
Content Structures, Organization, and Processes for
Localized Content Management

Hans-Werner Sehring
Namics

Hamburg, Germany
e-mail: hans-werner.sehring@namics.com

Abstract—Content management systems are in widespread use
for document production. In particular, we see the pervasive
application of web content management systems for web sites.
These systems serve both authors that produce content and
web site users that perceive content in the form of documents.
Today, one focus lies on the consideration of the context of the
web site user. Context is considered in order to serve users’
information needs best. Many applications, e.g., marketing
sites, focus on making the user experience most enjoyable. To
this end, content is directed at the users’ environmental and
cultural background. This includes, first and foremost, the
native language of the user. Practically, all respective web sites
are offered in multiple languages and, therefore, multilingual
content management is very common today. Content and its
structure need to be prepared by authors for the different
contexts, languages in this case. Contemporary content
management system products, though, each follow different
approaches to model context. There is no single agreed-upon
approach because the different ways of modeling context put
an emphasis on different content management properties. This
paper discusses different aspects of multilingual content
management and publication. The Minimalistic Meta
Modeling Language is well suited for context-aware content
management. This paper demonstrates how this modeling
language can be used to master the requirements of
multilingual content management within the framework of a
common meta model. This allows content modeling without
consideration of CMS product properties. This way, it takes
away constraints from content modeling and it removes
dependencies to content management system products.

Keywords-content management; web site management;
multilingual content management; multilinguality; localization;
internationalization; context-awareness.

I. INTRODUCTION
Web sites are operated by nearly all organizations and

enterprises, and they are created for various purposes. The
management of such sites has evolved to content
management that separates web site content, structure, and
layout from each other. This way, content can be published
on different media and on different channels. Certain
parameters can influence the production of documents from
content, e.g., the viewing device used by the user or her or
his current context.

Consequently, most web sites are produced by a content
management system (CMS), a web CMS in this case.
Currently, web sites increasingly exhibit consideration of
content that is tailored to the context of the content’s

percipient. They do so either to provide content with
maximal value to the visitor, in order to inform a user in the
most suitable way, to convey a message best, to present a
company or a brand in the most appealing way, etc.

The most basic contextual property, to this end, is the
native language of the consumer. Content should be
presented to the user in this language. At least, textual
content is translated. More advanced approaches take the
culture and the habits of a user into account.

(Written) Language has an impact on layout. E.g., there
need to be web page layouts for languages written from left
to right and for ones written from the right to the left. On top
of that, the writing direction has an impact on, e.g., the
placement of navigation and search elements on a web page.

The relationship between translations of content can be
viewed as contextualization as pointed out in an initial paper
on the topic [1]. A translation is content to be managed in the
context of the original content it has been derived from.

Some time ago, multilingual web appearances and print
publications were identified as a major challenge for
organizations [2]. In practice today, the problem is addressed
by various approaches in different CMS products. However,
there is no systematic consideration of these approaches and
the characteristics of the resulting solutions. This leads to the
content management approach taken to be dependent on the
CMS product chosen for a particular web site appearance.

This paper reviews approaches to multilingual content
management. The Minimalistic Meta Modeling Language
allows abstract representations of these approaches and
comparing their implications on content management tasks.

The rest of this paper is organized as follows. Section II
defines requirements for multilingual web sites and the
CMSs producing them. Section III describes related
approaches to multilingual web site production. Section IV
briefly introduces the Minimalistic Meta Modeling
Language. Section V discusses the application of this
language for multilingual content management. The
conclusions and acknowledgement close the paper.

II. LOCALIZED CONTENT MANAGEMENT REQUIREMENTS
The general approach to multilingual web site production

is similar for most approaches. It is a two-phase process.
Its foundation is language- and country-independent

content, or at least content storage organized in a way that
allows content to be localized easily. To this end, an initial
internationalization (often abbreviated as I18n) step removes
all cultural assumptions from content.

211

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Example of a content repository organization for multilingual content with content distribution on different levels.

On that basis, a localization (L10n) procedure adapts
content for a specific country, region, or language.

There are many considerations that have to be taken into
account to enable this basic process. On top of the linguistic
and cultural tasks of localization, there are business
considerations and technical issues about the management of
content, its structure, and organization (its physical
structure) [3]. Choices are made based on the required
content management strategy.

Content management processes for localization have to
be defined. As part of those, the process of rendering
localized content into publishable documents needs to be
aligned with the actual content organization.

In this paper, we concentrate on the technical issues of
multilingual content management and representation.

A. Basic Multilingual Content Management Strategies
There are three typical strategies for the management of

multilingual and multicultural content [4]:
1) Central control over the content: Content is

distributed by a central authority and it is translated to
different target languages, but it is typically not adapted in
other ways. I.e., there are no structural changes, and the
layouts are not adapted to local preferences.

2) Decentralized management of multiple local sites
without coordination: The local sites typically use a
localized design. This approach does not ensure
homogeneous quality in all localized appearances, there is
no means to enforce content to be current in all local
repositories, and there is no way to grant a globally
recognizable web site standard, e.g., a corporate design.

3) A hybrid approach of the first two: It allows dealing
with global, regional, and local content. Global content is
produced centrally and translated for global use. Regional

content is localized from centrally provided content, but is
also adapted to and used in a regional context. Local content
is produced locally in the local language in addition to
global and regional content.

Because of the possibly combined advantages, many
organizations favor the third approach. It requires tool
support that is discussed in the subsequent subsections.

In practice, there are basically two CMS setups that
correspond to centralized and decentralized content
management: a central multi-tenant CMS that allows hosting
multiple sites and relating these to each other, and isolated
local CMSs that exchange content while providing their own
web site structure and layout. The subsequent subsections of
this section discuss these two approaches.

Fig. 1 shows an overview over different exemplary
content repositories organized according to the two ways of
multisite content management. Each repository represents
one CMS instance or one content collection inside a CMS
together with its structure, layouts, etc.

The three repositories at the top of Fig. 1 show content
localization at different levels in content trees of multisite
CMSs. In this example, each CMS hosts collections for
regional, national, and language-specific content. These are
just three arbitrary levels of content collections. The solid
lines in the figure denote relationships between collections
where the lower one is derived from the upper one.

The General Repository at the bottom represents the pool
of internationalized content that is used for content
distribution from a central content pool. The dashed lines
represent content passed from one repository to another.

The sample repositories in Fig. 1 contain content (text,
images, etc.), as well as navigation nodes and structure.
These parts of the repositories are only shown where needed.

Maintaining content consistency across different
localized versions is time consuming and error prone. There

General Repository

General Content General Navigation

Region r3 Repository

Regional Content Regional Navigation

Country c3 Repository

Language l3 Repository

Region r1 Repository

Regional Content Regional Navigation

Country c1 Repository

Language l1 Repository

Region r2 Repository

National Content National Navigation

Country c2 Repository

Language l2 Repository

212

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

are two primary ways of content distribution and
localization: manual and semiautomatic [3]. These apply to
both approaches, centralized as well as decentralized CMSs.

B. Multilingual Content Structures
Content needs a defined structure in order to be

processed by content management systems. There are two
basic forms of content organization for the support of the
aforementioned multilingual content management strategies:
related content variants and independent content collections.

1) Related content variants: Professional CMSs allow
defining content collections and relating them to each other.
A typical pattern is a master-variant model, where a variant
can be derived from every piece of content. The original
content then plays the role of a master. Typically the master
is internationalized content in a certain language, and the
variants are the translations. The structures of master and
variants are identical or at least similar.

2) Independent content collections: In a decentralized
approach, CMSs maintain local content and structures that
are connected logically only. Localization may be
performed by translation of internationalized content that is
provided in a central content pool, by adding new local
content, and by omitting centrally provided content from a
local repository.

C. Content Localization Processes
The two ways of organizing content, either as related

variants or as independent content collections, allow
different localization processes. The most important ones are
the translation of content from an internationalized form into
a localized variant, and the transmission of content from a
central content pool to a national, regional, or local content
collection.

1) Translation of content using a master-variant model:
Whenever the master content changes, some actions on the
localized variants are induced. In terms of Fig. 1, e.g., when
content in a regional repository is modified then
localizations in the national repositories are updated.

Whenever master content is changed and variants are not
yet translated, as well as in cases where the master is
extended with additional content, e.g., new substructures, the
variants have to be considered outdated. In these cases a
repository may provide default or fallback values to the
variants. In the simplest case the master content is taken as
the fallback. Often the English version of a web site is
chosen as a master, so that new content that is not yet
localized shows up in English on the various sites.

Fallbacks are problematic for composite documents, e.g.,
images embedded in a text [5]. When an image is updated,
this may, e.g., result in an English image contained in a
French text. An application-specific fallback logic may be
needed for composites.

Additionally, changes to the master may result in
translation workflows being started. Such a workflow either
demands that new or changed content is translated manually,
or it employs automatic translation tools to create localized

content. There are various degrees of machine translation,
ranging from machine-aided human translation, over human-
aided machine translation to fully automated translation [6].

It is current practice to minimize manual translation
effort by using a Translation Memory System (TMS) that is
employed for terminology management and to record all
existing translations [7]. To enable these to work with a
CMS, there are content interchange formats like the XML
Localisation Interchange File Format (XLIFF) [8] and
Translation Memory eXchange (TMX) [9] for output and
input of multilingual content.

During automatic localization there are easy translation
tasks like adaptations of number formats, measurement units,
currencies, etc. From a cultural viewpoint, there is no general
answer to the question whether a document’s content can be
changed while retaining its structure, though [10]. In general,
only the translation of content according to a centrally given
structure is achievable.

There are approaches to automatic translation that
employ semantic models of content, e.g., ontology-
based [11]. These are mainly subject to research.

In any case, it is crucial for editors to learn how to
prepare content in a way that is suitable for localization [12].

2) Shipping of content between independent
repositories: For the translation processes mentioned above,
content needs to be exchanged between a CMS and a TMS
using some external format that allows identifying related
content when content is transferred back to the CMS.

When following a content strategy that employs
independent content collections, content regularly needs to
be transferred between repositories as part of the localization
process. In terms of Fig. 1, e.g., internationalized content in
the general repository is distributed to regional repositories.

For content collections inside one CMS, content transfer
might just consist of internal references. If separate CMS
instances need to exchange content, some external content
format is required.

As indicated in Fig. 1, the repositories might form a
hierarchical network of content pools, ranging from global
over regional down to local repositories. Though these
hierarchies result from the master-variant relationships (see
Section B.1)), content shipping should take hierarchy levels
into consideration (see the dashed lines in Fig. 1).

D. Content Presentation
Content is rendered into documents that are used for

publication, e.g., HTML documents for web sites or XML
documents for typesetting programs. Documents in various
languages are produced from multilingual content.

Typically, predefined layouts are used for document
creation. The way documents are created depends on the
content structure, i.e., related content or independent content
collections.

Related content is typically based on identical or at least
similar structures. Rendering layouts for multilingual content
have to be defined using a uniform structure. Consequently,
a uniform layout or a set of layout variants is typically
provided centrally. It is possible to provide local variations,

213

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

but this requires thorough knowledge of the content structure
and its variants. While predefined layouts limit the degree to
which presentations can be adapted to local preferences they
support quality assurance. E.g., international enterprises with
localized web sites typically wish to have their corporate
identity and design (CI/CD) to be reflected in every local
appearance.

The scenario where independent content collections are
employed gives single CMS instances complete freedom
concerning the visualization of content. Together with every
decentralized repository, localized layouts can be defined.
While this allows the highest degree of localization, it makes
quality assurance harder. There is no enforced commonality
between the local layouts.

III. RELATED WORK
We briefly discuss related approaches to multilingual

content management and commercial CMS products.

A. Modeling Approaches
Typically, the management of multilingual web sites

relies on a CMS. There are approaches to solve multilingual
content management on the level of HTML files, though.

MultiLingual XHTML (MLHTML) [13] is an extension
to HTML. It was designed to include content for different
languages in the same page file. An XSL style sheet is used
to transform it to a plain HTML page for a given language.
The approach is well suited for static sites without a CMS in
the background and for large sets of existing static HTML
pages. It requires web sites to have the same structure and
the same layout across all languages, though.

B. Content Management System Products
Professional CMS products support multilingual content

management. To name some examples, Adobe Experience
Manager (AEM), CoreMedia CMS, and Sitecore Experience
Platform all follow a master-variant approach to multisite
management. They provide functionality to create a deep
copy of a master site. The content entities from the copy are
automatically related to the corresponding master entities.

All products allow local editing of content copies, and
changes to the master lead to notifications sent to editors.
CoreMedia also allows editing the content’s structure.
Sitecore manages navigation structures locally.

Some products add workflow tasks for the translation of
all content entities. Workflows may drive automatic or
manual translation processes. Some of the products provide
workflows for external translations using XLIFF.

The master site serves as a fallback for missing localized
content. To this end, AEM and CoreMedia allow to freely
choose the master. Sitecore prefers US English for master
content and it additionally provides fallback chains to, e.g.,
have a series of fallback languages before using the master.

IV. M3L
The Minimalistic Meta Modeling Language (M3L,

pronounced “mel”) is a modeling language that is applicable
to a range of modeling tasks. It proved particularly useful for
context-aware content modeling [14].

model ::= ⟨def-list⟩
def-list ::= ⟨def⟩ [⟨def-list⟩]
def ::= ⟨ref⟩ “is” ⟨id-list⟩
 (“{”⟨def-list⟩“}” [⟨production-rule⟩]

| ⟨production-rule⟩
| “;”
)

ref ::= ⟨id⟩ [“from” ⟨ref⟩]
id-list ::= (“a” | “an” | “the”) ⟨ref⟩ [“,” ⟨id-list⟩]
production-rule ::= (“|=” ⟨def⟩

| “|-” {⟨ref⟩ | string | “the” “name” }
) “;”

Figure 2. Simplified grammer of the M3L.

In order to be able to discuss multilingual content
management with M3L in the subsequent section, we briefly
introduce the M3L modeling constructs.

M3L offers a rather minimalistic syntax that is described
by the slightly simplified grammar (in EBNF) shown in
Fig. 2. It is only simplified for readability and still complete.

The production for identifiers (id) is omitted here. It is a
typical lexical rule that defines identifiers as character
sequences. Identifiers may—in contrast to typical formal
languages—be composed of any character sequence.
Quotation is used to define identifiers containing whitespace,
brackets, or other reserved symbols. The same holds for
string literals (string).

The descriptive power of M3L lies in the fact that the
formal semantics is rather abstract. There is no fixed domain
semantics connected to M3L definitions. The exact
semantics of M3L evaluation will not be discussed in this
paper. For more details see [14].

A. Concept Definitions and References
A M3L model consists of a series of definitions (⟨def⟩ in

the grammar definition above). Each definition starts with a
previously unused identifier that is introduced by the
definition and may end with a semicolon. For an example,
see Fig. 3 line 1.

We call the entity referenced by such an identifier a
concept. Its constituents are presented in the following.

The keyword is introduces an optional reference to a
base concept. An inheritance relationship as known from
object-oriented modeling is established between the base
concept and the newly defined derived concept. This
relationship leads to the concepts defined in the context (see
below) of the base concept to be visible in the derived
concept. Furthermore, the refined concept can be used
wherever the base concept is expected (similar to subtype
polymorphism).

As can be seen in the grammar, the keyword is always
has to be followed by either a, an, or the. The keywords a
and an are synonyms for indicating that a classification
allows multiple sub concepts of the base concept. Lines 2
and 3 of Fig. 3 show an example.

There may be more than one base concept. Base concepts
can be enumerated in a comma-separated list (Fig. 3 line 4).

214

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Code example of M3L statements.

The keyword the indicates a closed refinement: there
may be only one refinement of the base concept (the
currently defined one), e.g., line 5 of Fig. 3.

Any further refinement of the base concept(s) leads to the
redefinition (“unbinding”) of the existing refinements.

Statements about already existing concepts lead to their
redefinition. E.g., the statements in lines 6-8 in Fig. 3 lead to
the same definition of the concept NewConcept as the above
variant.

Every statement defining a concept is also an expression
that evaluates to a concept. Definition statements evaluate to
the defined concept; e.g., line 6 of Fig. 3 has no effect on
concept definitions, but it evaluates to NewConcept as
defined in lines 1-4. Further evaluation rules follow from the
remaining M3L constructs.

B. Content and Context Definitions
Concept definitions as introduced in the preceding

section are valid in a context. Definitions like the ones seen
so far add concepts to the topmost of a tree of contexts.
Curly brackets open a new context. Lines 9-13 if Fig. 3 show
an example.

In this example, we assume that concepts String and
Number are already defined. The subconcepts created in
context are unique specializations in that context only. In
practice, the concept 30000 should also be given. If not, it
will be introduced locally in the context of
PeterTheEmployee, preventing reuse of the identical number.

M3L has visibility rules that correlate to contexts. Each
context defines a scope in which definition identifiers are
valid. Concepts from outer contexts are visible in inner
scopes. E.g., in the above example the concept String is
visible in Person because it is defined in the topmost scope.
salary is visible in PeterTheEmployee because it is defined
in Employee and the context is inherited. salary is not valid
in the topmost context and in Peter. Contexts with those
names may be defined later on, though.

Tying a context to a concept can be interpreted in
different ways, e.g., as contextualization or as aggregation.

Contexts can be referenced using the projection operator
from in order to use concepts across contexts. Fig. 3, line 14
shows an example where the salary of employee is selected.

C. Narrowing and Production Rules
M3L allows assigning one semantic production rule to

each concept. Production rules fire when an instance comes
into existence that matches the definition of the left-hand
side of the rule. They replace the new concept by the concept
referenced by the right-hand part of the rule.

In the example of Fig. 3 line 16, whenever a
MarriedFemalePerson shall be created then a Wife is created
instead.

Production rules are usually used in conjunction with
M3L’s narrowing of concepts. Before a production rule is
applied, a concept is narrowed down as much as possible.
Narrowing is a kind of matchmaking process to apply the
most specific definition possible.

If a base concept fulfills all definitions—base concepts
and constituents of the context—of a derived concept, then
the base concept is taken as an equivalent of that derived
concept. If a production rule is defined for the derived
concept, this rule is used in place of all production rules
defined for any super concept.

The code in lines 15-17 of Fig. 3 shows an example of
combined narrowing and semantic production rules. Fig. 4
illustrates the narrowing of concepts resulting from these
definitions. Whenever an “instance” (a derived concept) of
Person is created, it is checked whether it actually matches
one of the more specific definitions. A married female
Person is replaced by Wife, a married male Person by
Husband, every other Person is kept as it is.

In addition to the semantic production rules that create
new concepts, M3L also has syntactic production rules like
the one in line 18 of Fig. 2.

001 NewConcept;
002 NewConcept is an ExistingConcept;
003 NewerConcept is an ExistingConcept;
004 NewConcept is an ExistingConcept, an AnotherExistingConcept;
005 TheOnlySubConcept is the SingletonConcept;

006 NewConcept;
007 NewConcept is an ExistingConcept;
008 NewConcept is an AnotherExistingConcept;

009 Person { name is a String; }
010 Peter is a Person { "Peter Smith" is the name; }
011 Employee { salary is a Number; }
012 Programmer is an Employee;
013 PeterTheEmployee is a Peter, a Programmer { 30000 is the salary; }

014 salary from Employee;

015 Person { sex; status; }
016 MarriedFemalePerson is a Person { female is the sex; married is the status; } |= Wife;
017 MarriedMalePerson is a Person { male is the sex; married is the status; } |= Husband;

018 Person { name is a String; } |- "<person>" name "</person>";

215

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Person {
 male is the sex;
}

�
Person {
 male is the sex;
}

Person {
 female is the sex;
 married is the status;
}

� Wife;

Person {
 male is the sex;
 married is the status;
}

� Husband;

Figure 4. Illustration of the semantic production rules from Fig. 3.

Syntactic production rules evaluate to a string. The rules
consist of a list of string literals and concept references
whose production rules are applied recursively.

An additional keyword sequence the name (see
grammar in Fig. 2) refers to the name of the concept to
which the current rule belongs. This dynamic reference is
required because syntactic production rules of a concept are
chosen after narrowing in the same way as semantic
production rules. In the example in Fig. 3 this means that the
shown syntactic production rule may not only be applied to
Persons, but also to refinements like PeterTheEmployee.

The syntactic rules are also used as grammar rules to
generate recognizers that create concepts from strings.

If no rule is given, then the default syntactic production
rule evaluates a concept to its name.

V. M3L FOR MULTILINGUAL CONTENT
To demonstrate how the M3L can be used to model

multilingual content, we use a M3L representation of a setup
like that from Fig. 1 as an example. Concepts for local
repositories are derived from those of a central repository,
this way relating content, content structure, navigation
hierarchies, and document layouts. We briefly touch
workflows and content interchange formats.

A. Content Models
We use M3L concepts to model content repositories and

local collections as shown in Fig. 1 as well as to model
content itself. Contextualization represents content structure.
Relationships between repositories or collections are
established by concept derivation.

In the course of the example, we concentrate on the
navigation structure of a hypothetical website. In contrast to
the actual content, this frees us from content modeling details
that are not relevant for the discussion. The arguments to be
discussed are the same in both cases.

We use contextualization for the navigation hierarchy.
An example is shown in Fig. 5, lines 1-8. ContentRepository,
Content, Navigation, and NavItem may be given concepts
here. They are used to model repositories and collections,
single content items, navigation hierarchies, and navigation
entries, respectively.

In this example, the general repository is defined as a
M3L concept holding concepts for centrally provided
internationalized content. It encloses further concepts

representing two main parts of the repository, the main
content (GeneralContent) and the navigation structure
(GeneralNavigation).

The navigation part hosts a central navigation structure
with a main navigation node Products+Services. This one
has subordinate navigation items Consumer Products,
Professional Products, and Support.

The following models use derivation to relate translations
of navigation items to those in the general repository.

We present two modeling alternatives to translate the
navigation hierarchy. In the first alternative, outlined in
Fig. 5, lines 9-16, editors translate each navigation item one
by one. This way, the structure is kept as it is. We do so by
deriving a sub concept, here GermanNavigation, from the
general navigation. In this “copy” of the general navigation
we can locally “replace” the navigation items by translations.

We provide exactly one translation (is the) per
navigation item in the specific region context. Other
translations can still be given in the context of other local
repositories.

Changes in the general repository are propagated to local
ones in such a model. E.g., when a new navigation item is
added globally, it is inherited in the local repositories. Such
an item will not be translated automatically, but the overall
navigation structure stays up-to-date. The inherited concept
provides a default value in this case.

As a second alternative, shown in Fig. 5 lines 17-24, we
create a navigation structure locally. We populate it by
picking single instances from the general repository. This
way we detach the local structures from the global structure.
The other properties, e.g., the pages assigned to a navigation
node, are inherited, though.

The repository base is a new, “empty” one since
GermanNavigation is derived from just Navigation, not
GeneralNavigation. The inserted navigation items are
derived from those from the global repository, though.

In such a detached repository, possible changes in the
central repository are not propagated, but have to be
reapplied locally. This can be performed either completely
manually, or by means of a workflow (see below).

When structures are changed during localization, there
are various possibilities for structural differences. The model
in lines 25-37 of Fig. 5 gives two examples (without
translation) for a company’s web site in countries with
smaller markets and, therefore, a smaller offering.

216

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Sample multilingual content model definitions using the M3L.

In the first example, SmallCountry1, a subset (two out of
the three) of navigation items is inserted into the navigation
tree below Products, the navigation item that generally
appears as Products+Services. The second example,
SmallCountry2, shows a flatter structure with no sub
navigation items under Products.

Content and its structure are localized the same way as
the navigation structure. Content typically is composed of
multiple basic pieces of content, forming trees similar to the
navigation hierarchies.

B. Layout Descriptions
Content is managed with the goal of finally being

published. To this end, layouts are defined that are used to
render content in documents.

Such documents can be published on certain channels.
Channels are, in content management terms, media of a
certain kind combined with means of document distribution.
Examples are web sites, print publications, public kiosks,
and mobile applications. Different channels require different
presentations and include different sets of content.

Along with content also the layouts used for its
publication can be localized when documents are produced
using M3L’s syntactic productions attached to localized
concepts.

Fig. 6 shows an example of M3L code for localized
layouts. Adding to the example of the repositories shown in
Fig. 5, it presents two further repositories for Greek and
French content.

In addition to the management of content alone, here a
base concept GeneralLayout is given. This concept
represents an additional part of content repositories holding
layout descriptions (not shown in Fig. 1).

Inside this part of the repository, typical graphical
elements like pages, text components, image components,
etc. of the respective publication channel can be found. For
this example, assume Page to be a given concept for web
pages that aggregate content in one HTML file.

The main technical purpose of refinements of this
concept is to define syntactic production rules that describe
how documents are created from content. In the example of
web pages, these rules create HTML and CSS code.

001 GeneralRepository is a ContentRepository {
002 GeneralContent is a Content { … }
003 GeneralNavigation is a Navigation {
004 "Products+Services" is a NavItem {
005 "Consumer Products" is a NavItem;
006 "Professional Products" is a NavItem;
007 Support is a NavItem;
008 } } }

009 GermanRepository1 is a GeneralRepository {
010 GermanContent is the GeneralContent { … }
011 GermanNavigation is the GeneralNavigation {
012 Produkte+Dienste is the Products+Services {
013 Verbraucher is the "Consumer Products";
014 Profis is the "Professional Products";
015 Kundendienst is the Support;
016 } } }

017 GermanRepository2 is a Repository {
018 GermanContent is a Content { … }
019 GermanNavigation is a Navigation {
020 Produkte+Dienste is a Products+Services from GeneralNavigation from GeneralRepository {
021 Verbraucher is a "Consumer Products" from GeneralNavigation from GeneralRepository;
022 Profis is a "Professional Products" from GeneralNavigation from GeneralRepository;
023 Kundendienst is a Support from GeneralNavigation from GeneralRepository;
024 } } }

025 NicheMarkets is a ContentRepository {
026 SmallCountry1 is a GeneralRepository {
027 Country1Content is the GeneralContent { … }
028 Country1Nav is the GeneralNavigation {
029 Products is the Products+Services {
030 "Consumer Products";
031 "Professional Products";
032 } } }
033 SmallCountry2 is a GeneralRepository {
034 Country2Content is the GeneralContent { … }
035 Country2Nav is the GeneralNavigation {
036 Products is the Products+Services;
037 } } }

217

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Sample multilingual layout definitions using the M3L.

For the course of the example we assume distinct layouts
to be given for the two repositories. In Fig. 6, lines 7 to 20
sketch a fragment of a web page on the Greek web site, and
the lines 25 to 37 show code for a French web page. In
HTML it is typical to represent navigation hierarchies as
nested ordered lists (ol) with list items (li) for leaf nodes.

Note that there are no references from the content or the
navigation to the layouts. This way, multiple layouts can be
defined for the same content, thus allowing multi-channel
publishing.

All pages of our hypothetical web sites shall contain the
whole navigation hierarchy of the web site they belong to.
Therefore, the syntactic production rule for pages references
the whole navigation part of the repository as the respective
hierarchy’s root.

The syntactic rule of Navigation outputs HTML code for
the navigation root. As part of the production it addresses
NavItem. This reference evaluates to the set of all contained
(refinements of) NavItems. This leads to all syntactic
representations of the concrete NavItem refinements to be
concatenated in the output.

NavItems emit code for one navigation entry each. This
includes their (localized) name. The hierarchy is traversed by

recursion through the reference to the nested NavItem
refinements.

In the case of leaf navigation items, there is no
refinement of NavItem. For these, the reference evaluates to
NavItem as defined in Navigation, not any of the refinements
in the context of the localized repositories. We add a rule to
the “plain” NavItem to terminate recursion (lines 18/19
and 35/36 in Fig. 6). Otherwise, lines 17 and 34 would print
“NavItem” as the default production rule would be used.

In the example, the two sets of web pages mainly differ
in some CSS classes that are attributed to HTML elements.
To illustrate possible structural differences, Greek navigation
items that are assumedly labeled in Greek writing contain an
additional transcription using Latin letters.

In fact, this structural difference even has an impact on
the content (the navigation, in our example). The Latin
transcription needs to be maintained by content editors.
Therefore, according content LatinTitle is defined in the
context of every Greek navigation item by refining NavItem
in that context.

With this redefinition Greek, navigation items also print
the Latin transcription as part of the syntactic production rule
for the layout (line 16 of Fig. 6).

001 GreekRepository is a GeneralRepository {
002 GreekContent is the GeneralContent { … }
003 GreekNaviation is the GeneralNavigation {
004 NavItem is the NavItem { LatinTitle is a Title; }
005 …
006 }
007 GreekLayout is the GeneralLayout {
008 GreekPage is a Page
009 |- … "<html>" … "<body>" … GreekNavigation … "</body></html>";
010 GreekNavigation
011 |- "<ol class=\"greeknavigationbartoplevel\">"
012 "<li class=\"greeknavigationitem\">" NavItem "";
013 NavItem from GreekNavigation
014 |- "<ol class=\"greeknavigationbar\">"
015 "<li class=\"greeknavigationitem\">" the name
016 "" LatinTitle ""
017 NavItem "";
018 NavItem from Navigation
019 |- "";
020 }
021 }
022 FrenchRepository is a GeneralRepository {
023 FrenchContent is the GeneralContent { … }
024 FrenchNavigation is the GeneralNavigation { … }
025 FrenchLayout is the GeneralLayout {
026 FrenchPage is a Page {…}
027 |- … "<html>" … "<body>" … FrenchNavigation … "</body></html>";
028 FrenchNavigation
029 |- "<ol class=\"frenchnavigationbartoplevel\">"
030 "<li class=\"frenchnavigationitem\">" NavItem "";
031 NavItem from FrenchNavigation
032 |- "<ol class=\"frenchnavigationbar\">"
033 "<li class=\"frenchnavigationitem\">" the name
034 NavItem "";
035 NavItem from Navigation
036 |- "";
037 }
038 }

218

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 7. Code example of basic M3L concepts for workflow definitions.

The example shown in Fig. 6 exhibits a lot of duplicate
code. Note that in practical cases there will be reuse of
layouts by providing standard layouts on the level of
GeneralRepository or some additional intermediate
repositories, rather than defining everything inside the local
repositories. Such an intermediate repository might be, e.g., a
repository for all languages using Latin writing.

The termination rule stating that NavItem renders an
empty string may even be defined in the context of
GeneralRepository, thus holding for every repository.

C. Workflows
Translation tasks in a CMS are often driven by

workflows. Introducing a complete workflow management
system is beyond the scope of this paper. We provide a
sketch of an approach based on M3L structures.

A workflow consists of workflow tasks, e.g., represented
by derivations of a WorkflowTask as shown in Fig. 7, line 1.

A translation workflow task derived from it may look
like shown in Fig. 7, lines 2-6.

For the sake of simplicity, we assume content to consist
of Strings in this example. In practice, it may be structured.

We create workflows by deriving specific workflow tasks
and by connecting them using semantic production rules.
There are rules for content that initializing workflow tasks
and rules for workflow tasks creating a subsequent step.

In the case of interactive workflow tasks, syntactic rules
create representations for exchange with external processors.

The example in lines 7-17 of Fig. 7 shows a definition of
content of type GeneralNews. Whenever new content that is
derived from GeneralNews is created, its semantic rule is
inherited and thus a TranslationWorkflowTask is created.
InternationalizedContent contains content that needs to be
localized and, therefore, starts a translation workflow task

and initializes it with the Title and Text as content that needs
translation. Inside a translation workflow task,
ContentToTranslate flags content as requiring translation.

As a parameter directing the translation process, Fig. 7
shows a Translator in the context TranslationWorkflowTask.
In practice, it may be evaluated by the following workflow
execution.

The workflow tasks’ syntactic production rules produce
an external representation that can be passed to, e.g., a TMS.

When a result from such a translation service is received,
a TranslatedContent is produced from it. We need this
concept to distinguish it from InternationalizedContent so
that is not subject to further workflow enactments.

In this example, the workflow yields the translated
NewsContent. In order to create the concepts from translated
external content, refinements like News in the example of
Fig. 7 (lines 18-22) declare the mapping of an external
representation to a M3L concept by a semantic rule.

D. Content Exchange
When sharing content with external parties, as discussed

above, as well as in manual translation processes, content
needs to be shipped between the different parties.

Inside one organization, communication can be
established using M3L’s structures directly. In order to
interchange content with external organizations, we use an
external format for input and output. This can be defined
using M3L’s syntactic production rules. Fig. 8 shows a
sketch of an example.

In lines 1-4 of Fig. 8, the Text component of content of
type NewsContent (compare Fig. 7) is externalized in XLIFF
by means of the syntactic rule of ExternalizableNews. The
resulting file can be sent to a translator, and the result can be
parsed in to form an ExternalizableNews again.

001 WorkflowTask is a … { Agent is a …; }

002 TranslationWorkflowTask is a WorkflowTask {
003 ContentToTranslate is a String;
004 ResultingContent is a String;
005 Translator is the Agent;
006 } |= TranslatedContent;

007 NewsContent is a … {
008 Title is a String;
009 Text is a String;
010 }
011 GeneralNews is a NewsContent, an InternationalizedContent
012 |= TranslationWorkflowTask {
013 Title is a ContentToTranslate;
014 Text is a ContentToTranslate;
015 … Translator;
016 }
017 |- … (code exporting content, e.g. XLIFF, for the given translator)
018 News is a NewsContent, a TranslatedContent {
019 Title is the Title from TranslatedContent from Translator;
020 Text is the Text from TranslatedContent from Translator;
021 }
022 |- … (rule for importing content from, e.g., XLIFF)

219

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 8. Code example for a content interchage format.

In addition to Fig. 7, we also define GeneralNews and
News as refinements of ExternalizableNews in order to
inherit the syntactic rule (lines 5 and 6 of Fig. 8), replacing
the sketch shown there.

With these definitions, GeneralNews can be exported in
XLIFF using the syntactic rule for the production of XML.
News can be imported from XLIFF using the syntactic rule
to recognize XML.

VI. SUMMARY AND OUTLOOK
This section recaps the paper and discusses future work.

A. Summary
Multilingual content management is in widespread use,

and various requirements for the management of localized
variants of global content exist. This paper discusses an
approach to multilingual content management using context.

The Minimalistic Meta Modeling Language (M3L) is a
general-purpose modeling language that has proven
particularly useful for context-aware content management. In
this paper we demonstrate how to employ M3L to model
multilingual content management in a product-agnostic way.
This way, properties of content management systems can be
discussed independent of implementations.

B. Outlook
M3L can be executed by evaluating M3L statements.

However, this kind of execution is not an adequate approach
for building running systems. CMS products, on the other
hand, are of practical importance. Therefore, in the future we
want generate product configurations out of M3L statements.

To this end, software artifacts (e.g., configuration files
and source code files) can be created using syntactic rules the
way HTML is generated in the examples above.
Alternatively, product-specific model compilers for content
models [15] can possibly be adapted to M3L.

By means of generation, heterogeneous systems can be
achieved by generating code for different CMS products
from the same content model. This way, local repositories
are free to choose an implementation technology.

The workflows for content localization need further
work, in particular those incorporating external translators.

 So far, internationalized content immediately creates a
workflow task. In practice, sets of concepts are translated
together. Therefore, a practical workflow needs to be enacted
at a defined point in time on a selected content set.

ACKNOWLEDGMENT
The author wishes to express gratitude to his employer,

Namics, for enabling him to follow his scientific ambitions.

The insights presented here are taken from numerous
practical projects. Thanks to all the colleagues as well as the
business and technology partners that helped understanding
problems and developing ideas for their solution.

The anonymous reviewers of the original conference
paper as well as those of this article are acknowledged for
their valuable input that helped improving it.

REFERENCES
[1] H.-W. Sehring, “Localized Content Management with the

Minimalistic Meta Modeling Language,” Proc. The Ninth
International Conference on Creative Content Technologies
(CONTENT 2017), pp. 8-13, Feb. 2017.

[2] S. Mescan, “Why Content Management Should Be Part of
Every Organization’s Global Strategy,” Information
Management Journal, vol. 38, no. 4, pp. 54-57,
Jul./Aug. 2004.

[3] S. Huang and S. Tilley, “Issues of Content and Structure for a
Multilingual Web Site,” Proc. 19th Annual International
Conference on Computer Documentation (SIGDOC '01),
ACM New York, NY, USA, pp. 103-110, Oct. 2001.

[4] R. Lockwood, “Have Brand & Will Travell,” Language
International, vol. 12, no. 2, pp. 14-16, 2000.

[5] J.-M. Lecarpentier, C. Bazin, and H. Le Crosnier,
“Multilingual Composite Document Management Framework
For The Internet: an FRBR approach,” Proc. 10th ACM
Symposium on Document Engineering (DocEng '10), ACM
New York, NY, USA, pp. 13-16, Sep. 2010.

[6] W. J. Hutchins and H. L. Somers, An Introduction to Machine
Translation. Academic Press, 1992.

[7] E. Macklovitch and G. Russell, “What’s Been Forgotten in
Translation Memory,” Proc. The 4th Conference of the
Association for Machine Translation in the Americas on
Envisioning Machine Translation in the Information Future
(AMTA '00), pp. 137-146, Oct. 2000.

[8] Organization for the Advancement of Structured Information
Standards (OASIS). XLIFF Version 2.0. [Online]. Available
from: http://docs.oasis-open.org/xliff/xliff-core/v2.0/xliff-
core-v2.0.html

[9] Globalization & Localization Association (GALA).
TMX 1.4b Specification. [Online]. Available from:
https://www.gala-global.org/node/59010

[10] P. Sandrini, “Website Localization and Translation,” Proc.
EU High Level Scientific Conferences, Marie Curie
Euroconferences, MuTra: Challenges of Multidimensional
Translation, pp. 131-138, May 2005.

[11] D. Jones, A. O’Connor, Y. M. Abgaz, and D. Lewis, “A
Semantic Model for Integrated Content Management,
Localisation and Language Technology Processing,” Proc.
2nd International Conference on Multilingual Semantic Web
(MSW'11), vol. 775, pp. 38-49, 2011.

[12] R. Miller, “Multilingual Content Management: Found in
Translation,” EContent, vol. 29, no. 6, pp. 22-27, Jul. 2006.

[13] P. Tonella, F. Ricca, E. Pianta, and C. Girardi, “Restructuring
Multilingual Web Sites,” Proc. International Conference on
Software Maintenance, pp. 290-299, Oct. 2002.

[14] H.-W. Sehring, “Content Modeling Based on Concepts in
Contexts,” Proc. The Third International Conference on
Creative Content Technologies (CONTENT 2011), pp. 18-23,
Sep. 2011.

[15] H.-W. Sehring, S. Bossung, and J.W. Schmidt, “Content is
Capricious: A Case for Dynamic System Generation,” Proc.
10th East European Conference, ADBIS 2006, pp. 430-445,
September 2006.

001 ExternalizableNews is NewsContent
002 |- "<xliff …> … <source>"
003 Text
004 "</source> … </xliff>";
005 News is an ExternalizableNews;
006 GeneralNews is an ExternalizableNews;

220

International Journal on Advances in Software, vol 10 no 3 & 4, year 2017, http://www.iariajournals.org/software/

2017, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

