an avionics application that illustrates the
overview qualities of our approach when trying to navigate
through long sequences of test events. It consists of long
sequences of key strokes and screen display results
verification.

A. The SIP protocol testing example
The SIP protocol [27] is a very complex text based

protocol. For example, an INVITE method message text
would be as follows:

INVITE sip:user:passwd@127.0.0.1:5060
SIP/2.0
Call-ID: 121231231
Contact: <sip:auser@127.0.0.1:5060>
Content-Length: 0
CSeq: 666 INVITE
From: "aDisplayName"
<sip:auser@127.0.0.1:5060>
Max-Forwards: 70
To: "aDisplayName"
<sip:user@127.0.0.1:5060>
Via: SIP/2.0/udp 127.0.0.1:5060

Figure 6. TTCN-3 generated MSC

When testing with TTCN-3, this text message is
decoded and assigned to a complex structured data type
including a substantial proportion of optional fields. The
SIP protocol TTCN-3 test suites are available from ETSI
[2]. The resulting MSC diagram would indicate only the
message types but with no values as shown in Figure 6.

Figure 7. Portion of the detailed message content inspection window

Traditional TTCN-3 tools will display all the fields in

the detailed message content table, but the large amount of
fields renders its inspection tedious. Relevant information
may not be contiguous and requires scrolling through
several pages of the message content table as shown in
Figure 7. The user must click on some fields of interest to
see the structured content. However, most real application
messages make use of only a fraction of all the available
fields. Thus, our approach can easily display this fraction of
available fields in the MSC.

SIP application engineers actually use MSCs as models
to guide development as shown in Figure 8 for a typical SIP
call establishment and tear down. Note the alternative
behavior portion of the MSC diagram, “alt”, that expresses
the fact that the 100 TRYING event is optional. It could
happen or not depending on what is the load of the system.
It is mainly used to prevent premature timeouts.

302

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Industrial applications we have worked on consisted in
several hundreds of messages. The experience of walking
through the messages content made us aware of the need for
the approach we are suggesting. Thus here, there are no
additional activities required to produce the MSC from the
model and a straightforward comparison with the test results
MSC can be performed.

Figure 8. SIP protocol example model MSC

The ETSI definitions for the SIP protocol have used a
strategy to try to alleviate the data type display problem in
test result MSCs. The approach consists of redefining
several times the same structured data type giving different
type names like in the following excerpt where there is a
type for an INVITE method and the BYE request that are
absolutely identical from a field definition point of view but
they will display differently on the MSC using data type
names only. However, this approach has the disadvantage to
hide various other active fields that differentiate the
sequences of SIP events that otherwise would look the
same.

type record INVITE_Request
{
RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}
type record BYE_Request {
RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}

Where the main field is defined as:

type record RequestLine
{
Method method,
SipUrl requestUri,

charstring sipVersion
}

And the method type is an enumerated type:

type enumerated Method
{
ACK_E,
BYE_E,
CANCEL_E,
INVITE_E,
…

}

All of these can be used to specify a template that has all
its fields set to any value except for the method as follows:

template INVITE_Request
INVITE_Request_r_1 :=
{
 requestLine :=

{
method := INVITE_E,
requestUri := ?,
sipVersion := SIP_NAME_VERSION

},
msgHeader :=
{

callId :=
{
fieldName := CALL_ID_E,
callid := ?

},
 contact := ?,
 cSeq :=

{
fieldName := CSEQ_E,
seqNumber := ?,
method := "INVITE"

},
 fromField := ?,
 toField := ?,
 …

}

We can select the field for the SIP method field to
display in the test results MSC by adding the with-
statement to the above template as follows:

with
{ extension
"{display_fields
{ requestLine
{ msgHeader
{cSeq {method}
}} }}";
}

303

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The resulting test execution MSC using our
approach would look like Figure 9 which is easier to
recollect with the model shown on Figure 8.

Figure 9. SIP test execution MSC

This approach is particularly effective for SIP response
messages because they show the return code and the reason
verb in the status line. Here, the SIP test suite designers
have not used the type renaming strategy as they did for SIP
requests. Thus, all responses will show the Response type
name only on the traditional MSC. The status line is defined
as follows:

type record StatusLine {
charstring sipVersion,
integer statusCode,
charstring reasonPhrase

}

Which is used in the definition of the response type:

type record Response {
StatusLine statusLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}

A typical response message template can then use a
with-statement that would only specify the statusCode and
the reasonPhrase fields to be displayed.

template (value) Response
Response_200_s_1(
 CallId loc_CallId,
 CSeq loc_CSeq,
 From loc_From,
 To loc_To,
 Via loc_Via) := {
 statusLine := {

 sipVersion := SIP_NAME_VERSION,
 statusCode := 200,
 reasonPhrase := "OK"

},
 msgHeader := {
 callId := loc_CallId,

…
}

with extension
"{display_fields

 { statusLine
 { statusCode,reasonPhrase}}";

This will produce exactly the test results MSC that will
be a trace through the model MSC shown in Figure 8. Here
the additional benefit would consist in declaring a single
SIP message definition for SIP requests that would be used
by any of the SIP message kinds as follow:

type record SIP_Request
{
 RequestLine requestLine,
 MessageHeader msgHeader,
 MessageBody messageBody

optional,
 Payload payload optional
}

B. An Avionics testing example
The idea of selecting data to display on a test results

MSC originated in an industrial application that we have
worked on for testing the CMC Esterline Flight Management
System (FMS) [28]. The FMS shown in Figure 10 enables
pilots to enter flight plans and display the flight plan on the
FMS screen. A flight plan can be modified as a flight
progresses. Flight plans and modifications are entered by
typing the information using the alphanumeric key pad that
consist of letters of the alphabet, numbers and function keys.

Figure 10. Flight Management System

304

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For test automation purposes, key presses can be
simulated by sending messages to a TCP/IP communication
port. The content of a screen can be retrieved anytime with a
special function invocation that will return a response
message on the TCP/IP connection. Thus, we have the
behavior of a typical telecommunication system sending and
receiving messages with the difference that the response
message must be requested explicitly via a screen query
message. It is not coming back spontaneously and is subject
to response delays that must be handled carefully in case of
time outs.

In this case, stimuli messages are simple characters or
names of function keys. These messages are by definition
very short and can easily be displayed in full on the test
results MSC. For such short messages, we have devised a
default display option where if there is no with-statement
with a display field specification for a given template, the
MSC will display all data of this message. This is
particularly optimal for short message content like the FMS
key presses. The original test results MSC provided by Titan
was displayed using useless message type names as shown
in Figure 11.

The TTCN-3 abstract test suite has a data type definition
for the content of the FMS screen that is returned as a
response to the tester. The definition has been simplified
due to confidentiality requirements from the industrial
partner but this example renders the structural elements.
Each line of the screen is defined using the LineType data
type that has two subfields, the title and the data. Then, we
define a screen type that is composed of two lines. The real
application has a total of 26 subfields and illustrates well the
fact that the entire screen content cannot be displayed on the
test execution results MSC.

 type record LineType {
 charstring title,
 charstring data
 }

 type record ScreenType {
 LineType line_1,
 LineType line_2
 }

Using these data type definitions, we can define a

template to match against the screen content and specify in
the with-statement that we want to display only the data
subfield of the second line:

 template ScreenType
screen_response_1 := {
 line_1 := {

title := "waypoint 1",
data := "CYUL"},

 line_2 := {
title := "waypoint 2",

data := "CYYZ"}
 }

with {extension "display_fields {
 line_2 { data }}"};

All of these being used in the test case behavior

description as follows:

testcase loggingDisplayTC()
 runs on MTCType system SystemType {

 var SUTType sut :=

SUTType.create("FMS");

 connect(mtc:fmsPort, sut:fmsPort);

 sut.start(FMSbehavior());

 fmsPort.send("C");
 fmsPort.send("Y");
 fmsPort.send("U");
 fmsPort.send("L");
 fmsPort.send("EXEC");
 fmsPort.send("LEGS");

 alt {
 []fmsPort.receive(

screen_response_1) {
 setverdict(pass);
 }
 [] fmsPort.receive {
 setverdict(fail);
 }
 }

 sut.stop;
 setverdict(pass);

}

It is clear from looking at Figure 11 that this MSC is not

useful as an overview because it shows only the same
message type name for each stimulus while our approach in
Figure 14 shows the messages values, which allows the user
to explore rapidly the test results before deciding to go for a
fully detailed view of the results when for example the
matching of the test oracle with the resulting response
shows a failure. These values can be compared to those
shown in a model such as the UCM diagram in Figure 12.

The UCM diagram of Figure 12 can be transformed into
an MSC as described in [19] and shown in Figure 13. The
MSC diagram in Figure 13 can then be compared with the
test execution results shown in Figure 14.

305

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 11. Original TITAN test results MSC display

Figure 12. FMS model as UCM

Figure 13. MSC diagram generated from UCM

The response message contains the content of the screen

of the FMS. It is mapped to a data structure that contains
fields for the various lines of the screen and also subfields to
describe the left and the right sides of the screen. The FMS

has 26 such fields, a title line, 6 lines structured into 4
subfields and a scratch pad line. Normally a test is designed
to verify a given requirement, which consists in verifying
that a limited number of fields have changed their values.
For example, the result of a sequence of stimuli may have
changed the field that displays the destination airport on line
2 in the right part of the screen. This is specified as a display
fields request to show only the line_2 field and the subfield
data.

Figure 14. Modified Titan test result MSC

V. CONCLUSION
TTCN-3 tools provide limited support for visualizing test

results in the context of MSC diagrams. We have shown
how the with-statement language construct in TTCN-3 can
be used to flexibly configure the display of data in the
context of an MSC diagram without requiring changes to
the TTCN-3 parser or grammar. The approach was
validated by implementing it in the open-source Titan
framework for TTCN-3 and applying it to two real-world
examples: a SIP protocol and an avionics flight management
system. Our approach successfully provided testers with a
better mechanism for visualizing and navigating the
complete set of test results in an efficient and effective
manner.

ACKNOWLEDGMENT
We would like to thank CRIAQ, MITACS, Isoneo Solutions
and CMC Esterline for their financial support of this
research.

REFERENCES
[1] B. Stepien, M. Alhaj, and L. Peyton, "Visualizing Execution

Models and Testing Results", 3rd Int'l Conference on Trends
and Advances in Software Engineering (SOFTENG 2017),
Venice, Italy, April 2017

306

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[2] SIP TTCN-3, ETSI (2017) http://www.ttcn-
3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-
sip

[3] Bernard Stepien, L. P. (2014, 06). Innovation and evolution in
integrated web application testing with TTCN-3. International
Journal on Software Tools for Technology Transfer, pp. 269-
283.

[4] Peyton, L., Stepien, B., & Seguin, P. (2008). Integration
Testing of Composite Applications. Waikoloa, HI: IEEE.

[5] Stepien, B., Xiong, P., & Peyton, L. (2011). A Systematic
Approach to Web Application Penetration Testing Using
TTCN-3. MCETECH (pp. pp. 1–16). Berlin Heidelberg:
Springer-Verlag.

[6] Stepien, B. (2015, February 14). Testing and Test Control
Notation. Retrieved from TTCN-3 in a Nutshell (2017):
http://www.site.uottawa.ca/~bernard/ttcn3_in_a_nutshell.html

[7] S. Jagadish, C. Lawrence, and R.K. Shyamasunder, “cmUML
- A UML based Framework for Formal Specification of
Concurrent, Reactive Systems”, Journal of Object Technology
(JOT), Vol. 7, No. 8, pp 188-207, November-December
2008.

[8] A. Mitschele-Thiel, and B. Müller-Clostermann,
“Performance engineering of SDL/MSC systems”, Computer
Networks, 31(17), 1801-1815, 1999.

[9] A. Pourshahid, D. Amyot, L. Peyton, S. Ghanavati, P. Chen,
M. Weiss, and AJ Forster, "Business Process Management
with the User Requirements Notation", Electronic Commerce
Research, Springer, Vol. 9 No. 4, pp 269-316, 2009.

[10] M. Utting, A. Pretschner, and B. Legeard, "A taxonomy of
model ‐ based testing approaches" Software Testing,
Verification and Reliability 22.5 (2012): 297-312

[11] P. Baker, Z. R. Dai, J. Grabowski, Ø. Haugen, I.
Schieferdecker, and C. Williams, “Model-Driven Testing
Using the UML Testing Profile”, Springer ISBN 978-3-540-
72562-6 Springer Berlin Heidelberg New York, Springer-
Verlag Berlin Heidelberg, 2008.

[12] Y. Cheon and G. T. Leavens, “A simple and practical
approach to unit testing: The JML and JUnit way”, In
European Conference on Object-Oriented Programming, pp.
231-255. Springer Berlin Heidelberg, June 2002.

[13] ETSI ES 201 873-1 version 4.9.1, The Testing and Test
Control Notation version 3 Part 1: TTCN-3 Core Language,
last accessed August 2017: http://www.ttcn-
3.org/index.php/downloads/standards

[14] E. G. Cartaxo, F. G. Neto, and P. D. Machado, “Test case
generation by means of UML sequence diagrams and labeled

transition systems”, In Systems, Man and Cybernetics, 2007.
ISIC. IEEE International Conference on (pp. 1292-1297).

[15] D. Amyot, L. Logrippo, and M. Weiss, “Generation of test
purposes from Use Case Maps”, Computer Networks, 49(5),
643-660

[16] J. Grabowski, B. Koch, M. Schmitt, and D. Hogrefe, SDL and
MSC based test generation for distributed test architectures.
In SDL Forum, Vol. 99, pp. 389-404, 1999, June.

[17] PragmaDev, last accessed August, 2017 at
http://www.pragmadev.com/

[18] R. Alur and M. Yannakakis, “Model checking of message
sequence charts”, International Conference on Concurrency
Theory. Springer Berlin Heidelberg, pp 114-129, 1999.

[19] A. Miga, D. Amyot, F. Bordeleau, C. Cameron, and M.
Woodside, “Deriving Message Sequence Charts from Use
Case Maps Scenario Specifications”, Tenth SDL Forum
(SDL’01), Copenhagen, Denmark, LNCS 2078, 268-287,
June 2001.

[20] J. Kealey and D. Amyot, “Enhanced Use Case Map Traversal
Semantics”, 13th SDL Forum (SDL 2007), Paris, France,
LNCS 4745, Springer, 133-149, September 2007.

[21] B. Stepien, L. Peyton, and P. Xiong, "Using TTCN-3 as a
Modeling Language for Web Penetration Testing",
Proceedings of the 2012 IEEE International Conference on
Industrial Technology (ICIT 2012), Athens, Greece, IEEE
Explore, pp 674 - 681 March 2012.

[22] H. Dan and R. M. Hierons, “Conformance testing from
message sequence charts”, In Software Testing, Verification
and Validation (ICST), IEEE Fourth International
Conference, pp. 279-288, March 2011.

[23] B. Stepien, L.Peyton, M. Shang, and T.Vassiliou-Gioles, “An
Integrated TTCN-3 Test Framework Architecture for
Interconnected Object-based Internet Applications”,
International Journal of Electronic Business, Inderscience
Publishers, Vol. 11, No. 1, pp. 1-23, 2014. DOI:
http://dx.doi.org/10.1504/IJEB.2014.057898

[24] TTworkbench, Spirent, last accessed August 2017 at
https://www.spirent.com/Products/TTworkbench

[25] Testcast, Elvior, last accessed August 2017 at
http://www.elvior.com/testcast/ttcn-3

[26] Titan, last accessed August 2017 at
https://projects.eclipse.org/proposals/titan

[27] SIP RFC 3261, https://www.ietf.org/rfc/rfc3261.txt
[28] FMS, href= http://www.esterline.com/avionicssystems/en-

us/productsservices/aviation/navigationfmsgps/flightmanage
mentsystems.aspx

307

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

