
A Model-Driven Approach for Configurable Evaluation of Traceability Information

Hendrik Bünder

itemis AG,
Bonn, Germany

Email: buender@itemis.de

Abstract—Requirement traceability is the ability to explicate and
pursue the relations between all artifacts that specify, implement,
test, or document a software solution. Besides being required by
laws and regulations in safety-critical industries, the traceability
information models can give insight on project progress and
quality. Yet, only a few companies are utilizing this competitive
advantage due to missing tool support. The paper introduces
an integrated solution to define and execute company- or project-
specific analysis statements written in a dedicated domain-specific
language. First, the capabilities of the Traceability Analysis
Language are demonstrated by defining coverage, impact and
consistency analysis. Every analysis is defined as a rule expression
that compares a customizable metric’s value (aggregated from the
traceability information model) against an individual threshold.
The focus of the Traceability Analysis Language is to make
the definition and execution of information aggregation and
evaluation from a traceability information model configurable
and thereby allow users to define their own analyses based on
their regulatory, project-specific, or individual needs. Further, the
analyses are applied to a model according to the Automotive
Software Process Improvement and Capability Determination (A-
SPICE) standard. Second, the underlying grammar, as well as the
mechanisms to make data retrieval configurable, are explained.
Finally, the paper reports on case study findings at a tier one
automotive supplier company. The case study revealed that the
possibility to introduce custom data retrieval functions is crucial
in real-world scenarios. Further, the case study showed that the
traceability analysis language supported the tier one automotive
supplier in the process of being A-SPICE re-certified.

Keywords–Traceability; Domain-Specific Language; Software
Metrics; Model-driven Software Development; Xtext.

I. INTRODUCTION

The paper builds upon previous work [1] and elaborates on
the specification of the query language, additional configuration
options, and extended case study results. While the initial
contribution was focusing on configurable analysis expressions
utilizing the rule, metric and grammar language, this works
extends the approach by introducing custom data retrieval
functions. Additionally, the paper elaborates on the grammar
of the query language. Finally, detailed findings from the case
study at a tier one automotive supplier are explained. In addition
to analyzing the runtime behavior of the analysis statements,
the results of the case study include a detailed analysis of the
different user groups, their information needs, and how the
traceability analysis language (TAL) was utilized to satisfy
these needs.

Traceability is the ability to describe and follow an artifact
and all its linked artifacts through its whole life in forward
and backward direction [2]. Although many companies create
traceability information models for their software development

activities either because they are obligated by regulations [3]
or because it is prescribed by process maturity models, there
is a lack of support for the analysis of such models [4].

On the one hand, recent research describes how to define
and query traceability information models [5][6]. This is an
essential prerequisite for retrieving specific trace information
from a Traceability Information Model. However, far too little
attention has been paid to taking advantage of further processing
the gathered trace information. In particular, information
retrieved from a traceability information model (TIM) can
be aggregated in order to support software development and
project management activities with a real-time overview of the
state of development.

On the other hand, research has been done on defining
relevant metrics for TIMs [7], but the corresponding data
collection process is non-configurable. As a result, potential
analyses are limited to predefined questions and cannot provide
comprehensive answers to ad hoc or recurring information
needs. For example, projects using an iterative software
development approach might be interested in the achievement
of objectives within each development phase, whereas other
projects might focus on a comprehensive documentation along
the process of creating and modifying software artifacts.

The approach presented in this paper fills the gap between
both areas by introducing the Traceability Analysis Language.
By defining coverage, impact, and consistency analyses for a
model based on the Automotive Software Process Improvement
and Capability Determination standard. Use cases for the
Traceability Analysis Language features are exemplified. Anal-
yses are specified as rule expressions that compare individual
metrics to specified thresholds. The underlying metrics values
are computed by evaluating metrics expressions that offer
functionalities to aggregate results of a query statement.

The TAL comes with an interpreter implementation for each
part of the language, so that rule, metric, and query expressions
cannot only be defined, but can also be executed against a
traceability information model. More specifically, the analysis
language is based on a traceability metamodel defining the
abstract artifact types that are relevant within the development
process. All TAL expressions therefore target the structural
characteristics of the TIM.

In addition to elaborating on potential use cases for the TAL,
the paper reports on first industrial experience. The case study
was executed at a tier one automotive supplier where the TAL
was used in 5 projects. Further, the users where categorized in
three groups and their specific traceability information needs
were analyzed. The TAL, its interpreter, and the graphical user

324

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



interface integration were tested with these user groups to meet
their information requirements.

The contributions of this paper are threefold: first, it provides
a domain-specific Traceability Analysis Language to define
rules, metrics, and queries in a fully configurable and integrated
way. Second, it demonstrates the feasibility of this work with a
prototypical interpreter implementation for real-time evaluation
of those trace analyses. In addition, it illustrates the TAL’s
capabilities in the context of the A-SPICE standard and reports
on extended results from a case study in the automotive sector.

Having discussed related work in Section II, Section III
presents the capabilities of the TAL by exemplifying impact,
coverage, and consistency analyses. In Section IV the under-
lying grammar for rule, metrics, and query definitions and
their expected runtime behavior are explained. Section V
reports on extended findings from a case study conducted
at a tier one automotive supplier. In Section VI, the language,
the prototypical implementation, and case study results are
discussed before the paper concludes in Section VII.

II. RELATED WORK

Requirements traceability is essential for the verification of
the progress and completeness of a software implementation
[8]. While, e.g., in the aviation or medical industry traceability
is prescribed by law [3], there are also process maturity models
requesting a certain level of traceability [9].

Traceable artifacts such as Software Requirement, Software
Unit, or Test Specification, and the links between those
such as details, implements, and tests constitute the TIM
[10]. Retrieving traceability information and establishing a
TIM is beyond the scope of this paper and approaches for
standardization such as [11] have already been researched.

In contrast to the high effort that is made to create and
maintain a TIM, only a fraction of practitioners takes advantage
of the inherent information [3]. However, Rempel and Mäder
(2015) have shown that the number of related requirements
or the average distance between related requirements have a
positive correlation with the number of defects associated with
this requirement. Traceability models not only ease maintenance
tasks and the evolution of software systems [12] but can also
support analyses in diverse fields of software engineering such
as development practices, product quality, or productivity [13].
In addition, other model-driven domains, such as variability
management in software product lines, benefit from traceability
information [14].

Due to the lack of sophisticated tool support, these opportu-
nities are often missed [4]. On the one hand, query languages for
TIMs have been researched extensively, including Traceability
Query Language (TQL) [5], Visual Trace Modeling Language
(VTML) [6], and Traceability Representation Language (TRL)
[15]. On the other hand, traceability tools mostly offer a
predefined set of evaluations, often with simple tree or matrix
views, e.g., [16]. Hence, especially company- or project-specific
information regarding software quality and project progress
cannot be retrieved and remains unused.

Our approach integrates both fields of research using a
textual domain-specific language DSL [17] that is focused
on describing customized rule, metric and query expressions.
In contrast to the Traceability Metamodelling Language [18]
defining a domain-specific configuration of traceable artifacts,

the work builds on a model regarding the specification of
type-safe expressions and for deriving the scope of available
elements from concrete TIM instances.

III. AN INTEGRATED TRACEABILITY ANALYSIS
LANGUAGE

The capabilities of the TAL will be demonstrated by
defining analyses from the categories of coverage, impact and
consistency analysis as introduced by the A-SPICE standard
[19]. In addition to these rather static analyses, there are also
traceability analyses focusing on data mining techniques as
introduced by [13]. Even though some of these could be defined
using the introduced domain-specific language, they remain
out of scope of this paper.

A. Scenarios for Traceability Analyses
The first scenario focuses on measuring the impact of the

alteration of one or more artifacts on the whole system [20].
Recent research has shown that artifacts with a high number
of trace links are more likely to cause bugs when they are
changed [7]. Moreover, the impact analysis can be a good basis
for the estimation of the costs of changing a certain part of the
software. This estimation then not only includes the costs of
implementing the change itself, but also the effort needed to
adjust and test the dependent components [21].

The second scenario appears to be the most common, since
many TIM analyses are concerned with verifying that a certain
path and subsequently a particular coverage is given, e.g., “are
all requirements covered by a test case” or “have all test cases
a link to a positive test result” [4]. In addition to verifying that
certain paths are available within a TIM, coverage metrics are
mostly concerned with the identification of missing paths [10].

The third use case describes the consistency between
traceable artifacts. Besides ensuring that all requirements
are implemented, consistency analyses should also ensure
that there are no unrequested changes to the implementation
[22]. Consistency is generally required between all artifacts
within a TIM in accordance to the Traceability Information
Configuration Model (TICM), so that all required trace links
for the traced artifacts are available [19].

Figure 1. Traceability Information Configuration Model.

Figure 1 shows a simplified TICM based on the A-
SPICE standard [19] that defines the traceable artifact types
Change Request, Software Requirement, Software Architecture,
Software Unit, Software Integration Test Specification, and
Software Integration Test Result. Also, the link types changes,
details, implements, tests, and documents are specified by the
configuration model. The arrowheads in Figure 1 represent

325

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 2. Sample Traceability Information Model.

the primary trace link direction, however, trace links can be
traversed in both directions [23]. The traceable artifact Software
Integration Test Result also defines a customizable attribute
called “status” that holds the actual result.

Considering the triad of economic, technical, and social
problem space, the flexibility to adapt to existing work practices
increases the productivity of a traceability solution [24].
Therefore, configuration models provide the abstract description
of traced artifact types in a company context. A TIM captures
the concrete artifact representations and their relationships
according to such a TICM and constitutes the basis for the
analyses (cf. Section IV).

Figure 2 shows a traceability information model based on
the sample TICM described above. The TIM contains multiple
instances of the classes defined in the TICM that can be
understood as proxies of the original artifacts. Those artifacts
may be of different format, e.g., Word, Excel or Class files.
Within the traceability software, adapters can be configured to
parse an artifact’s content and create a traceable proxy object in
accordance to the TICM. In addition, the underlying traceability
software product offers the possibility to enhance the proxy
objects with customizable attributes. The Software Integration
Test Result from Figure 1, for example, holds the actual result
of the test case in the customizable attribute “status”.

1) Impact Analysis: The impact analysis shown in Figure 3
checks the number of related requirements (NRR) [7] starting
from every Software Requirement by using the aggregated
results of a metric expression, which is based on a query. The
analysis begins after the rule keyword that is followed by an
arbitrary name. The right hand side of the equation specifies
the severity of breaking the rule stated in the parentheses. In
this case, a rule breach will lead to a warning message with
the text in quotation marks. The most important part of the
analysis is the comparison part that specifies the threshold,
which in this case is a number of related requirements greater
than 2. If the metrics’ value is greater, the warning message
will be returned as a result of the analysis.

The second component of the TAL expression is the metric
expression that in this case, counts the related requirements.
Each metric is introduced by the keyword metric, again followed

Figure 3. Metric: Number of related requirements (NRR).

by an arbitrary name, which is used to reference a metric either
from another metric or from a rule as shown in Figure 3. The
expression uses the count function to compute the number
of related requirements. The count function takes a column
reference to count all rows that have the same value in the given
column. In the metric expression shown above, all traces from
one Software Requirement to a Software Requirement have the
name of the source Software Requirement in their first column,
so that the count function will count all traces per Software
Requirement. As shown in Table I, the result of the metric
evaluation is a tabular data structure with always two columns.
The first holds the source artifact and the second column holds
the evaluated metric value. For the given example, the first
column holds the name of each Software Requirement and the
second column contains the evaluated number of directly and
indirectly referenced Software Requirements.

TABLE I. NRR METRIC: TABULAR RESULT STRUCTURE.

Software Requirement NRR
SR1 0
SR2 2
SR3 2
SR4 1
SR5 1
SR6 1

Finally, the metric is based on a query expression that is
used to retrieve information from the underlying TIM. The
tracesFrom... to... function returns all paths between source
and target artifact passed into the function as parameters.
In comparison to expressing this statement in other query
languages such as Structured Query Language (SQL), no
knowledge about the potential paths between the source and
target artifacts in the TIM is needed.

326

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 3 shows that the columns of the tabular result
structure are defined in the brackets after the keyword collect.
In the first column the name of the Software Requirement of
each path is given and in the second column the name of each
target Software Requirement is given. Both columns can contain
the same artifacts multiple times, but the combination of each
target with each source artifact is only contained once.

2) Coverage Analysis: Figure 4 shows a coverage analysis
that is concerned with the number of related test case results
per software requirement. In contrast to the analysis shown in
Figure 3, it introduces two new concepts.

Figure 4. Software Requirement Test Result Coverage Analysis.

First, the analysis is not dependent on a metric expression,
but directly bound to a query result. Since metric and query
expression results are returned in the same tabular structure,
rules can be applied to both. Second, the analysis shown in
Figure 4 demonstrates the concept of a staggered analysis, i.e.,
one column or metric is referenced once from a warning and
error rule, respectively. The rule interpreter will recognize this
construct and will return the analysis result with the highest
severity, e.g., when the error rule applies, the warning rule
message is omitted. The rules shown above ensure that the test
of each Software Requirement is documented by at least one
test result. However, to fulfill the rule completely, each Software
Requirement should be covered by two Software Integration
Tests and subsequently two Software Integration Test Results.

TABLE II. COVERAGE ANALYSIS: TABULAR RESULT STRUCTURE.

Software Requirement Analysis Result
SR1 No test results found!
SR2 Ok
SR3 Ok
SR4 No test results found!
SR5 No test results found!
SR6 Low number of test results!

Table II shows the result of the staggered analysis. The test
coverage analysis returns an “Ok” message for two of the six
Software Requirements, while one is marked with a warning
message and the remaining three caused an error message.

The query expressions result is limited to Software Inte-
gration Test Results with status “passed” by evaluating the
customizable attribute “status” using a where clause. Since the
query language offers some functions to do basic aggregation,
it is possible to bypass metric expressions in this case. In
Figure 4 the aggregation is done by the groupBy and the count
function. The second column specifies an aggregation function
that counts all entries in a given column per row based on the
column name passed as parameter. In general, the result of this
function will be 1 per row since there is only one value per row
and column but in combination with the “groupBy” function the
number of aggregated values per cell is computed. The resulting

tabular structure contains one row per Software Requirement
with the respective name and the cumulated number of traces
to different Software Integration Test Results as columns.

3) Consistency Analysis: The following will show two
consistency analysis samples to verify that all Software Re-
quirements are linked to at least one Software Unit and vice
versa.

Figure 5. Consistency Analysis.

Figure 5 shows a consistency analysis composed of a rule
and a query expression. The rule notCoveredError returns an
error message if the number of traces between Software Require-
ments and Software Units is smaller than one, which means
that the particular Software Requirements is not implemented.

TABLE III. CONSISTENCY ANALYSIS: SOFTWARE REQUIREMENT
IMPLEMENTATION.

Name Analysis Result
SR1 Ok
SR2 Ok
SR3 Ok
SR4 The Software Requirement is not implemented!
SR5 The Software Requirement is not implemented!
SR6 Ok

Table III shows the result of the analysis as defined in
Figure 5. For “SR4” and “SR5” there is no trace to a Software
Unit so that the analysis marks these two with an error message.
To verify that all implemented Software Units are requested
by a Software Requirement, the query can easily be altered by
switching the parameters of the “tracesFrom... to...” function
and by changing the error message. Table IV shows the result
of the altered analysis revealing that “SU3” despite all others
has not been requested.

TABLE IV. CONSISTENCY ANALYSIS: SOFTWARE UNIT REQUESTED.

Name Analysis Result
SU1 Ok
SU2 Ok
SU3 The Software Requirement has not been requested!
SU4 Ok
SU5 Ok
SU6 Ok

These examples show that the language offers extensive
support for retrieving and aggregating information in TIMs. The
following sections will demonstrate how the TAL integrates
with the traceability solution it is build upon, and how the
different parts of the language are defined.

IV. COMPOSITION OF THE TRACEABILITY ANALYSIS
LANGUAGE

The following focuses on the technical foundations of the
TAL. After giving an overview over the modeling layers the
paper continues on elaborating the grammar definitions of query,
metrics and analysis language.

327

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



A. Modeling Layers
Figure 6 shows the integration between the different model

layers referred to in this paper, starting from the Eclipse Ecore
Model as shared meta meta model [25]. The Xtext framework,
which is used to define the analysis language generates an
instance of this model [26] to represent the Analysis Language
Meta Model (ALMM). Individual queries, metrics, and rules
are specified within a concrete instance, the Analysis Language
Model (ALM), using the created domain-specific language.
An interpreter was implemented using Xtend, a Java extension
developed as part of the Xtext framework and specially designed
to navigate and interact with the analysis language’s Eclipse
Ecore models [27].

Figure 6. Conceptual Integration of Model Layers.

Likewise, the Traceability Information Model used in this
paper contains the actual traceability information, for example
the concrete software requirement SR1. It is again an instance
of a formal abstract description, the so called TICM. The TICM
describes traceable artifact types, e.g., Software Requirement
or Software Architecture, and the available link types, e.g.,
details. This model itself is based on a proprietary Traceability
Information Meta Model (TIMM) defining the basic traceability
constructs such as an artifact type and link type. To structure
the DSL, the TAL itself is hierarchically subdivided into three
components, namely rule, metric, and query expressions.

B. Rule Grammar
Since a query result or a metric value alone delivers few

insights into the quality or the progress of a project, rule
expressions are the main part of the TAL. Only by comparing
the metric value to a pre-defined threshold or another metrics’
value information is exposed. The grammar contains rules for
standard comparison operations, which are equal, not equal,
greater than, smaller than, greater or equals, and smaller or
equals. A rule expression can either return a warning or an error
result after executing the comparison including an individual
message. Since query and metrics result descriptions implement
the same tabular result interface, rules can be applied to both.
Accordingly, the result of an evaluated rule expression is also
stored using the same tabular interface.

Figure 7. Rule Grammar.

The RuleBody rule shown in Figure 7 is the central part of
the rule grammar. On the left side of the Operator a metric
expression or a column from a query expression result can be
referenced. The next part of the rule is the comparison Operator
followed by a RuleAtomic value to compare the expression
to. The RuleAtomic value is either a constant number or a
reference to another metrics expression.

C. Metrics Grammar
Complimentary to recent research that focuses on specific

traceability metrics and their meaningfulness [7], the approach
described in this paper allows for the definition of individual
metrics. An extended Backus-Naur form (EBNF)-like Xtext
grammar defines the available features including arithmetic
operations, operator precedence using parentheses, and the inte-
gration of query expressions. The metrics grammar of the TAL
itself has two main components. One is the ResultDeclaration
that encapsulates the result of a previously specified query. The
other is an arbitrary number of metrics definitions that may
aggregate query results or other metrics recursively.

Figure 8. Grammar rules for metrics expressions.

Figure 8 shows a part of the metric grammar defining the
support for the basic four arithmetic operations as well as
the correct use of parentheses. Since the corresponding parser
generated by Another Tool for Language Recognition (ANTLR)
works top-down, the grammar must not be left recursive [28].
First, the rule Factor allows for the usage of constant double
values. Second, metric expressions can contain pre-defined
functions such as sum, length, or count to be applied to the
results of a query. Third, columns from the result of a query can
be referenced so that metric expressions per query expression
result row can be computed. Finally, metric expressions can
refer to other metric expressions to further aggregate already
accumulated values. Thereby, interpreting metric expressions
can be modularized to reuse intermediate metrics and to ensure
maintainability.

The metrics grammar as part of the TAL defines arithmetic
operations that aggregate the results of an interpreted query ex-
pression. The combination of a configurable query expressions
with configurable metric definitions allows users to define their
individual metrics.

D. Query Grammar
The analyses defined using metric and rule expressions

depend on the result of a query that retrieves the raw data from
the underlying TIM. Although there are many existing query
languages available, a proprietary implementation is currently
used because of three reasons.

First, the query language should reuse the types from
TICM to enable live validation of analyses even before they
are executed. The Xtext-based implementation offers easy
mechanisms to satisfy this requirement, while others such
as SQL are evaluated only at runtime. Second, some of the
existing query languages such as SQL or Language Integrated

328

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Query (LINQ) are too verbose (cf. Figure 11) or do not offer
predefined functions to query graphs. Finally, other languages
such as SEMMLE QL [29] or RASCAL [30] are focused on
source code analyses and do not interact well with Eclipse
Modeling Framework (EMF) models.

Figure 9. Query Language Grammar.

In Figure 9, a slightly simplified grammar of the Query
language in Extended Backus-Naur Form (EBNF) is shown. The
postfix operators “?” and “*” indicate optional and arbitrarily
repeated features, respectively. “|” divides alternatives. Terminal
symbols appear in single quotes. The grammar first shows the
Query rule that may contain QFeatureCall, QCollect,
QWhere, QGroupBy statements.

The QFeatureCall rule contains the ID of the function
to be called followed by the expected parameters in parenthesis.
While the grammar itself looks very simple, the real benefit
comes from using the Xtext language workbench. During
definition of a query expression, Xtexts ScopeProvider looks
for functions that are visibile (or “in scope”) for the analysis.
The ProposalProvider takes the visible elements and creates a
proposal for each function within the editor.

By default, the Traceability Analysis Lan-
guage comes with pre-defined functions such as
tracesFromTo, artifactsWithoutTraceFromTo,
or linkedArtifacts. In addition, it is possible to
implement company-, or project-specific functions. For such a
function to be proposed in the editor, a certain interface has
to implemented. Further, as Figure 10 shows, annotations are
used to classify the function.

Figure 10. Sample Function. Returning all not linked artifacts.

First, the annotation in Figure 10 states the priority and
the type. The priority parameter manages the execution in
case of multiple function calls at a time. The type determines,
which kind of elements are returned. A function may return
instances of elements from the traceability configuration model,
such as Artifact or Link. The latter annotation attribute is
evaluated by Scope- and ProposalProvider in order to avoid
invalid analysis statements. Second, the method itself has to
return a typed iterable that contains the result of the graph

traversal. Finally, every parameter of a function has to be
detailed in order to enable rich user experience through the
calculated scope and proposals. ScopeSource specifies if the
particular parameter is either from the traceability configuration
model or a query result that is further processed. ScopeType
determines if a meta-model type or an instance of such is
returned.

The defined interface, allows for custom functions to be
seamlessly integrated into the existing set of query functions.
The underlying framework can offer the same editor support
as for pre-defined functions, because the custom functions are
detailed in terms of parameters, return types, and priority.

After having explained the QFeatureCall and
its underlying concepts, the following will demonstrate
the remaining query grammar. The QCollect defines
the columns of a query result and contains an
arbitrary number of QMemberFeatureCalls. Each
QMemberFeatureCall defines one column by calling
methods on the QFeatureCall result (cf. Figure 5). After
potentially defining a chain of method calls, the result can be
assigned to a variable after the keyword —>.

The so defined columns can be re-used in the sub-
sequent QWhere and QGroupBy statements. The where-
clause filters the result of a function called through a
QFeatureCall. After the keyword where an arbitrary num-
ber of QComparisonExpressions follow that support
binary comparison operations. In order to filter based on
multiple criteria the comparison statements can be combined
with the logical operators AND and OR. In addition, the result
can be further aggregated using QGroupBy. Following the
keyword groupBy a list of attributes is stated as criteria
for grouping the result. The query grammar includes many
concepts and language support for data retrieval and aggregation.
However, more specialized aggregations such as calculating
averages or medians the metrics grammar was created.

The query expressions offer a powerful and well-integrated
mechanism to retrieve information from a given TIM. Es-
pecially, the integration with the traceability information
configuration model enables the reuse of already known terms
such as the trace artifact type names. Furthermore, complex
graph traversals are completely hidden from the user who only
specifies the traceable source and target artifact based on the
TICM. For example, the concise query of Figure 4 already
requires a complex statement when expressed in SQL syntax
(cf. Figure 11). If the graph traversal functions included in the
TAL are not sufficient, custom functions can be implemented
to do specific or more complex data retrieval.

Figure 11. SQL equivalent to query of Figure 4.

329

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 12. Screenshot of the analysis language interpreter.

E. Performance

Within the prototypical implementation, traceable artifacts
from custom traceability information configuration models
as shown in Figure 1 can be used for query, metrics, and
rule definitions. Due to an efficient implementation used
by the tracesFrom... to... function, analysis are re-executed
immediately when an analysis is saved or can be triggered
from a menu entry. The efficiency of the depth-first algorithm
implementation was verified by interpreting expressions using
TIMs ranging from 1,000 to 50,000 artificially created traceable
artifacts. The underlying TICM was build according to the
traceable artifact definitions of the A-SPICE standard [19].

TABLE V. DURATION OF TAL EVALUATION.

Artifacts Start Artifacts Duration (in s)
1,000 300 0.012
8,000 1,500 0.1

50,000 8,500 2.2

Table V shows the duration for interpreting the analysis
expression from Figure 4 against TIMs of different sizes. The
first column shows the overall number of traceable artifacts
and links in the TIM. The second column gives the number
of start artifacts for the depth-first algorithm implementation,
i.e., the number of Software Requirements for the exemplary
analysis expression. The third column contains the execution
time on an Intel Core i7-4700MQ processor at 2.4 GHz and
16 GB RAM. As shown, executing expressions can be done
efficiently even for large size models, sufficient for real-world
applications to regular reporting and ad hoc analysis purposes.

The efficient implementation of the depth-first algorithm
allows for re-execution on every save. However, it also add
the constraints to all custom functions to be highly efficient.
Additionally implemented functions with long execution times
will have a negative effect on user experience and finally on
the TAL at all.

V. CASE STUDY

Besides theoretical usage scenarios for the TAL, first
experiences in real-world projects were gained with a tier one
automotive supplier. The Traceability Analysis Language was
used in five projects with TIMs ranging from 30,000 to 80,000
traceable artifacts defined in accordance to the Automotive
SPICE standard.

To demonstrate the feasibility of the designed TAL and
perform flexible evaluations of traceability information models,
a prototype was developed. The analysis language is based
on the aforementioned Xtext framework and integrated in
the integrated development environment Eclipse using its
plug-in mechanism [31]. The introduced interpreter evaluates
rule, metric, and query expressions whenever the respective
expression is modified and saved in the editor.

Currently, both components are integrated in Yakindu Trace-
ability (YT) a software solution for creating, maintaining and
analyzing traceability information models [32]. Therefore, the
analysis language is configured to utilize the proprietary TIMM
from which traceability information configuration models and
concrete TIMs are defined. At runtime, the expression editor
triggers the interpreter to request the current TIM from the
underlying software solution and subsequently perform the
given analysis.

The Eclipse view in Figure 12 shows the integration of
the TAL into YT for creating and maintaining traceability
information models. The view consist of three parts that all can
be used individually in other views within an Eclipse application.
First, the upper left part lists all available analyses in the current
workspace. Second, on the upper right side the details of a
selected analysis are shown in an embedded editor. The user
can edit the expressions and is supported by syntax highlighting,
code completion, and live validations. Finally, the bottom half
of the view contains a dynamic table that lists the results from
an executed analysis language expression. In Figure 12, the
column headings “name” and “count” are defined from the
query’s collect statement. The values in the rows represent
the values from the interpreted analysis expression. In this

330

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



case the table shows the result of a coverage analysis showing
all software requirements and the number of related software
architecture artifacts.

At the tier one automotive supplier, multiple project roles
used the Eclipse integrated TAL editor. The types of users can
be divided into three groups, namely “power user”, “direct user”
and “indirect user”. The main characteristic of power users
is that they create queries. These might be used personally
or shared with team members. Within the group of power
users, there are two project roles involved. On the one hand,
the process owners who are responsible for the traceability
process within the automotive supplier company. Process
owners define analyses that are used as basis for reports and
quality gates throughout the process. On the other hand, there
are experts from the YT vendor, which do consulting and
customization. While process owners create analyses with the
given functionality of the TAL, YT experts additionally develop
and enhance YT itself. Although functions can be introduced by
anyone, the case study has shown that it is done most efficiently
by YT experts.

The second user group consists of so called direct users.
They differ from power users by only using predefined analyses.
Further, the user group consists of more project roles, namely
architect, developer, and hardware tester. The case study has
revealed that all three project roles have different requirements
that need to be covered by the TAL. While architects are mainly
concerned with analyzing the coverage between requirements,
software architecture, and software units, developers use
traceability data to ease development and maintenance tasks.
Therefore, impact analyses play a superior role for developers,
to estimate the impact of a particular change. Hardware testers
have a very strong focus on coverage analysis in order to plan
and execute testing tasks.

Figure 13. Users per user group.

The third group consists of users that do not interact
directly with the TAL. It is therefore called indirect users.
In addition to executing analyses within the Eclipse view, the
underlying infrastructure is also used to aggregate data on a
regular basis. This aggregated data is integrated into reports
that are sent to different project roles such as requirements
engineers or project managers. While the first two user groups
use the TAL for short-term or immediate tasks, indirect users
justify medium and long term decisions from the aggregated
traceability analyses. Requirements engineers are responsible
for a consistent implementation. Thus, they are interested in
analyses such as “Are all requirements implemented?”. In

addition, project managers require information about the overall
implementation and testing status of their project.

Within the case study, all three user groups were involved in
using the TAL and the introduced editor. Based on the project
role, different analyses were defined in order to satisfy the
aforementioned information needs. The predefined analyses
have replaced complex SQL statements that included up
to seven joins to follow the links trough the traceability
information model. Because the tracesFrom... to... function
encapsulates the graph traversal, the analyses are more resilient
to changes of the traceability configuration model.

While users were able to collect their data, especially the
coverage analyses required by the hardware testers introduced
some challenges. In contrast to the rather simple example in
Section III-A2, the specification of requirement coverage as
used by the tier one automotive supplier is more than two
pages long. The extensive definition is due to the following
two factors. First, compared to the sample TICM in Figure 1 the
TICM contains more artifacts and links between them. Second,
there are subsequently more ways to “cover” a requirement.
However, not all paths through the traceability information
model create valid coverage. Although it would have been
possible to define the analysis statement using the existing
TAL functionalities, it was decided to implement a custom
function. Encapsulating the data aggregation and the majority of
rules from the requirements coverage specification in a custom
function increased the overall readability and maintainability
of the analysis. Introducing a custom function minimized the
length of the analysis statement by 85%.

Since other traceability solutions often struggle with perfor-
mance issues, when it comes to large models, a main focus of
the case study was on the runtime of analysis execution. The
case study has shown that executing the far more complex real
world functions including the custom function took nearly the
same time as the aforementioned artificial analysis. Because
the functions implement efficient graph traversal algorithms,
they can be executed in real time. Therefore, the TAL solution
can be integrated seamlessly.

The overall feedback from users involved in the case study
was positive. They especially emphasized the easy to learn
and powerful query language. Further, the traceability analysis
language played an important role during an official A-SPICE
Level 3 assessment. By using the TAL, all relevant data could
be retrieved and reported in order to pass the assessment [33].
All in all, the TAL was used successfully on a daily basis as
well as in a more official setting.

VI. DISCUSSION

The discussion is divided into three parts. It starts with
discussing different scenarios, in which the TAL could be
applied. The second part elaborates on the findings of the case
study executed at a tier one automotive supplier. Finally, the
limitations of the introduced approach are explained.

A. Applying the Analysis Language
Defining and evaluating analysis statements with the proto-

typical implementation has shown that the approach is feasible
to collect metrics for different kinds of traceability projects.
The most basic metric expression reads like the proportion
of artifacts of type A that have no trace to artifacts of type

331

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Some generic scenarios focused on impact, coverage, and
consistency analyses have been exemplified in Section III-A.
However, there are more specific metrics that are applicable
and reasonable for a particular industry sector, a specific project
organization, or a certain development process as demonstrated
by the case study.

In addition to the case study findings, industry-specific
metrics, e.g., in the banking sector, could focus on the impact
of a certain change request regarding coordination and test effort
estimation. Project-specific management rules may for instance
highlight components causing a high number of reported defects
to indicate where to perform quality measures, e.g., code re-
views. Moreover, the current progress of a software development
project can be exposed by defining a staggered analysis relating
design phase artifacts (e.g., Software Requirements that are not
linked to a Software Architecture) and implementation artifacts
(e.g., Software Architectures without trace to a Software Unit)
in relation to the overall number of Software Requirements.
Analysis expressions could also be specific to the software
development process. In agile projects for example the velocity
of an iteration could be combined with the number of bugs
related to the delivered functionality. Thereby, it could be
determined whether the number of bugs correlates with the
scope of delivered functionality. These use cases emphasize
the flexibility of the analysis language — in combination with
an adaptable configuration model — for applying traceability
analyses to a variety of domains, not necessarily bound to
programming or software development in general. For example,
a TIM for an academic paper may define traceable artifacts
such as authors, chapters, and references. An analysis on such
a paper could find all papers that cite a certain author or
the average number of citations per chapter. It is therefore
possible to execute analyses on other domains with graph-
based structures that can benefit from traceability information.

B. Case Study
The case study executed at a tier one automotive supplier

revealed that there are different user groups using the TAL.
While nearly 80% of the users interact directly with the TAL
editor, the remaining 20% use information gathered using the
TAL. The reasons that only 12% of the users wrote queries are
mainly organizational. On the one hand, traceability analysis
results are used internally for reporting the project status or
identifying change impacts. On the other hand, a sophisticated
analysis capability is an important basis for external process
audits such as A-SPICE level 3. In order to ensure high quality,
error free queries, only a few well trained employees write and
verify analysis definitions. After being verified, these analyses
are shared with the different project teams and their results
become binding. Although only power users directly use the
TAL to define queries, the language statements need to be
as readable as possible. Thereby, direct users can quickly
understand the purpose of a particular analysis. While users
from both groups have stated that TAL is easy to understand,
additional research is required to support this claim.

Moreover, the case study has shown that YT experts were
faster to implement custom functions. In addition, power users
from the tier one automotive supplier showed no interest in
writing custom functions. It has to be analyzed whether this
is due to the fact that YT experts were available or because
the custom function interface is to complex. Moreover, it has

to be analyzed, what needs to be done to enable TAL users to
specify their own analysis more easily.

In contrast to the aforementioned user groups, the interaction
with the traceability information models has not changed for the
indirect users. However, the underlying infrastructure to retrieve
and aggregate the data has been changed. By introducing the
TAL, complex SQL statements (cf. Figure 11) could be replaced
by shorter analysis statements. Although the TAL definitions
are less verbose, the impacts on the maintainability need to
be studied. While the statements become shorter by hiding the
complex graph traversal, the traversal algorithms need to be
tested thoroughly. If an analysis result is wrong because of an
error in the underlying traversal algorithm, failure detection
and fixing becomes very difficult. During the early stages of
the case study, every TAL analysis was cross-checked manually
by a domain expert. The findings from this testing approach
were two-fold: first, failures in the algorithm implementation
or the analysis expressions were identified and fixed. Second,
the TAL definitions revealed errorneous and inconsistent data
in the traceability information model.

Since the concept provides that analyses are executed on
every save, the underlying algorithms need to be very fast. The
case study has shown that the execution times achieved with
artificial models could be confirmed within an industry setting.
Yet, both traceability configuration models are based on the
A-SPICE standard. Therefore, additional research is required
with other, more complex TICM.

In general all required information for the different user
groups and project roles could be retrieved using the TAL.
However, when managing and analyzing multiple versions
of an artifact and its combination with others, as explained
by software product line engineering, further investigation is
required. Yet, the challenges are not solely within the analysis
but also in the creation and maintenance of the underlying
TIM.

C. Limitations
The approach presented in this paper is bound to limitations

regarding both technical and organizational aspects. Regarding
the impact of the developed DSL on software quality manage-
ment practices, first investigations have taken place. However,
more are needed to draw sustainable conclusions.

Although all analyses required by the participants could be
satisfied, the case study at a tier one automotive supplier has
shown that additional analysis capabilities are required. One
main requirement is to evaluate, how much of an expected
trace path is available in a certain TIM. If there is no complete
path from a System Requirement to a Software Integration Test
Result, it would be beneficial to show partial matches and to
list missing artifacts such as a missing Software Integration Test
Result or Software Integration Test Specification. Extending the
result of an analysis in accordance to this requirement would
enhance the information about the progress of a project.

From a language-user perspective, the big advantage of
being free to configure any query, metric or rule expression
is also a challenge. A language user has to be aware of the
traceable artifacts and links in the TIM and how this trace
information could be connected to extract reasonable measures.
In addition, these analyses are safety critical and therefore need
to be implemented and tested by domain experts. Moreover, the

332

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



context-dependent choice of suitable metrics in terms of type,
number, and thresholds is subject to further research. These
limitations do not impede the value of this work, though. In
fact, in combination with the discussed application scenarios
they provide the foundation for future work.

VII. CONCLUSION

This work describes a textual domain-specific language to
analyze existing traceability information models. The TAL
is divided into query, metric, and rule parts that are all
implemented with the state-of-the-art framework Xtext. The
introduced approach goes beyond existing tool support for
querying traceability information models. By closing the gap
between information retrieval, metric definition, and result
evaluation, the analysis capabilities are solid ground for project-
or company-specific metrics. Since the proposed analysis
language reuses the artifact-type names from the traceability
information configuration model, the expressions are defined
using well known terms. Additionally, the newly introduced
custom functions ensured short and concise analysis statements.

On the one hand, the introduced approach is based on an
Eclipse Ecore model and is thereby completely independent
of the specific type of traced artifacts. On the other hand,
it is well integrated into an existing TICM and IDE using
Xtext and the Eclipse platform. All parts of the TAL are fully
configurable regarding analysis expression, limit thresholds,
and query statements in an integrated approach to close the gap
between querying and analyzing traceability information models.
Subsequently, measures for TIMs can be specific to a certain
industry sector, a company, a project or even a role within a
project. The scenarios described in Section III-A propose areas,
in which configurable analyses provide benefits for project
managers, quality managers, and developers. These claims
were supported by findings from the conducted case study.

Using the implemented interpreter for real-time execution
of expressions, first project experiences within the automotive
industry have shown that the TAL analyses are evaluated
efficiently and are more resilient than other approaches, e.g.,
SQL-based analyses. Further, it has been shown that the analysis
statements are mainly created by a small group of users, while
the majority consumes the results either directly within the TAL
editor or indirectly through higher level reports. Therefore, it
can be concluded that the language itself needs to offer powerful
mechanisms to enable power users to write queries efficiently.
Additionally, the language has to be easy to understand so that
also direct users recognize the purpose of a query.

While all information needs could be satisfied by the TAL,
there was one situation during the case study where a custom
function was required. In general, it can be concluded that
within every analysis statement the majority of data retrieval and
aggregation should be done by the query functions. In addition
to previous work, it has been shown that the approach benefits
from the additional configuration options in the query language.
By introducing custom functions for complex data retrieval, the
TAL statements remained small and concise. Subsequently, the
metrics and rule statements are used solely for final aggregation
and presentation.

Future work could focus on further assessing the applicabil-
ity in real world projects and defining a structured process
to identify reasonable metrics for a specific setting. Such
a process might not only support sophisticated traceability

analyses but could also propose industry-proven metrics and
thresholds. Additionally, it could be investigated, how many
custom functions are required throughout different projects and
whether there are any shared patterns between them. These
patterns might motivate the extension of the standard query
functions provided by the TAL.

Some advanced features such as metrics comparisons over
time using TIM snapshots to further enhance the analysis are yet
to be implemented. Moreover, creating traceability information
models for software product lines remains a challenge, which
also affects the analysis capabilities.

In addition to evaluating the metrics against static values,
future work might also focus on utilizing statistical methods
from the data mining field. Classification algorithms or as-
sociation rules for example could be used to find patterns in
traceability information models and thus gain additional insights
from large-scale TIMs.

All in all, the paper has introduced a highly customizable
approach to specify traceability analyses in order to utilize the
extensive insight contained in traceability information models.
In addition, the implemented interpreter was used successfully
at a tier one automotive supplier to satisfy the information
needs of different user groups.

REFERENCES

[1] H. Bünder, H. Kuchen, and C. Rieger, “A model-driven approach
for evaluating traceability information,” in SOFTENG 2017, The
Third International Conference on Advances and Trends in Software
Engineering. IARIA, 2017, pp. 59–65.

[2] O. C. Z. Gotel and C. W. Finkelstein, “An analysis of the requirements
traceability problem,” in Proceedings of IEEE International Conference
on Requirements Engineering, 1994, pp. 94–101.

[3] J. Cleland-Huang, O. Gotel, J. Huffman Hayes, P. Mäder, and A. Zisman,
“Software traceability: Trends and future directions,” in Proceedings of
the on Future of Software Engineering. ACM, 2014, pp. 55–69.

[4] E. Bouillon, P. Mäder, and I. Philippow, “A survey on usage scenarios
for requirements traceability in practice,” in Requirements Engineering:
Foundation for Software Quality. Springer, 2013, pp. 158–173.

[5] J. I. Maletic and M. L. Collard, “Tql: A query language to support
traceability,” in ICSE Workshop on Traceability in Emerging Forms of
Software Engineering, 2009, pp. 16–20.

[6] P. Mäder and J. Cleland-Huang, “A visual language for modeling and
executing traceability queries,” Software and Systems Modeling, vol. 12,
no. 3, 2013, pp. 537–553.

[7] P. Rempel and P. Mäder, “Estimating the implementation risk of
requirements in agile software development projects with traceability
metrics,” in Requirements Engineering: Foundation for Software Quality.
Springer, 2015, pp. 81–97.

[8] M. Völter, DSL engineering: Designing, implementing and using domain-
specific languages. CreateSpace Independent Publishing Platform, 2013.

[9] J. Cleland-Huang, M. Heimdahl, J. Huffman Hayes, R. Lutz, and
P. Maeder, “Trace queries for safety requirements in high assurance
systems,” LNCS, vol. 7195, 2012, pp. 179–193.

[10] P. Mader, O. Gotel, and I. Philippow, “Getting back to basics: Promoting
the use of a traceability information model in practice,” 7th Intl.
Workshop on Traceability in Emerging Forms of Software Engineering,
2013, pp. 21–25.

[11] A. Graf, N. Sasidharan, and Ö. Gürsoy, “Requirements, traceability
and dsls in eclipse with the requirements interchange format (reqif),”
in Second International Conference on Complex Systems Design &
Management. Springer, 2012, pp. 187–199.

[12] P. Mäder and A. Egyed, “Do developers benefit from requirements trace-
ability when evolving and maintaining a software system?” Empirical
Softw. Eng., vol. 20, no. 2, 2015, pp. 413–441.

333

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



[13] A. Begel and T. Zimmermann, “Analyze this! 145 questions for data
scientists in software engineering,” in 36th International Conference on
Software Engineering. ACM, 2014, pp. 12–23.

[14] N. Anquetil et al., “A model-driven traceability framework for software
product lines,” Software & Systems Modeling, vol. 9, no. 4, 2010, pp.
427–451.

[15] A. Marques, F. Ramalho, and W. L. Andrade, “Trl: A traceability
representation language,” in Proceedings of the 30th Annual ACM
Symposium on Applied Computing. ACM, 2015, pp. 1358–1363.

[16] H. Schwarz, Universal traceability. Logos Verlag Berlin, 2012.
[17] M. Mernik, J. Heering, and A. M. Sloane, “When and how to develop

domain-specific languages,” ACM Comput. Surv., vol. 37, no. 4, 2005,
pp. 316–344.

[18] N. Drivalos, D. S. Kolovos, R. F. Paige, and K. J. Fernandes, “Engineer-
ing a dsl for software traceability,” in Software Language Engineering.
Springer, 2009, vol. 5452, pp. 151–167.

[19] Automotive Special Interest Group, “Automotive spice process
reference model,” 2015, URL: http://automotivespice.com/fileadmin/
software-download/Automotive SPICE PAM 30.pdf [retrieved:
14.8.2017].

[20] R. S. Arnold and S. A. Bohner, “Impact analysis-towards a framework
for comparison,” in ICSM, vol. 93, 1993, pp. 292–301.

[21] C. Ingram and S. Riddle, “Cost-benefits of traceability,” in Software
and Systems Traceability, J. Cleland-Huang, O. Gotel, and A. Zisman,
Eds. Springer London, 2012, pp. 23–42.

[22] N. Kececi, J. Garbajosa, and P. Bourque, “Modeling functional re-
quirements to support traceability analysis,” in 2006 IEEE International
Symposium on Industrial Electronics, vol. 4, 2006, pp. 3305–3310.

[23] J. Cleland-Huang, O. Gotel, and A. Zisman, Eds., Software and Systems
Traceability. Springer London, 2012.

[24] H. U. Asuncion, F. François, and R. N. Taylor, “An end-to-end industrial
software traceability tool,” in 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering. ACM, 2007, pp. 115–124.

[25] R. C. Gronback, Eclipse Modeling Project: A Domain-Specific Language
(DSL) Toolkit, 1st ed. Addison-Wesley Professional, 2009.

[26] The Eclipse Foundation, “Xtext documentation,” 2017, URL: https:
//eclipse.org/Xtext/documentation/ [retrieved: 14.8.2017].

[27] ——, “Xtend modernized java,” 2017, URL: http://eclipse.org/xtend/
[retrieved: 14.8.2017].

[28] L. Bettini, Implementing domain-specific languages with Xtext and
Xtend. Packt Pub, 2013.

[29] M. Verbaere, E. Hajiyev, and O. d. Moor, “Improve software quality
with SemmleCode: An eclipse plugin for semantic code search,” in 22nd
ACM SIGPLAN Conference on Object-oriented Programming Systems
and Applications Companion. ACM, 2007, pp. 880–881.

[30] P. Klint, T. van der Storm, and J. Vinju, “Rascal: A domain specific
language for source code analysis and manipulation,” in 9th IEEE
International Working Conference on Source Code Analysis and
Manipulation. IEEE Computer Society, 2009, pp. 168–177.

[31] The Eclipse Foundation, “PDE/user guide,” 2017, URL: http://wiki.
eclipse.org/PDE/User Guide [retrieved: 14.8.2017].

[32] itemis AG, “Yakindu traceability,” 2017. [Online]. Available: https:
//www.itemis.com/en/yakindu/traceability/

[33] itemis AG, “Kostal finalises aspice assessment successfully with yakindu
traceability,” 2017, URL: https://www.itemis.com/en/yakindu/references/
kostal/ [retrieved: 14.8.2017].

334

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


