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Abstract— Methods have been developed to combine signals of 
various frequencies in a manner to produce clearer images in 
the presence of noise.  Ground Penetrating Radar (GPR) scans 
at various frequencies are no exception.  Methods using an 
optimization problem solver, the Expectation-Maximization 
(EM) Algorithm, define weights used to perform the task of 
combining GPR scans.  In this paper, we explore using the 
Gaussian Mixture Model (GMM) feature of the EM Algorithm 
on GPR scans taken at various heights above ground (“Stand 
Off” GPR).  This method demonstrates the same measured 
improvement toward producing a cleaner image as GPR scans 
taken at ground level using the same EM Algorithm method. 

Keywords-Ground Penetrating Radar; Expectation 
Maximization; Gaussian Mixture Model; Maximum Likelihood 
parameter estimation; Finite Difference Time Domain Method, 
GprMax. 

I.  INTRODUCTION 
 

Illuminating objects at various depths in a variety of 
terrains is the purview of Ground Penetrating Radar (GPR) 
scans.  Different frequencies illuminate best at different 
depths.  The higher the frequency the better illuminated the 
objects close to the surface are, with great fidelity.  
Conversely, the lower the frequency the better objects are 
illuminated at lower depths but with less detail.  We 
previously examined, treating GPR scans at several 
frequencies, over the same area, like sub-components of a 
square wave.  Where summing these sub-components, 
weighted by magnitude, created a square wave; suggesting 
that summing GPR Scans should form a crisper image to a 
lower depth than any one frequency scan.  We reported that 
simply adding each scan together, as shown in [1][2], does 
not suffice.  Summing weighted versions of each scan 
presents the best solution [1].  Determining the weights of 
each frequency scan provided the challenge. We were able to 
show that the EM Algorithm, an optimization problem 
solver, was an effective method for combining ground based 
GPR scans, using the data mixture feature [1].  What remains 
to be explored is whether the same is true for GPR scans at 
varying heights above the ground for the same buried objects 
and media, we previously examined [1].  

In this paper, we explore the use of the Expectation 
Maximization (EM) Algorithm [3] in a role as an 

optimization problem solver to determine the weights to be 
applied to each scan for an optimal weighted combination of 
scans.  In Section II we discuss related work to combining 
GPR scans and processing them at varying heights.  In 
Section III, we describe the EM data mixture process and its 
data mixture feature as it pertains to GPR scanned data..  In 
Section IV, we briefly cover the Maximum-Likelihood (ML) 
Estimation process as related to the EM Algorithm data 
mixture process [3][4].  In Section V, we present results of 
compositing of simulated GPR scan examples using the 
GprMax [5] software program to develop the individual GPR 
scans at various frequencies and transmitter/receiver heights 
above ground with buried targets in a defined media.  In 
Section VI we draw conclusions and discuss future work. 

 

II. RELATED WORK 
 

A literature search on compositing of GPR signals 
revealed only a few works. Papers on GPR time-slice 
analysis, overlay analysis and GPR isosurface rendering 
mostly by archaeologists; all similar in approach, were 
found.  The technique was to illuminate the strongest 
reflections with a color or shading then combine the 
information by layers of depth, displaying the result [6].  

For compositing of ground based GPR scans, work by 
Dougherty et al. [7] was the earliest found.  Dougherty 
focused on methods to align each trace at its direct arrival 
peak, subtract the direct arrival pulse, and equalize the 
magnitude weight of each trace, then combine the traces.  
Booth et al. [8][9] confirmed Dougherty et al. [7] results and 
presented improved methods to develop frequency scan 
weighting techniques based on trace averaged amplitude 
spectra.  Booth et al. [8][9] also proposed time invariant 
weighting methods consisting of matching the compositing 
results to an idealized amplitude spectrum output from a 
least-squares analysis. 

Bancroft [10] introduced a double ramp summation 
method for computing weights.  One ramp suppresses a 
frequency’s energy while another ramp increases an 
adjacent frequency’s energy all over time.  The length of the 
ramp and start time was based on the wavelength of the 
frequency of interest.  Weights developed as a ratio of the 
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average envelope of GPR frequencies was Bancroft’s [10] 
additional contribution.  Improvements over the previous 
works were minimal. This result is discussed in more detail 
in references [1][2]. 

A brief look at compositing of GPR scans at various 
heights revealed even less information.  The literature at 
various heights was mostly concerned with Synthetic 
Aperture Radar (SAR) using single frequencies or chirped 
frequencies.  The SAR literature focused on compensating 
for geometric distortion as the radar traversed the scan area; 
developing methods to piece the individual scans together.  
Other SAR papers [11][12][13] concerned themselves with 
accounting for phase shifts in the data from the angles the 
radar signals were sent and received from.  Much discussion 
revolved around Gazdag [14], Stolt and FK migration [15] 
techniques.  These techniques are beyond the scope of this 
paper and are part of future work discussions.  Another SAR 
method discussed using Ultra-Wideband SAR radars to 
distinguish buried objects using an author developed 
“Method of Moments algorithm” [11]. 

Most, directly, related work focused on mathematically 
defining weights for each frequency by equal weighting, or 
defining weights that equalized the spectra of GPR 
frequencies through ramp summation, or a least squares 
process matching an idealized amplitude spectrum.  Our 
previous work [1][2] explored GPR scans as a cluster 
mixture model problem using EM optimization problem 
solving methods for ground based scanned objects. 

 

III. EXPECTATION MAXIMIZATION ALGORITHM 
 

To group like items contained in complex mixtures, or to 
solve incomplete data problems, or to determine membership 
weights of a collection of data points in a cluster, all are 
types of problems considered the purview of the EM 
Algorithm solution process.  Our compositing of GPR scans 
process exploits this last feature, determining the 
membership weights in a cluster of data points within a 
Gaussian Mixture Model (GMM) [16][17].  The Gaussian 
distribution was chosen over other distributions because it is 
often used when the distribution of real-valued random 
variables is unknown. 

We can define the EM Algorithm GMM process by first 
defining a finite mixture model, f(x;θ), of K components as 
mixtures of  the following GMM function: 

 
𝑓𝑓�𝑥𝑥;𝜃𝜃� =  ∑ 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘(𝑥𝑥| 𝜃𝜃𝑘𝑘)𝐾𝐾

𝑘𝑘=1 , (1) 
 

Where:  
 
- 𝑝𝑝𝑘𝑘�𝑥𝑥�𝜃𝜃𝑘𝑘�  are K mixture components with a 

distribution defined over 𝑝𝑝�𝑥𝑥|𝜃𝜃𝑘𝑘� with parameters 

𝜃𝜃𝑘𝑘 =  �𝜇𝜇𝑘𝑘,𝐶𝐶𝑘𝑘�  (mean, covariance) 

- 𝑝𝑝𝑘𝑘�𝑥𝑥�𝜃𝜃𝑘𝑘� = 

 1
(2𝜋𝜋)𝑑𝑑 2⁄  |𝐶𝐶𝑘𝑘|1 2⁄ 𝑒𝑒

− 12�𝑥𝑥−𝜇𝜇𝑘𝑘�
𝑇𝑇
𝐶𝐶𝑘𝑘−1�𝑥𝑥−𝜇𝜇𝑘𝑘� (2) 

 
- 𝛼𝛼𝑘𝑘 are K mixture weights, where  ∑ 𝛼𝛼𝑘𝑘𝐾𝐾

𝑘𝑘=1 = 1. 
- �𝑥𝑥𝑖𝑖, … … … , 𝑥𝑥𝑛𝑛�  Data set for a mixture component 

in d dimensional space. 
 
The EM Algorithm has 2 steps for each iteration.  The 

first step is the Expectation step (E-step).  The E-step 
determines the conditional expectation of the group 
membership weights (𝑤𝑤𝑖𝑖𝑖𝑖′𝑠𝑠)  for 𝑥𝑥𝑖𝑖′𝑠𝑠  , introducing 
unobservable data based on 𝜃𝜃𝑘𝑘 , the mean and covariance 
matrix.  The second step is the Maximization step (M-step). 
New parameter values �𝛼𝛼𝑘𝑘, 𝜇𝜇𝑘𝑘,𝐶𝐶𝑘𝑘�; mixture weights, mean 
and covariance of weights; to maximize the finite mixture 
model are computed.  The E-step and M-Step are repeated 
until convergence of the GMM model is reached.  
Convergence is characterized as the minimal change of the 
log-likelihood of the GMM function from one iteration to the 
next.  The E-step and M-step equations are defined below: 

 
E-Step – 

𝑤𝑤𝑖𝑖𝑖𝑖 =  𝑝𝑝𝑘𝑘�𝑥𝑥𝑖𝑖|𝜃𝜃𝑘𝑘�∗𝛼𝛼𝑘𝑘
∑ 𝑝𝑝𝑚𝑚�𝑥𝑥𝑖𝑖|𝜃𝜃𝑚𝑚�∗𝛼𝛼𝑚𝑚𝐾𝐾
𝑚𝑚=1

   (3) 

 
for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾,   1 ≤ 𝑖𝑖 ≤ 𝑁𝑁;    

 
with constraint ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝐾𝐾

𝑘𝑘=1 = 1    
M-Step – 

𝑁𝑁𝑘𝑘 =  ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑁𝑁
𝑖𝑖=1    (4) 

 
𝛼𝛼𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑁𝑁𝑘𝑘

𝑁𝑁
 , for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾  (5) 

 
𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 =  � 1

𝑁𝑁𝑘𝑘
�∑ 𝑤𝑤𝑖𝑖𝑖𝑖 ∗  𝑥𝑥𝑖𝑖𝑁𝑁

𝑖𝑖=1    (6) 
 

for  1 ≤ 𝑘𝑘 ≤ 𝐾𝐾     
 

𝐶𝐶𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛 =    
 

� 1
𝑁𝑁𝑘𝑘
�∑ 𝑤𝑤𝑖𝑖𝑖𝑖 ∗  �𝑥𝑥𝑖𝑖 −  𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛� �𝑥𝑥𝑖𝑖 −  𝜇𝜇𝑘𝑘𝑛𝑛𝑛𝑛𝑛𝑛�

𝑇𝑇𝑁𝑁
𝑖𝑖=1 (7) 

 
Convergence (log likelihood of  𝑓𝑓(𝑥𝑥;𝜃𝜃) ) – 

 
    Log 𝑙𝑙(𝜗𝜗) =  

 
       ∑ log 𝑓𝑓�𝑥𝑥𝑖𝑖; 𝜃𝜃� = 𝑁𝑁

𝑖𝑖=1     
 

∑ �log∑ 𝛼𝛼𝑘𝑘𝑝𝑝𝑘𝑘�𝑥𝑥𝑖𝑖�𝜃𝜃𝑘𝑘�𝐾𝐾
𝑘𝑘=1 �𝑁𝑁

𝑖𝑖=1          (8) 
 
These equations were implemented in MATLAB.  The 

different scanning frequencies are represented by the 
variable ‘k’ and ‘x’ represents the GPR trace scans.  Each 
trace, at a frequency and transmitter (Tx)/receiver (Rx) 
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position, are analyzed and combined for all frequencies 
before moving on to the next position.  The EM GMM 
processing steps are briefly outlined below: 

 
Expectation Maximization Gaussian Mixture Model process: 

1. Initialize algorithm parameters; weights (mixture 
and group membership), mean, covariance, for each 
trace. 

2. Expectation step – estimate parameters. 
3. Maximization step – maximize estimated 

parameters. 
4. Check for convergence – log likelihood of mixture 

model. 
5. Repeat steps 2 – 4 until change from iteration to 

iteration is below or equal a defined value. 
6. Combine traces with defined mixture weights. 

 

IV. MAXIMUM LIKELIHOOD ESTIMATION PROCESS AND 
THE EM RELATIONSHIP 

 
The EM algorithm provides a way to reduce a Maximum 

Likelihood Estimation (MLE) problem to a simpler 
optimization sub-problem, which is guaranteed to converge.  
This is the relationship between the MLE process and the 
EM algorithm.  The MLE process provides an estimate of the 
unknown parameter, which maximizes the probability of 
getting the data we observed (likelihood). 

An MLE process can be described as follows.  Given a 
random sample X1, X2, …, Xn, independent and identically 
distributed (i.i.d.) with a probability density function 
𝑓𝑓(𝑥𝑥𝑖𝑖 ,𝜃𝜃), where 𝛳𝛳 is the unknown parameter to be estimated; 
the joint probability density function (PDF) can be labeled as 
L(𝛳𝛳). 

L(𝛳𝛳) = P(X1 = 𝑥𝑥1, X2 = 𝑥𝑥2, …, Xn = 𝑥𝑥𝑛𝑛) =   
 𝑓𝑓(𝑥𝑥1; 𝜃𝜃) ∗ 𝑓𝑓(𝑥𝑥2; 𝜃𝜃) … 𝑓𝑓(𝑥𝑥𝑛𝑛; 𝜃𝜃) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝜃𝜃)𝑛𝑛

𝑖𝑖=1   (9) 
 
Should the probability density function (PDF) be Gaussian 

with known variance 𝜎𝜎2  and unknown mean, µ, then, the 
likelihood equation becomes the following: 

 
L(𝜇𝜇) = ∏ 𝑓𝑓(𝑥𝑥𝑖𝑖; 𝜇𝜇,𝜎𝜎2)𝑛𝑛

𝑖𝑖=1 =     
𝜎𝜎−𝑛𝑛(2𝜋𝜋)−𝑛𝑛 2⁄ exp (− 1

2𝜎𝜎2
∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2𝑛𝑛
𝑖𝑖=1 )  (10) 

 
To determine the maximum value of the parameter 𝜇𝜇, for 

the likelihood equation, take the partial derivative of the log-
likelihood equation with respect to (w.r.t.) the mean, 𝜇𝜇, and 
set the result equal to 0 and solve the remaining equation for 
the variable 𝜇𝜇.  To determine if this value represents a 
maximum value for the likelihood equation, take the 
second partial derivative of the log-likelihood equation 
w.r.t.  𝜇𝜇; should a negative value result, this verifies the 
parameter 𝜇𝜇, found is a maximum value for the likelihood 
function. 

 
Log (L(𝜇𝜇)) =  −𝑛𝑛 log(𝜎𝜎) −  𝑛𝑛

2
log(2𝜋𝜋) − ∑ (𝑥𝑥𝑖𝑖 − 𝜇𝜇)2

2𝜎𝜎
𝑛𝑛
𝑖𝑖=1  (11) 

𝜕𝜕
𝜕𝜕𝜕𝜕

(log (𝐿𝐿(𝑢𝑢))) = −2(−1)∑ (𝑥𝑥𝑖𝑖− 𝜇𝜇)
2𝜎𝜎2

𝑛𝑛
𝑖𝑖=1 = 0 (12) 

Solve for 𝜇𝜇;       𝜇𝜇 =  ∑ 𝑥𝑥𝑖𝑖
𝑛𝑛
𝑖𝑖=1
𝑛𝑛

  (13) 
 

Second derivative – 
  

𝜕𝜕2

𝜕𝜕𝜕𝜕
(log (𝐿𝐿(𝑢𝑢))) = ∑ (−1)

𝜎𝜎2
𝑛𝑛
𝑖𝑖=1 =  − 𝑛𝑛

𝜎𝜎2
 (14) 

 
The second derivative is negative; by definition the 

calculated 𝜇𝜇 value is a maximum. 
  
When there are at least two sets of data, one partially 

observed (hidden), or when mixture parameters are to be 
estimated, the MLE process becomes hard.  For example, a 
mixture distribution of the form 𝑓𝑓(𝑥𝑥) =  ∑ 𝛼𝛼𝑘𝑘𝑓𝑓(𝑥𝑥;𝜃𝜃𝑘𝑘)𝐾𝐾

𝑘𝑘=1 , 
where there are K number of components in the mixture 
model and for each k, there is a PDF, 𝑓𝑓(𝑥𝑥; 𝜃𝜃𝑘𝑘) with weights 
𝛼𝛼𝑘𝑘  and a complete observed data set x with additional 
constraints ∑ 𝛼𝛼𝑘𝑘 = 1𝑘𝑘  and 𝛼𝛼𝑘𝑘  ≥ 0 for all k; the joint PDF 
has the following form with n observed data for each k: 

 
𝐿𝐿(𝑥𝑥|𝛼𝛼,𝜃𝜃𝑘𝑘) = ∏ ∑ 𝛼𝛼𝑘𝑘𝑓𝑓(𝑥𝑥𝑖𝑖;  𝜃𝜃𝑘𝑘)𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1   (15) 

 
The log of the likelihood equation is as follows: 

 
Log(�𝐿𝐿(𝑥𝑥|𝛼𝛼,𝜃𝜃𝑘𝑘)� =  ∑ 𝑙𝑙𝑙𝑙𝑙𝑙 ∑ 𝛼𝛼𝑘𝑘𝑓𝑓(𝑥𝑥𝑖𝑖 ; 𝜃𝜃𝑘𝑘)𝐾𝐾

𝑘𝑘=1
𝑛𝑛
𝑖𝑖=1  (16) 

 
 

Using MLE to solve this equation presents a challenge to 
determine the derivative of the log of sums and the start 
value for the weight,  𝛼𝛼𝑘𝑘 , associated with an individual 
distribution.  Many local maxima can be found that are less 
than the global maximum, calculated using an established 
value of 𝛼𝛼𝑘𝑘 .  Selecting the weight value that attains the 
global maximum for the above log-likelihood equation is not 
likely in short order. 

The EM algorithm process provides a method to estimate 
the weights, guarantee convergence of the log-likelihood 
equation [3][4] to a non-decreasing local maximum with 
each completion of all steps outlined in Section II.  A feature 
of the EM algorithm is that each local maximum achieved 
increases toward a global maximum.  The E-step uses 
existing values to calculate the probability of weight start 
values.  The M-step recalculates the model parameters then, 
calculates the maxima for that set of parameters using the 
MLE process.  The EM algorithm reduces the MLE 
optimization problem to a sequence of simpler optimization 
sub-problems, each guaranteed to converge. The EM process 
is repeated until a global maximum is reached. 

 The EM algorithm incorporates the MLE process only 
after reducing the model to a form, which is guaranteed to 
converge.  To combine GPR frequency scans, the actual 
weights of each frequency scan are unknown or hidden.  The 
manner the EM algorithm uses to accomplish workable 
solutions to hidden or incomplete data, makes a distinction 
from other optimization problem solvers; as a result, making 
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it a featured candidate to provide a solution to combining 
multiple GPR frequency scans. 

 

V. GPR SCAN RESULTS 
 

We examine extending the capability of the EM GMM 
problem solver by using the defined model areas from our 
previous work [1][2].  Areas were defined using the Finite 
Difference Time Domain (FDTD) [18] modeling software 
package GprMax by A. Giannopoulos [5] to create GPR 
scans in various media.  3-D hardware verification of the 
software was determined in reference [19], but only 2-D 
analyses were performed here.  Examples were constructed 
such that the Transmitter (Tx) and Receiver (Rx) heights 
above the ground were changed for each EM GMM in-depth 
analysis.  Tx/Rx heights examined included 5 meters, 10 
meters, 20 meters and 40 meters. 

The first defined area modeled consisted of Tx/Rx 
suspended 5 meters above the ground in air [1], repeated 
here for continuity in our discussion of height effects on EM 
GMM problem solver.  The target (a perfect electrical 
conductor) is buried 10 meters below the surface in a moist-
sand medium with relative permittivity (𝜀𝜀𝑟𝑟) of 9.0, and an 
electrical conductivity of 0.001 mS/m (milli-Siemens per 
meter) (Simulated Analysis 1 – SA1).  The target is 2 meters 
length and 0.5 meters in depth.  Each Tx/Rx is moved along 
the scan axis (x – axis) 0.25 meters per step for a total of 36 
scans.   The model area is 10 meters in width and 25 meters 
in depth.  The Tx position starts at 0.5 meters ending at 9.5 
meters, and the Rx position starts at 0.75 meters ending at 
9.75 meters.  Each scan is 425 ns in length, long enough to 
receive a reflected signal 24 meters below a Tx/Rx in the 
medium of air and moist-sand.  The defined model has a 
minimum grid space of 200 points in the x direction, (∆x – 
0.05 meters), and 500 points in the y-direction, (∆y – 0.05 
meters).  Figure 1 shows the model, Tx/Rx positions and 
target area. 

 

 
Figure 1. Defined Space with buried target at 15 meters depth and Tx’s & 

Rx’s 5 meters above ground. 
 

Six frequency scans were calculated for model SA1.  
Scans at 20, 30, 50, 100, 500 and 900 MHz were combined 
using the EM GMM problem solver to determine the weights 
of each scan.  Figure 2 shows the signals combined by 
scaling each signal max value to the same magnitude with 
the direct arrival and ground bounce signals removed.  The 
target reflection is a broad area roughly 240 ns to 320 ns in 
depth (two-way travel time); a coarse indication of the depth 
of the target.  The direct arrival signal is a signal that travels 
directly (line of sight) from a Tx to an Rx.  A ground bounce 
signal is a radar return from the ground.  The direct arrival 
signal was removed by subtracting a GPR scan without a 
target from a scan with a target, for each frequency.  A broad 
area of target reflection is shown from approximately 240 ns 
to 320 ns in depth (two-way travel time); a very rough 
indication of target depth.   

 

 
Figure 2. Sum of frequency signals with direct arrival and ground 

bounce signals removed. 
 
 

 
Figure 3. EM sum of frequency signals with Direct Arrival and ground 

bounce signals removed. 
 
Figure 3 shows the result of EM processed combined 

signals with the direct arrival and ground bounce signals 
removed.  The target is correctly depicted at 10 meters below 
ground, approximately 15 meters below Tx’s and Rx’s (240 
ns).  The improvement of defining scan weights using the 
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EM Algorithm process is clearly visible.  However, the 
Figure shows a broadened output result; broader than the 
target.  This is attributed to the fact that the model is more 
like a bore hole; area twice as deep as its width.  This and the 
inclusion of lower frequencies in the sum, account for the 
reverse “u-shaped” area beginning at the target depth 
outward. 

Though the model created a bore hole effect, analysis 
continued for heights of 10, 20 and 40 meters above the 
ground with the same width model to judge whether the 
target would be revealed at the correct depth ignoring the 
target width that might be displayed.  Figures 4–9 depict the 
model and the output result of combining 6 frequencies (20, 
30, 50, 100, 500 and 900 MHz), using the EM algorithm to 
define the weights of each scan for each of the remaining 3 
heights. 

Figure 4 and Figure 5 depict the simulated analysis 
model and ground penetrating radar response when the 
Tx/Rx height is 10 meters above the ground.  The target is 
correctly depicted at 20 meters (270 ns – two-way travel 
time) below Tx’s and Rx’s. 

 
Figure 4. Defined Space of SA1, with buried target at 20 meters depth 

from Tx’s & Rx’s 10 meters above ground. 
 

 
Figure 5. Output response of SA1, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 

 
Figure 6. Defined space of SA1, with buried target at 30 meters from 

Tx’s & Rx’s 20 meters above ground. 
 

 
Figure 7. Output response of SA1, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 
The simulated analysis of model SA1 was repeated for 

Tx/Rx heights of 20 meters above the ground (Figure 6) and 
40 meters above ground (Figure 8).  The target is depicted at 
30 meters (335 ns) in Figure 7 and 50 meters (468 ns) in 
Figure 9 from the Tx’s and Rx’s, as expected for two-way 
travel times. 

A second defined space model; (Simulated Analysis 2 – 
SA2) was developed to examine EM Algorithm response to a 
slightly different model type (Figure 10.).  SA2 consists of 
an area 30 meters in length and 25 meters in depth.  Four 
cases of Tx/Rx heights above the ground were analyzed.  
Cases included Tx/Rx at 5, 10, 20, and 40 meters above the 
ground. As before, a Tx/Rx combination is swept along the x 
direction axis beginning at 0.5 meters ending at 29.85 meters 
with Tx/Rx spacing of 0.25 meters. The number of GPR 
scans is 145 with a minimum grid space of 150 points in the 
x direction, (∆x – 0.2 meters) and 2500 points in the y 
direction, (∆y – 0.01 meters), dependent on the height above 
ground.  The space above ground was defined as free-space 
with relative permittivity ( 𝜀𝜀𝑟𝑟 ) of 1.0 and electrical 

Free-Space (𝜀𝜀𝑟𝑟 − 1) 
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conductivity of 0 mS/m or lossless. The scanned medium is 
dry-sand with a relative permittivity (𝜀𝜀𝑟𝑟) of 3.0 and electrical 
conductivity of 0.01 mS/m. 

 
Figure 8. Defined Space of SA1, with buried target at 50 meters depth 

from Tx’s & Rx’s 40 meters above ground. 

 
Figure 9. Output Response of SA1, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 
Buried in the ground at 8 different levels (4.565, 6.065, 

8.565, 10.065, 12.815, 14,065, 16.565 and 18.065 meters) 
are sheets modelled as perfect electrical conductors [1][2].  
Each sheet is 2 meters in length and 0.1 meter thick.  The 
scanning frequencies are the same as previously noted, (20, 
30, 50, 100, 500 and 900 MHz).  Figure 10, Figure 12, 
Figure 14 and Figure 16 show the four SA2 models for 
Tx/Rx heights above ground (5, 10, 20 and 40 meters) and 
the simulated sheets of corrugated aluminum modelled as 
perfect electrical conductors.  References [1][2], used the 
same model with the exception that the Tx’s and Rx’s were 
just barely above ground.  Figure 11, Figure 13, Figure 15, 
Figure 17 and Figure 18 display the GPR response after 
being processed using the EM GMM algorithm. Figure 18 
displays the individual GPR traces instead of the image 
response.  The direct arrival and ground bounce signal have 
been removed by subtraction in each case.  At each height 8 
sheets are depicted though their outline is not very clear and 

worsens as the height increases. At 40 meters, only the 
individual trace response designates the 8 sheets. 

 
Figure 10. Defined Space of SA2, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 5 meters above ground. 
 

 
Figure 11. Output response of SA2, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 12. Defined Space of SA2, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 10 meters above ground.  

Free-Space (𝜀𝜀𝑟𝑟 − 1) 

Dry sand (𝜀𝜀𝑟𝑟 − 3) 
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Figure 13. Output response of SA2, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 14. Defined Space of SA2, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 20 meters above ground. 
 

 
Figure 15. Output response of SA2, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 16. Defined Space of SA2, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 40 meters above ground. 
 

 
Figure 17. Output response of SA2, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 18. Signal traces of SA2 output response of EM sum of 

frequency signals with Direct Arrival and ground bounce signals 
removed. 
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A third defined space model, Simulated Analysis 3 
(SA3), was designed to examine the response of EM GMM 
algorithm on a defined space where the media is non-
uniform.  SA3 contains corrugated aluminum sheets 
modelled as perfect electrical conductors in dry sand, clay, 
granite, concrete and limestone media (Figure 19).  The 
relative permittivity of each medium is noted in same figure.   
The details of the model are the same as SA2 except for the 
media used.  Figure 19, Figure 21, Figure 23 and Figure 25 
display the model with Tx’s and Rx’s at 4 different heights.  
Tx/Rx heights are 5, 10, 20, 40 meters above ground.  GPR 
scanning frequencies are 6 total, 20, 30, 50, 100, 500, and 
900 MHz.  Figure 20, Figure 22, Figure 24, Figure 26 and 
Figure 27 depict the response to the GPR scans processed 
using the EM GMM process.  The direct wave and ground 
bounce reflected signals have been removed by subtraction.  
As the Tx/Rx height above ground increases, locating the 8 
sheets in the image is less clear, but they can be found.  At 
the 40 meter height, the best depiction of all 8 sheets is the 
display of individual EM processed GPR signal traces 
(Figure 27) rather than the image response. 

 
Figure 19. Defined Space of SA3, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 5 meters above ground. 
 

 
Figure 20. Output response of SA2, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 

 

 
Figure 21. Defined Space of SA3, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 10 meters above ground 
 
 

 
Figure 22. Output response of SA3, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 23. Defined Space of SA3, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 20 meters above ground. 

Dry sand (𝜀𝜀𝑟𝑟 − 3) 

Clay (εr − 5) 
Granite (𝜀𝜀𝑟𝑟 − 4) 

Concrete(𝜀𝜀𝑟𝑟 − 6) 

Limestone (𝜀𝜀𝑟𝑟 − 7) 

Free-Space (𝜀𝜀𝑟𝑟 − 1) 
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Figure 24. Output response of SA3, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 
 

 
Figure 25. Defined Space of SA3, (8) 2 meter long plates, 0.1 meter 

thick with Tx’s & Rx’s 40 meters above ground 
 
 

 
Figure 26. Output response of SA3, EM sum of frequency signals with 

Direct Arrival and ground bounce signals removed. 

 
Figure 27. Signal traces of SA3 output response of EM sum of frequency 

signals with Direct Arrival and ground bounce signals removed. 
 

VI. CONCLUSION AND FUTURE WORK 
 

In this paper, as an extension of reference [1], we 
explored the use of the Expectation Maximization Gaussian 
Mixture Model method [3] to combine multiple frequency 
scans of the same target area.  We examined the 
effectiveness of the EM GMM method on ground 
Penetrating Radar scans using transmitter and receiving 
antennas placed at various heights over the same target areas 
and media types as described in reference [1].  We conducted 
the analyses using the software program GprMax [5] due to 
the lack of actual hardware, real areas to scan and to compare 
results with reference [1] examples.  Actual 3-D hardware 
verification of the GprMax software was determined in 
reference [19]. 

As part of the related work discussion, we reviewed the 
Maximum Likelihood Estimation process and its problem of 
working with hidden or incomplete data [3][4].  When 
hidden or incomplete data exists, a closed form solution of 
the MLE equation or a single global maximum is not easily 
obtained and very hard to solve for.  We reviewed the EM 
GMM algorithm process and its benefit of working easily 
with hidden or incomplete data; creating a set of 
optimization problems simpler and guaranteed to converge 
while ultimately producing a global maximum after several 
iterations of producing increasing local maxima.  We also, 
briefly reviewed other methods of compositing found in the 
literature.  Methods of Dougherty et al. [7], Booth et al. 
[8][9] and Bancroft [10] we found to be less effective than 
our EM GMM method of reference [2].  Lastly, we found in 
the literature that scanning from various heights has been the 
purview of Synthetic Aperture Radars.  SAR technology 
information obtained [11][12][13] did not concern itself with 
compositing but, did research methods to stitch area scans 
together, account for phase shifts [14][15] in the data, due to 
scanning angles, and distinguish objects with an author 
developed “Method of Moments Algorithm” [11]. 
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Using GprMax [5], we repeated scanning the same test 
areas using the same 6 frequencies (20, 30, 50, 100, 500, and 
900 MHz) as our previous work at 5, 10, 20 and 50 meters 
above ground.  Our method performed well with outcomes 
similar to our previous results of scans with Tx’s and Rx’s 
near the ground.  Images at heights above 20 meters were a 
challenge to recognize independent of the media that 
surrounding the targets.  Moist sand, dry sand, concrete, clay 
granite and limestone did not change the end resulting image 
perceptibly.  The method used to remove the direct 
wave/ground bounce signal also removed the boundary 
reflections for non-homogenous media. The test areas were 
scanned with the media and targets in place; then re-scanned 
with media in place without the targets.  The scan with media 
and targets was subtracted from the scan with media without 
targets. 

Problem areas remaining to be addressed are edge 
detection capability, removal of direct wave/ground bounce 
without removal of the reflected target responses, alignment 
of GPR trace starting points across frequencies and 
accounting for phase-shifts in the data.  The SAR method 
solution was to use Gazdag [14] or F-K migration [15] 
techniques to manage phase-shifts in the data.  We are 
encouraged that these methods will address the edge 
detection problem favorably. 
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