
152

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Model-centric and Phase-spanning Software Architecture for Surveys

Report on the Tool Coast and Lessons Learned

Thomas M. Prinz, Sebastian Apel, Raphael Bernhardt, Jan Plötner, and Anja Vetterlein
Course Evaluation Service and Chair of Software Technology

Friedrich Schiller University Jena
Jena, Germany

e-mail: {Thomas.Prinz, Sebastian.Apel, Raphael.Bernhardt, Jan.Ploetner, Anja.Vetterlein}@uni-jena.de

Abstract—Surveys are used in empirical sciences to answer
research questions. Such surveys can be separated into five
phases (e. g., planning and data collection), where each phase
shares information with each other. Since the interdependencies
between the phases are sometimes complex, it is helpful to
have a software system, which supports each phase of a survey.
There already exist such systems, which cover all of the phases.
However, the implementations of the phases have usually strong
limits; a more individual handling of the phases has to be done
in external tools. But an external handling of the information
would disrupt the links between the phases. The merging of
the phases become a cumbersome task. This was one reason
to build the new survey and report tool Coast. This paper
presents a realization of the advanced requirements on this
new survey system. The system keeps the links between the
phases intact and is able to distribute surveys on different
devices, e. g., paper and web. The focus on the meta-model
of surveys makes that possible. The model is derived as a
mathematical and as a data model. The data model builds a
domain-specific language in order to construct the necessary
parts of a survey. The architecture with its components and
services is built around this language. Mainly, the architecture
describes how the model of surveys is transferred and compiled.
Its benefits and disadvantages provide lessons learned for other
researchers and developers.

Keywords–Survey; Architecture; Model; Coast; Tools.

I. INTRODUCTION
Surveys are prevalent in the empirical sciences (for

example in psychology and sociology) [1]. In many cases,
it is profitable to use surveys to reach a large and locally
dispersed sample (e. g., [2]).

A survey can be separated in different phases: (1)
Planning, design, and implementation, (2) data collection,
(3) data preparation, (4) data analysis, and (5) reporting
[3]. Each of the phases is interwoven with the others. For
example, the reporting phase needs the specific questions
asked in the survey as well as the different variables and
scales from the implementation phase. In turn, the collected
data can only be interpreted by knowing the scales and
variables they belong to. So, it is beneficial to have a
software system, which supports each of the phases of a
survey and which is phase-spanning.

Such software tools are available on the market, e. g.,
EvaSys [4], KwikSurveys [5], LimeSurvey [6], SurveyMonkey
[7], and Unipark [8]. Most of them cover all phases of a

survey. They provide predefined or simple data analyses and
reports. However, the data analysis and reporting phases are
very individual processes and can become quite complex.
For further analyses (e. g., multivariate analyses, machine
learning) exceeding the standard repertoire, these tools offer
the download of the raw data. This separation from the tool,
unfortunately, disrupts the link between the data and the
other phases of a survey — the individual data analysis in an
external tool becomes a time consuming and cumbersome
task.

This fact was one of the main reasons for the Course
Evaluation Center at the Friedrich Schiller University Jena
in the year 2009 to build its own survey and report tool,
called Coast. It focuses on the integration of the analysis
and report phases for advanced analyses. Although it is
in successful use for the course evaluation of the univer-
sity, the first version of Coast had its disadvantages. The
disadvantages resulted from varying requirements, wrong
design decisions, and surveys, which got more complicated
than the architecture could handle. A monolithic architec-
ture emerged, which made it hard and risky to implement
changes in business logic. Although monolithic architectures
are profitable in early-stage development [9], such architec-
tures become more confusing during growth. That makes
the architecture difficult to maintain and hard to understand
[10][11].

As the questionnaires handled by Coast became more
complex, the usage of the first version of Coast was not
possible anymore. However, like a tool comparison in Sec-
tion II-C will show, the currently available tools do not
fulfil all our requirements. Usage of those tools cannot hap-
pen without significant changes on the questionnaires (and
questions asked in the survey). Since we use longitudinal
analyses [12] (which require equal questionnaires during
each data collection), it is necessary to keep the existing
structure intact. The overhead to change the questionnaires
and to build workarounds to solve the requirements is high.
Therefore, it is not possible without high efforts to use a
different survey tool. This high effort made it necessary to
transfer our tool Coast into a different architecture.

As a result, a new version of the Coast application
is currently under development. This new version deals
with the disadvantages of the first version by clarifying the
architecture and modules as well as the model of ques-

153

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

tionnaires and reports. The architecture is build up around
this model, which should offer a familiar development of
questionnaires and reports. The model formulates a Domain-
Specific Language (DSL) to handle the context-specific
interaction between humans and machines. Our domain
covers all phases of a survey and the model. In other words,
one goal of Coast is to provide a DSL for surveys, which
allows the construction of questionnaires and reports in a
language that everyone understands who has knowledge in
the domain.

This paper deals with our research question about the
realization of a survey system that keeps links between the
phases of surveys intact. We define requirements on such
a system, especially those being not fulfilled by existing
systems. A detailed presentation of the relationships and
information of surveys and reports is done mathematically
and as a data model. The data model builds a DSL for the
construction of all the parts belonging to a survey. Based
on this DSL, we examine the necessary components and
services for the different phases of a survey and discuss
them in terms of our software architecture. Benefits and
disadvantages of our approach provide experiences for other
researchers who have to realize similar research questions.

This paper is structured as follows: Subsequent to this
introduction, the reader finds an overview about related
work, our advanced requirements on a survey system, and
a comparison of existing survey systems regarding those
requirements (Section II). Section III describes the meta-
model as a DSL, especially for questionnaires. This de-
scription is done (1) mathematically to provide an overview
of the different information and relationships and (2) as a
data model which gives more detailed information. Based on
this data model, Section IV explains the architecture of our
survey system with a high focus on the interactions between
the phases of a survey. The benefits and problems of the
proposed solution are shown afterwards in Section V. This
paper concludes with a short outlook into future work in
Section VI.

II. RELATED WORK AND REQUIREMENTS
This section explains the five phases of surveys and

defines our requirements on a survey system. An overview of
existing solutions for creating, carrying out, and analysing
surveys makes it further possible to compare the require-
ments for those solutions, subsequently.

A. Phases of an Electronic Survey
A survey can be separated into five phases [3]:
1) Planning, design, and implementation,
2) Data collection,
3) Data preparation,
4) Data analysis, and
5) Reporting.

The first phase (planning, design, and implementation) in-
cludes planning on the research questions you want to
answer, deciding what survey questions are necessary to
answer these research questions, and specifying who will
be surveyed (the population). Furthermore, the survey will
be implemented. As a result, there is a paper or web link
that can be distributed to a sample of the population.

The population is surveyed with the implementation of
the survey in the second phase. This phase is called data
collection where the answers of the respondents for the
questions are stored in a data set (for example in a database).

The third phase data preparation is necessary, because
the collected data may contain malformed, incomplete, or
wrong records. Sometimes, there are faults in the imple-
mentation or conception of the questionnaire, which have
to be corrected. If other data sources are combined with
the collected data, some data may have to be recoded.
Summarized, the data has to be cleaned and prepared to
be used in a data analysis, the fourth phase, afterwards.

In the analysis phase, the collected data are analysed in
order to answer the research questions from the first phase.
The results of the analysis, as well as general information
about the survey, are finally summarized in detail in a report.
The report is the outcome of the last phase, reporting.

B. Requirements
The primary requirement of a survey tool is its coverage

of all mentioned phases of a survey. Besides this basic
requirement, a tool in our context should fulfil the following
functional requirements:

DEV A questionnaire and report model should be
usable for different devices (paper, web, smart-
phone, etc.).

QAD New kinds of question visualizations can be
added (sliders, timetables, etc.).

AAD New kinds of analyses can be added (group
comparisons, regressions, etc.).

MUL Multiple surveys should be analysed together
in a single report.

ADA Questionnaires and reports should allow
adaptivity, i. e., conditional branches.

DIS The survey conduction should be distributed on
other systems than the construction of surveys.

PRI The survey conduction should be distributed
also on private systems.

Furthermore, it should fulfil the following two non-
functional requirements:

FLE The creation of questionnaires and reports
should be flexible.

SCA All the phases should be scalable.

C. Other Survey Tools and Their Comparison
Coast is not the only survey tool available on the market

supporting the phases of a survey. There are well-established
tools like EvaSys [4], KwikSurveys [5], LimeSurvey [6],
SurveyMonkey [7], and Unipark [8]. All of them cover the
previously introduced five phases of surveys. Almost all
tools allow the creation of a questionnaire via drag and drop
of the questions. The resulting questionnaire can be used for
the data collection subsequently.

The tools are compared in Table I. The table compares
licensing, type of operation, types of questionnaires, analysis
tools, export of results, individualization of the layout, as
well as extensibility of question types and data analysis
algorithms. Concerning licensing, all tools offer a commer-
cial license, which is usually accompanied by a managed

154

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table I. Survey tool comparison for license types, hosting, and devices for questionnaires, as well as export options for data and modifications to layout,
question types, and analysis algorithms. The compared aspects were assigned to the requirements.

Requirements EvaSys Unipark LimeSurvey KwikSurvey SurveyMonkey
Commercial - 3 3 3 3 3
Open Source - 7 7 3 7 7
Free Version - (3) 7 7 3 3
SaaS DIS, PRI, SCA 3 3 3 3 3
Self Hosting DEV, PRI, SCA 3 7 3 7 7
Web Questionnaire DEV, PRI, DIS 3 3 3 3 3
Paper Questionnaire DEV 3 7 7 7 7
Hybrid Questionnaire DEV 3 7 7 7 7
Analysis Tools FLE 3 3 3 3 3
HTML Export FLE 3 3 3 3 3
PDF Export FLE 3 3 (7) 3 3
Spreadsheet Export FLE 7 3 3 3 3
Raw Data Export FLE 3 3 3 3 3
Add. Question Types QAD 7 7 3 7 7
Add. Analysis Algorithms AAD 7 7 3 7 7
Individualization FLE, ADA 3 3 3 7 3
Multi-Survey-Report MUL 7 7 (3) 7 7

hosting and therefore a minimum of installation effort. Such
a Software-as-a-Service (SaaS) offer is an advantage, espe-
cially with regard to the SCA, PRI, and DIS requirements.
Some systems offer free test phases; others offer a permanent
free use of the system with limited functionality. A hybrid
concept (use of paper and web surveys) in relation to the
DEV requirement can only be realized with the EvaSys
tool. The realization of new question types and new analysis
algorithms is only possible in the case of the open source
application LimeSurvey through independent hosting and
individual adaptation.

In conclusion, none of the tools considered would fully
meet the intended requirements. In particular, the MUL
requirement does not seem to be possible in any tool. The
phases of data preparation, data analysis, and reporting are
not separated in most of the tools and, therefore, merge
smoothly. All the tools have the possibility to export the
collected data for further research in external tools (e. g.,
IBM SPSS [13], Excel [14], or R [15]). Furthermore, they
provide standardized reports, which include the questions of
the questionnaires, frequencies, significance tests, and mean
values, among other parameters. However, with all tools, the
link between phases is lost in the case of individual analyses
and the accompanying export of the collected data.

III. A DOMAIN-SPECIFIC LANGUAGE
The tools mentioned in the previous section have a focus

on the development of the survey instead of a fine-granular
and sophisticated data analysis and reporting. As mentioned
before, a new focus on the data analysis and reporting was
one reason to build an own survey tool Coast. Another
main reason to build Coast was the missing coverage of
our requirements of the existing survey tools.

As mentioned in Section II-A, conducting a survey
is an almost well-defined process. The same holds true
for the development of questionnaires (used to survey the
population) and reports. It is our goal for Coast to offer
a controlled and realistic modelling and development of
them: We want to provide a DSL as a possible way to

handle the interaction between humans and machines in a
specific context. Our context contains all phases of a survey
as well as how questionnaires, analyses, and reports are
structured. In other words, the DSL can be used to model
such questionnaires, analyses, and reports. In this paper,
the DSL focuses on the description of the questionnaires
to avoid repetition, since the description of the reports is
quite similar.

Since the DSL should be used to define questionnaires
in a language that everyone understands who has knowledge
about questionnaires, the focus lies on how a questionnaire
is structured and what kind of information is important.
More concrete, the DSL describes the meta-model of the
questionnaire. That means an instance of that meta-model
is a description of one questionnaire. The instance of this
description is one physical questionnaire, which can be
answered by one respondent. The meta-model of question-
naires makes it possible to derive different kinds of surveys
from the same model: For example, surveys represented
online on PC, on paper, or on smartphones.

It is useful to inspect the structures of questionnaires
from a mathematical perspective to get a general and
compact model. Therefore, we considered questionnaire
models and descriptions in the literature [16], interviewed
psychologists in our department, and derived the following
mathematical questionnaire meta-model.

A. Mathematically
One way to picture questionnaires is to consider them

as computer programs: Questionnaires have a starting point
and the respondent follows the questionnaire on a “path”
question by question. Sometimes a path can branch out
depending on previous answers and a respondent follows one
or another. That means, the questionnaire forks — it allows
adaptivity. In other places in the questionnaire, different
paths join each other. It is like a program with branches. In
other words, a questionnaire can be described as a (control
flow) graph (definitions of graphs and paths can be found
in [17, pp. 432] and [18, p. 1180]).

155

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Before it is possible to define a questionnaire based on
graphs, it has to be examined what the nodes of the graphs
mean in this context. For this reason, we have to introduce
some concepts of measurement theory.

1) Codomains and Variables: The theory of psychologi-
cal measurements aims to study the properties of objects, es-
pecially of humans [19, p. 8]. In reality, the (psychological)
properties, e. g., intelligence or motivation, are too complex
and varied in such that the measurement has to coarsen and
discretise them. Therefore, each measurement describes the
mapping from the true domain to a set of discrete values [20,
p. 22]. This set of discrete values is called the codomain.

Stevens describes four different kinds of codomains
named levels of measurement [21]. Depending on the level
of measurement of a codomain, it can be decided, which
statistical analyses can be applied. The levels are nominal,
ordinal, interval, and ratio. Starting from the ordinal level,
the codomains are called scales. More information about the
different levels can be found in [21].

It is necessary to decide carefully which level of mea-
surement is suited for a specific measurement since it is
difficult or impossible to transform the values of a low-level
to a higher level measurement.

A property of an object obj is measured with the help
of the values of a codomain D. A measure assigns a value
val ∈ D to obj and can be described as a pair (obj, val). If
the same property is measured for the set of all objects O
in a sample, it results in a mapping from those objects to
the codomain D. This mapping is called a variable [20, p.
22]:

Definition 1 (Variable): A variable V is a left total map-
ping from a sample set of all objects O to a codomain D,
V : O 7→ D. The codomain of V is described with D(V).

A variable describes the characteristics of one property
for different objects [22, p. 19]. However, in questionnaires,
many of such properties should be measured. Therefore,
there is a variable for each of the properties to measure.

2) Items, Pages, and Questionnaires: The measurement
in questionnaires is done by asking the object (the respon-
dent) with a set of instructions and questions — items [22,
p. 19][23]. An item is a concrete question or request, which
measures one or more variables.

Definition 2 (Item): An item I consists of an instruction
and a set of enquired variables.

In almost all questionnaires, more than one item is
presented to the respondent at the same time. They are
grouped thematically on pages:

Definition 3 (Page): A page is a finite set of items.
Not each page has to appear for each respondent. For

example, if a respondent has never done a job, a page with
items about jobs is not suitable. In questionnaires, the exclu-
sion of pages and items depends on previous answers of the
respondent. There could be a previous item with the question
“Do you ever had a job?” as an example whose answer
includes or excludes the page about jobs. Questionnaires
with conditional pages are called being adaptive. In adaptive
questionnaires, conditions are allowing the control of the
path a respondent follows:

Definition 4 (Condition): A condition on the variables

V1, . . . , Vm, m ≥ 1, is a left-total mapping from the
Cartesian product of the codomains of the variables to the
boolean set {true, false}:

D(V0)× · · · × D(Vm) 7→ {true, false}

It is known from research that the structure of a ques-
tionnaire can influence the measurement results [24, S. 68
ff.]. The structure of a questionnaire seems to be important.
For this reason, a questionnaire should not only be defined
by an unordered set of pages and conditions. There has to be
an order of the pages and items [25]. Sometimes, this order
is described as the item flow and sequence of questions [26].
As mentioned before, it is promising to describe the structure
of a questionnaire as a control flow graph, in our case as an
acyclic, connected digraph [27, S. 547] (also proposed by
Bethlehem [16]).

Definition 5 (Questionnaire): A questionnaire Q is a
triple (P,E, Cond). It consists of an acyclic, connected
digraph (P,E) with a set of pages P and a set of edges E;
and a left-total mapping, Cond, which assigns a condition
to each edge.

3) Measurement Methods and Surveys: A questionnaire
can be used as a measurement method. A measurement
method is applied for a single obj and a set of variables. For
each of these variables var a pair (obj, var) is determined,
val ∈ D(var). Assume the variables in a specific order
within the measurement method. Then it is a mapping from
the set of all objects of the sample to the Cartesian product
of all codomains collected in the measurement method.

Definition 6 (Measurement Method): A measurement
method M is a mapping from the set of objects O to
the Cartesian product of all codomains of all measured
variables V:

M : O 7→
∏
v∈V
D(v)

Remark 1: A questionnaire is a specific measurement
method. The set of objects is the set of respondents. The
set of all measured variables contains the variables in the
questionnaire. Therefore, a questionnaire is also a mapping
from an object (respondent) to a set of values (the answers).

Since a questionnaire is a measurement method, a survey
is a special elicitation in our context using a questionnaire
[22, p. 18]. Elicitation is the application of a measurement
method to a set of objects.

Definition 7 (Survey): A survey S contains a question-
naire Q and a set of respondents O, S = (Q,O). The union
of all measurements of all objects builds the results R of
the survey S:

R(S) =
⋃
o∈O

Q(o)

B. Data Model
There are some mathematical structures, which are not

trivial to implement, e. g., conditions. Some other structures
are too unspecific yet to be used in software. An example
is a codomain, which is an arbitrary accurate set in a math-
ematical sense. However, such a set cannot be implemented
for discrete computers. For these reasons, the mathematical
model has to be made concrete as a data model.

156

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Questionnaire

Survey

startDate, startTime

endDate, endTime

Item

Condition

negated

<<Interface>>

Graph

<<Interface>>

Node
Edge

<<Interface>>

Edge

*

*

0..1

2

source, target

0..2

visible,

can be leaved

*

Representation 1..*

<<Enumeration>>

Device

Browser

SmartPhone

PDF

...

Page

*

Variable

name

anonymity

*

texts

texts

0..1

0..1

0..1

0..1

1..*

*

*

*

*

*

Figure 1. The questionnaire classes.

1) Questionnaires, Items, and Pages: Figure 1 shows
the classes belonging to questionnaires and surveys. Classes
with dashed lines have at least one association with a class
in the current diagram but will be explained later.

The class Survey represents an elicitation using a ques-
tionnaire. Besides the questionnaire, a survey has a start and
end date as well as a start and end time in the data model.
The respondents (see Definition 7) are not illustrated in the
class diagram since they are not of interest in this context
of the data model and architecture yet.

Regarding Definition 5, a questionnaire is a graph con-
sisting of pages and edges, where each edge has an assigned
condition. A questionnaire is represented by the class Ques-
tionnaire in the class diagram. It implements an interface
Graph giving it rudiment graph functionalities like getting
the nodes and edges. That makes it also possible to apply
general graph algorithms to questionnaires, e. g., topological
ordering, data-flow analyses, etc.

Instead of referring to pages, the questionnaire has Items
as nodes in our data model. That infringes the mathematical
formulations for reasons of generalization: Each question-
naire should contain the same items independently from the
device, e. g., a browser, a smartphone application, or a PDF.
The number of items, which should be displayed on the same
page, varies for different devices because of display sizes.
Therefore, the pages should be defined dependent on the
device. For example, a smartphone display may be too small
to show more than two items on a single page. A desktop
device, however, enables at least five items per page. The
items are the same for both devices, but the pages differ.

For these reasons, the questionnaire in the data model
refers to items, where each item refers to a set of pages. Each
item can only have up to one page per device as otherwise, it
would be uncertain, which page should be used. A Page has
a link to the Device enumeration in the class diagram. Since

the page depends on the device, the items can be grouped
differently on pages for diverging devices.

The Item in Figure 1 has a reflexive aggregation. Since
items can become very complex, such complex items can
be decomposed into subitems in the model, i. e., complex
structures can be reduced to more simple ones. Although
this is not explained in the mathematical model, this design
decision supports reusing of structures. A battery of rating
items (a set of questions with usually five or seven different,
distinct answer possibilities) is a prominent example of such
a complex item (cf. Figure 2). In our model, a rating battery
with five different questions would be separated into an item
representing the whole rating battery (in the example of
Figure 2 the box with the header “Some questions”) and
five subitems representing the five different questions.

As it can be seen in this example, the master item should
have a different visualization than the subitems — it should
group the subitems in a table-like form, where each row
represents one subitem with the actual question. Although
the visualization of the items is not part of the mathematical
questionnaire model, there is a need for it in practice. For
this reason, an item has at least one representation (the
association to the class Representation in the diagram of
Figure 1). Similar to a page, a representation is defined
for a specific device since an item could be represented
differently for example on a web or a paper survey. There
is a restriction that each item has up to one representation
for a specific device. Like the diagram shows, a page has
different representations too since it must also be visualized.

Items and pages contain texts, which define, e. g., ques-
tions, instructions, and headers, corresponding to the math-
ematical model (Definition 2). The different texts should be
stored language-separated such that a questionnaire can be
used in different languages.

As a further extension to the mathematical model, each

157

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Statements
(1=strongly disagree ... 3=neutral ... 5=strongly agree) 1 2 3 4 5 no answer

1 The instructor creates a stimulating work atmosphere. g g g g g g
2 The course stimulated my interest in this topic. g g g g g g
3 The subject matters fit my level of knowledge. g g g g g g
4 Most of the participants attend the course regularly. g g g g g g
5 Overall, I am satisfied with the general conditions of this course. g g g g g g

Figure 2. Example of a battery of rating items.

Item

Condition

negated

Clause

negated

Axiom

negated

<<Abstract>>

ComparativeValue

Edge

<<Enumeration>>

Operation

=

<

>

0..1 0..2

visible,

can be leaved

1..*

1..*

Variable

name

anonymity

ScalePoint

value

ScaleComparativeValue

ScalarComparativeValue

value

0..1 0..1

*

*

Figure 3. The condition classes.

item may have two conditions: (1) A condition whether the
item is visible to the participant, and (2) a condition whether
the participant can leave the item. The latter condition is
practically necessary to avoid the reaching of the next page
by a participant if some questions are required to answer.
The former condition is an extension to the adaptivity of
the questionnaire: Items can be visible on a page to specific
groups of participants only.

Conditions are also used by the edges of the question-
naire following the mathematical model. In the class diagram
of Figure 1, the questionnaire consists of edges beside the
items. The class Edge implements an interface Edge and
has a source item, where the edge starts, and a target item,
where the edge ends. As a restriction, an edge cannot start
or end in a subitem.

2) Conditions: As mentioned before, adaptivity can be
realized by multiple outgoing edges of an item. This adaptiv-
ity is based on conditions following the mathematical model.
If the condition holds true for an edge, then this edge of
the questionnaire is subsequently followed. Mathematically,
such a condition is easy to describe. However, the conditions
in the data model should be interpretable or executable for
a computer program. Therefore, it has to be described as
a term (string) or as a parse-tree [28, pp. 45] in the data
model. We decided to describe a condition as a parse-tree
in disjunctive normal form (DNF). The advantages of using
the DNF are that (1) each logical formula can be described
in DNF and that (2) the resulting tree of clauses and axioms
(the parse tree) has always the depth of 3. The latter makes
it possible (a) to generate a simple UI for adding and
describing new conditions, (b) to avoid parsing of terms in
string format, and (c) to transform it to source code very fast.
The disadvantages are obvious, (i) the possible bigger size
of such conditions and (ii) the expected knowledge about
logical equations in DNF and its transformations. However,
the advantages prevail the disadvantages.

The class Condition in the class diagram of Figure 3
represents a condition in DNF. As an addition to the DNF,
a condition can be negated. Each condition consists of at
least one Clause, where each clause can be negated again
and all clauses are connected by a logical OR (clause1 ∨
. . . ∨ clausen , n ≥ 1). A clause object connects different
Axioms with a logical AND, axiom1 ∧ . . .∧axiomn , n ≥ 1.

In our model, each axiom is a simple expression
(variable operator value). variable is a reference to a
variable (cf. class Variable), operator is a relational op-
erator, i. e., =, 6=, <,>,≥,≤, realized by the enumeration
Operation. Eventually, value is a comparative value. Since
the comparative values can have different data types, e. g.,
a string, an integer, or a reference, they are realized as
abstract class ComparativeValue. In the class diagram, two
specializations are illustrated: A ScalarComparativeValue,
which represents an integer, real, or string value, and a
ScaleComparativeValue, which is associated with a specific
scale point. Scale points are explained later. It is possible
to add other specializations of the ComparativeValue class,
e. g., one for handling complex macros.

3) Variables: The classes Axiom and Item are associated
with the class Variable of the class diagram in Figure 4.
It represents a variable of the mathematical model (Defini-

158

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Item

Axiom

negated

Variable

name

anonymity

*

Codomain

name

ConstructionFunction

*

*
constructed of

*

*

*

*

Figure 4. The classes of variables.

tion 1) and has a unique name and a rank of anonymity. The
latter is technically important due for reasons of data security
and anonymous surveys. For example, if there is a variable
representing email addresses, the addresses should not be
stored in the same context as other anonymous variables.
Otherwise, the variables would lose their anonymity.

Another addition to the mathematical model is the pos-
sibility to define construction functions for variables. A
construction function is a formula (e. g., source code), which
describes the deriving of values for the variable based on the
values of other variables. Each variable may have different
ConstructionFunctions. A construction function again uses
variables for their constructions. Obviously, each cyclic
construction of variables should be avoided, i. e., no variable
should be able to be constructed of itself.

4) Codomains, Scales, and Scale Points: Each vari-
able uses an object of class Codomain following Defini-
tion 1 of the mathematical model. The classes belonging to
codomains are shown in Figure 5.

For codomains, several specializations represent different
levels of measurement as explained before and introduced
by Stevens [21]. A NominalCodomain is a codomain having
a relation (class Relation) defining equivalence between two
values of this codomain. An OrdinalScale is a nominal
codomain with an additional relation, which defines a linear
order on the values of this domain. The class IntervalScale
specializes the ordinal scale with two additional relations
for plus and minus operations. At last, the class RatioScale
is an interval scale with an identity element and additional
multiplication and division relations.

Based on the measurement level one can decide which
analyses are possible and could be applied on the collected
data. For those analyses, it is good to know all the values
in the codomain. For a large portion of codomains, there is
a finite and enumerable set of discrete values describing it.
These values are called scale points in the data model.

An object of the class ScalePoint consists of a value
from the base set of the codomain (which will be explained
later). Furthermore, a scale point has texts describing the
textual answer printed to the respondent. For example, in
the previously shown battery of rating items in Figure 2,

the scale points of each statement are “strongly disagree”,
“disagree”, “neutral”, “agree”, and “strongly agree” with the
values 1 to 5. Most codomains have a list of such scale
points. Furthermore, they have another list of special scale
points. Special scale points are, for example, “default” and
“no answer” scale points. As an example, each statement
of Figure 2 has the value of the “default” scale point if the
respondent saw it but has not answered; and it has the value
of the “no answer” scale point if the respondent chooses the
“no answer” checkbox.

5) Base Sets: As mentioned before, the values of the
scale points have to be part of the base set of the codomain.
In mathematics, it is easy to describe a set D with D ⊆ R
as part of the real numbers or with D = [5, 10] as all real
numbers between 5 and 10 inclusively 5 and 10. In a data
model, this has to be a part of the model too.

For this reason, the mathematical model was extended,
and a BaseSet describes the set of values a codomain is
based on. It is shown in the class diagram of Figure 6.

A base set describes typical number systems in the
first place, for example, integer and real numbers. If the
codomain contains texts, the base set is a set of strings
(words), i. e., the Kleene star on the set of all characters.
Alternatively, a base set can be a set of arbitrary objects,
e. g., pictures or persons.

As base sets can look different, the class BaseSet is
abstract. Therefore, a codomain must use one of its spe-
cializations. The model defines four concrete specializations:
(1) A CharacterSet defining arbitrary texts, (2) an ObjectSet
for arbitrary objects, (3) Integer for integer values, and (4)
Real for real values. The latter both classes Integer and Real
are specializations of the class NumberSet. Each number set
represents a number systems and may define an interval
between from and to. The interval has a specific distance
between all the values (stepsize). The NumberSet is abstract
with only two specializations Integer and Real.

With the description of the base sets, the mathematical
model was transferred to a data model. As the reader can
check, the data model differs from the mathematical model
mostly for reasons of generalization in the resulting architec-
ture and for more details and simplifications of mathematical
terms.

6) Reports: The report model is similar to the question-
naire model, however, the model will not be introduced in
detail in the context of this paper. Instead, the following
explains the report model in short.

The class Report is a graph like a questionnaire. It con-
sists of different Parts (pendants of items in questionnaires)
and ReportEdges. The edges of a report use conditions again.
This allows the creation of individual reports based on a
single report model. Report edges connect the parts in the re-
port. Each part has different ComputationalRepresentations,
up to one for each OutputDevice. There could be different
output devices, e. g., for online or paper reports. The rep-
resentations contain information about the visualization of
a part and define Calculations. A calculation illustrates a
function performed on the collected data of the part. For
doing this, it has different Parameters specifying the input
and output information of the function. The parameters could

159

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Variable

name

anonymity

Codomain

name

ScalePoint

value

texts

* *
special

ScaleComparativeValue

NominalCodomain

<<abstract>>

BaseSet

Relation
equivalence

OrdinalScale

linear order

IntervalScale

RatioScale

identity element

2

plus,

minus

2

times,

division

*

*

* *

*

*

*

1..*

Figure 5. The codomain classes.

Codomain

name

<<abstract>>

BaseSet

CharacterSet

ObjectSet

<<abstract>>

NumberSet

from, to, stepsize

Integer

Real

*

Figure 6. The base set classes.

be scalars or variables.
Besides the Report class, there are EvaluationProjects

configuring the report. The evaluation projects define Data-
Sources, which specify the places of different data col-
lections. This makes it possible to combine different data
sources (also external data) in a single report. Evaluation
projects also define sets of Filters. Filters filtrate the data
sources and create groups. For example, in a longitudinal
survey, one could filtrate the data based on the year and
create a group and data for each year. This allows to compare
groups in the reports. Furthermore, each collection of filters
ends in a single report.

IV. A SYSTEM ARCHITECTURE FOR SURVEYS
Our central architectural concept is to build the archi-

tecture around the questionnaire and report models. These
models form the language for psychologists, sociologists,
and researchers of other empirical disciplines to describe
their needs. That means, the models also have to contain

the processes and logics, which the researcher needs; or
the architecture has to contain these processes and logics.
Altogether, this is the domain of a survey: the domain covers
all phases of conducting a survey and the models, processes,
and logics. Since the models are part of the architecture, the
architecture does finally represent the complete domain. In
the topic of software engineering, this is a Domain-driven
Design (DDD) approach [29].

The questionnaire model was derived to be a DSL to
describe a questionnaire as near as possible to the daily
experiences of researchers in empirical sciences (the users).
For this reason, researchers can describe their questionnaires
on their own without deep experiences of the system. That
means, the questionnaires are developed by the domain
experts and not by the developers of the system like orig-
inally done in classic DDD approaches. In other words,
the users create formal models of questionnaires, which
are afterwards able to be used to conduct web or paper
surveys and to perform analyses and create reports. What the
system has to achieve is to handle such formal models and
to give an infrastructure for transformations, compilations,
interpretations, executions, and other derivations.

The focus on a formal domain-specific model and its
transformations into runnable code or reports as well as the
focus on the infrastructure for such models make it a model-
driven engineering (MDE) approach. MDE is the transition
of DDD to software architectural decisions. In classic MDE
a software is automatically derived from a formal model sim-
ilar to the way our questionnaires are compiled automatically
to web surveys [11]. Prominent examples of MDE are the
model-driven architecture of the Object Management Group
[30] and the Eclipse Modeling Framework [31]. Both focus
on the Unified Modeling Language (UML) and provide an
infrastructure of transformations from UML into the source
code. In general, however, MDE is independent of UML and
can be applied to arbitrary DSLs.

Our architecture describes the infrastructure and the
transformations of the questionnaire and report model during
the five phases of conducting a survey. Most parts of the

160

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Planning, design,

and implementation

Data

collection

Data

preparation
Data analysis Reporting

Survey designer

services

(Visualizer / editor)

Questionnaire model

with variables, etc.

Paper survey

Smartphone survey

 Questionnaire

 compiler

services

Verifier service

Paper scanner /

interpreter services

Collected

data

Report

transformation

service

Report model

with calculations,

etc.

Data preparation

services

OpenCPU R

services

Analysis / report

services

Report designer

services

(Visualizer / editor)

Report compiler

services

service

Online report

Paper report

...

Web

survey

Python

service
Model

Data

Generation

User

Tool

Legend

Figure 7. The architecture of the Coast system regarding the survey phases.

architecture use a questionnaire or report as input. For
example, a questionnaire designer is a part of the architecture
and receives a (possibly empty) questionnaire as input and
produces a modified questionnaire as output.

Figure 7 shows our simplified architecture (infrastruc-
ture) separated into the five phases of (1) planning, design,
and implementation, (2) data collection, (3) data preparation,
(4) data analysis, and (5) reporting. The architecture is
explained in the following.

A. Information Flows in the Architecture
The diagram contains different edges describing different

flows between the phases. The most important flow is
the bold one: The model flow. The model flow describes
a questionnaire or report described in the DSL. It can
be interpreted as a specification, which is sent to some
algorithms or services (the term “service” will be explained
later).

From the perspective of the user (the empirical re-
searcher), the data flow seems to be the most important.
It describes the collected data of the surveys and how it
is transferred. The data flows are illustrated as dashed bold
edges.

Regarding the MDE approach, the dotted edges are
of interest. They show automatically generated programs,
documents, etc. The primary input for those automatically
generated elements are the user-generated models. Although
there is more interaction between the user and the in-
frastructure as illustrated in Figure 7, this interaction is
reduced to the UI tools named survey and report designer
for reasons of clarity. The interactions between the user and
the services and models are illustrated as small dashed and

dotted lines. Eventually, interactions between external tools
and the architecture are illustrated as small solid edges.

B. Services in the Architecture
Since the architecture covers the phases of conducting a

survey, there is a natural flow from the left side of Figure 7
to the right side. The following description of the different
parts of the architecture follows this flow starting in the first
phase: planning, design, and implementation.

It all begins in the Survey designer services. These allow
the user to model a questionnaire using our questionnaire
DSL. The services provide a visual designer and editor
for changing texts, variables, and others. They handle the
creation and modification of necessary instances of the
classes of the questionnaire meta-model. As a result of the
designer, there is a well-specified questionnaire model.

If the user decides that the questionnaire is finished and
should be used in a paper and web survey, for example,
the model of the questionnaire is given to the questionnaire
compiler services via the model flow. The compiler services
implement the questionnaire and translate the model into a
paper and web survey (illustrated as generation flows). The
web survey can be accessed from the web and the results
are stored directly in a data collection. This is illustrated
as outgoing data flow from the web survey to the collected
data.

In the case of a paper survey, a printable survey will
be generated by the compilers. The printed questionnaires
can be given to the participants. Since the survey results are
not available digital, the compilers produce templates of the
questionnaire based on the printable survey too. These tem-
plates can be used for scanning the printed and completed

161

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

papers in the paper scanner and interpreter services. During
the scanning process, the data is extracted and the results are
stored; illustrated as data flow from the scanner services to
the collected data. The scanner service is a separate tool
called Amber Collector and will be available as open source
under this name in the future. It is built on Python and
provides (user) interfaces for performing and checking such
scans of paper surveys. The whole scanning process, web
surveys, etc. are part of the phase data collection. The results
of this phase are the collected data as data flow.

Besides the printable, web, and smartphone surveys and
the templates for the paper scanner, an automatically derived
verifier is another important result of the questionnaire
compiler services. The verifier service uses that verifier,
which belongs to the phase of data preparation. It checks
the collected data for malformations and unsoundnesses.
This can happen for example if during the scanning process
multiple answers for a single-choice variable were identified.
The application of the verifier results in a verified data.

The verified data arrive at the data preparation services.
At this time, the user has created a questionnaire model, has
implemented it by the compiler as paper and web survey, and
has verified the collected data. Now, the user wants to use
the data for a report. Therefore, the necessary data has to be
requested. Furthermore, the user wants to delete or modify
open (text) answers, which may contain profanity or mis-
spellings. The preparation services contain functionality to
request, replace, and standardize data information. Naturally,
it should not be able to modify the originally collected data.
Therefore, each modification is done on a copy of the data
information and is logged by the system. So it is possible
that other researchers can reconstruct the modifications and
are able to detect potential problems in other research. The
same happens during the replacement of default, no choice,
and other special values by user-defined values.

The replacements and computations of the data prepa-
ration services are done with R, a statistical programming
language which is perfect for data handling. As shown in
the figure, there is a bidirectional data flow from the data
preparation services to the OpenCPU R services. The R
services are like a pipe in which the data is transferred,
processed, and the enriched data is sent back.

The analysis and report services receive the prepared
data from the data preparation phase. However, those ser-
vices have to know which analyses should be performed.
Therefore, there is another service during the data prepa-
ration phase — the report transformation service — which
translates a questionnaire model into a report model. To
derive this information from the questionnaire model, the
report transformation service maps the questionnaire to a
new report, e. g., the items of the questionnaire to report
parts and the representations of the items to computational
representations. As a result of the service, there is a full
specified standard report model for the entire questionnaire
model. This is illustrated as the model flow to the report
model in the figure.

Some users want to have more powerful and specialized
computations in their reports, e. g., group comparisons, ge-
ographical maps, and regressions. With the report designer

services, it is possible to modify the report model to one’s
need and remove items, change variables, add computations,
add report items, add group comparisons, among other
things.

The report model together with the collected and pre-
pared data are combined in the analysis and report services
for computations. As mentioned before, the report model
contains the information about necessary calculations. The
collected data are then used as input for the computations.
By doing this, the report model is transferred into a linear
topological order and the conditions on the edges are trans-
lated into set operations in order to filter the data. Since the
services need a lot of statistical calculations, R is used again
to perform the computations. All standard calculations are
collected in a R package, but the user can freely add new
functions to the analysis and report services.

The result of the analysis and report services are the
computed values. Together with the report model, these
values can be combined in a report. This is done by re-
port compiler services similar to the questionnaire compiler
services explained before. Instead of compiling the model to
surveys, the report model is translated to reports for different
output devices. In this case, a device means the medium for
which the report is generated. For example, the compiler
is able to create printable paper and online reports. For
the former, the compiler services use a LATEX service. They
compile the entire report model and the values into a LATEX
document, which can then be compiled into a PDF or DVI
document. This is where the report is finished.

C. Service-Orientation
The architecture uses a lot of concepts of MDE as

mentioned before. Especially, the questionnaire and report
compiler services of Figure 7 are strictly model-driven and
do not allow modifications on the result without doing it
on the model. Since the models are transferred within the
architecture and a lot of statistical computations are done,
the architecture contains possibly long-running and compu-
tationally expensive tasks. Such tasks should, however, not
affect other tasks of the architecture, for example, the data
collection of a survey. In other words, the tasks should scale
and should be physically separable. With Service-oriented
architectures (SOA) [11] such a separation and scalability
is easier and, therefore, a good choice.

Another reason for using SOA is that important parts of
our architecture follow ongoing research in the context of
psychoinformatics and compiler construction. That means
that some of the tasks have to be flexible, evolutionarily
growable, and replaceable. By encapsulating the tasks as
services, the tasks should become loose coupled and should
have high cohesion [32] — the services are almost indepen-
dent of other services. Changing the services but retaining
their interfaces makes them replaceable. For these reasons,
each task (module) of the architecture is defined as a service
with its own interface. If the functionality of the service is
shared with other systems or users, it will be provided as
a RESTful web interface. Otherwise, it is a simple system
interface for reasons of performance. The flows in Figure 7
indicate how the modules interact with each other. For

162

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Collected data

Data

Paper survey Web survey

Smartphone

survey

Paper scanner /

interpreter

services

Survey conduction

Survey

designer

services

Report designer

services

Designer

Questionnaire

model
Report model

Model

Paper reportOnline report

Report

Data

preparation

services

Verifier service

Analysis /

report services

Evaluation

Questionnaire

compiler

services

Report

transformation

service

Report

compiler

services

Compiler

Python serviceLaTeX service

OpenCPU R

services

External

Figure 8. The integration layer of the Coast system.

example, to use R as a service, the openCPU [33] engine
is used. OpenCPU makes it possible to use R as a RESTful
web service.

Although the architecture is service-oriented, it is not a
classic SOA. Some concepts have not been implemented in
the architecture (yet). One missing component is a classic
service repository. Right now, there is a repository for the
different hosts where the web surveys are running. But all
necessary system services are known in the architecture and
do not have to be linked dynamically. Other services do not
work via a network because of security and performance
related issues.

Some of the services interact with the user. In order to
achieve such communication, the architecture decomposes
into server and client applications following a typical en-
terprise architecture. On the server, all the computations are
done, the models are stored, the compilations are performed,
and the collected data is handled. The client applications are
mainly functional user interfaces allowing to talk with the
server applications and to hide architectural and modelling
details. Since the communication of the client to the server
is done via HTTP, the whole architecture also describes a
web application based on different modules.

It has become best practice during the development of
the Coast architecture to maintain each module in separate
projects and to build up the system based on them. This
approach helped us to generalize modules, to define proper
interfaces, to get loosely coupled functionality, and to reuse
code whenever possible.

D. Integration Layer
Using services requires the componentization of the

application into subsystems and modules (services) as de-
scribed in Figure 7. In general, the architecture of Coast
disintegrates into eight abstract layers: designer, model,
compiler, survey conduction, data, evaluation, and report
(illustrated in Figure 8). The collection of the different layers
is called integration layer in SOA.

The designer contains the services belonging to the
interaction with the user. Most of the business logic is
configured with the designer. Therefore, it is the main
application, which constructs the questionnaires and reports,
starts the compilation of them, and initialize the analyses of
the data. The survey and report designer services are part of
the layer.

The model layer contains the structure of the ques-
tionnaire and report models and arranges their storing, for
example, in a database.

The compiler layer with the compiler and report com-
piler/transformation services uses the model and configura-
tions (done in the designer layer) to transform them either
in other models or in documents, programs, or intermediate
representations (IR). For example, the compiler produces the
IR liQuid [34], which contains all necessary information
about running a web survey. Furthermore, liQuid contains
pre-compiled representations of each page, computed re-
maining pages, etc.

The survey conduction layer handles the data collection
with the different kinds of surveys. This contains the paper,
web, and smartphone surveys as well as the paper scanner
and interpreter services. As part of the web surveys, there
is a virtual machine (a survey engine). liQuid can be trans-
ferred to the survey engine, which executes it. Together, the
compiler and survey conduction layers follow an old com-
puter science principle: Compilation and execution. Since
the engine can be separated from the rest of the architecture,
it is possible to have multiple survey engine instances on
different physical systems. As a result, the survey conduction
becomes scalable.

The survey conduction produces data. The data layer
handles the storing and processing of that data information.
Furthermore, it allows the request and combination of dif-
ferent data sources.

The evaluation layer uses the report model, which offers
computations, variables, and structures needed during evalu-

163

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ation. The evaluation accesses the data layer to get the right
data information. Furthermore, it stores its results back in
the data layer.

There is an external layer in Figure 8, which con-
tains the LATEX, Python, and OpenCPU R services. Those
services build wrappers around existing tools to integrate
them into the architecture. They have exclusively functional
interactions with the other layers. The services/modules with
double lines in Figure 8 instead have also interactions with
the user. They need user interfaces. For the paper surveys
and reports the term “user interface” has a symbolic mean-
ing. However, the web survey, online report, designers, and
scanner services have high user interaction and, therefore,
real user interfaces. The other services in the figure do not
interact with the user. Their interfaces are functional.

V. BENEFITS AND PROBLEMS OF THE APPROACH
The explained architecture used in our tool Coast is one

possibility and implementation of a software architecture
for surveys. In the previous sections, it was explained, how
the data model and architecture look like and why both
were constructed in this way. This section further describes
benefits and problems emerged during implementation time,
usage, and ongoing development.

The main benefit of the introduced architecture is the
coverage of our requirements specified in Section II. The
architecture allows the compilation of the questionnaires
and reports to different devices, e. g., paper, web, and
smartphone, using mostly the same infrastructure of algo-
rithms (requirement DEV). It enables the addition of new
kinds of question visualizations (time tables, sliders, etc.)
since each item has an assigned representation in the data
model (requirement QAD, also cf. Section III-B). If there is
research about new visualizations, it can be easily adapted in
the architecture. Although the reporting was not introduced
in detail, the report model uses representations and abstract
calculations to extend the analyses with new functionality for
more complex statistical analyses (requirement AAD). Dif-
ferent surveys and data sources can be merged into a single
report and new content can be added (requirement MUL).
For questionnaires and reports, the mathematical and data
models naturally define adaptivity as a graph (requirement
ADA). Altogether, both models are highly flexible and cover
many types of surveys and reports (requirement FLE).

As mentioned at the end of the last section, the archi-
tecture uses concepts of SOA. Therefore, almost all parts of
the architecture are services. One main service is the survey
engine executing compiled questionnaire models (LiQuid
[34]). This engine is installable and executable also in private
networks (requirement PRI). It can be hosted on different
servers making it scalable. Since the engine can run on
different servers from the other tasks, the processes do
not interact and, therefore, do not reduce the performance
(requirements DIS and SCA).

The consequent usage and the level of detail of the mod-
els during all phases allow to use these detailed information
in each phase of a survey. For example, the report model
results from a transformation of the questionnaire model.
By doing this transformation, the report model gets the same

variables, conditions, and codomains like the questionnaire.
There is no missing information for the report. Since the
questionnaire and report models are generalized and do not
only fit to Coast, they could be used in other survey tools,
too. These models can be stored for their documentation and
reuse in future as well.

Other benefits regarding the introduced model of ques-
tionnaires (and reports) were shown in previous work [34]
[35]. The former considers the erroneous multiple asking of
the same variable in a questionnaire. It explains an algorithm
based on static and dynamic analyses, which finds multiple
occurrences of and assignments to the same variable on the
same path. This could lead to the loss of information if a
variable was wrongfully assigned to an item.

The latter work [35] reconsiders progress indicators in
web surveys, whose calculation is based on an abstract
version of the meta-model. This made it possible to define
a general algorithm to calculate the progress in complex
surveys with branches in paths.

An improvement during questionnaire creation is the
visualization of the questionnaire model as a graph. It
helps to keep the overview of all paths and variables as
well as to maintain the central theme. The control-flow-
graph-like structure shows the adaptivity and individual
paths for groups of participants can be checked (by pre-
assigning variables at construction). For example in a student
survey, if a set of items should only be visible to Master
students at different points of the questionnaire, the variable
representing the degree can be set to “Master” to visualize
the remaining paths.

A benefit of the graph-based model of reports is its
advanced usage during the data analysis and reporting
phases. The graph can be used to define wide varieties of
item orders. A topological sorting helps to linearise these
orders in a paper-familiar way. Furthermore, the graph can
be used to produce code to only select data of the currently
considered items. It reduces unnecessary data information
for analyses.

The separation of the architecture in components and ser-
vices is a great benefit during implementation. The previous
monolithic architecture of the first version of our tool Coast
decomposed into logically separable projects. These projects
are more reusable in other contexts and are easier to maintain
from our own experiences. One mentionable example is the
reimplementation of the database done in the architecture
without high reimplementation costs in other projects.

The separation into different projects makes it also easier
to talk about the architecture in the team since each project
has a clearly defined purpose and functionality, and a unique
name to refer to it. A great advantage is the focus on the
questionnaire and reports instead of their implementation. It
matters what is done, not how.

The new architecture has issues too, naturally. Some-
times, the performance of the system is slower than in our
first monolithic application. This comes from the increased
overhead by using SOA. Furthermore, there are sometimes
a lot of messages being transferred between the different
services. Especially, the communication between the client
and the server during the design of questionnaires and

164

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reports is verbose.
The fine-grained models for the definition of question-

naires and reports result in large models of sometimes
thousand to ten thousand objects. If a user wants to modify
such a model within the web application, all those objects
have to be taken from the database and have to be sent to the
client. Sometimes, this took more than 30 seconds — which
is unacceptable. Therefore, the pattern of lazy loading [36]
objects had to be introduced in the architecture. When the
client application tries to access an associated object, the
system loads the required object from the server automat-
ically if it was not already loaded before. Nevertheless, to
allow a straight forward modelling and programming, the
concept of promises [37] was extended to an ordinary if-
then-construct making the programming of asynchronous
services more intuitive.

Another disadvantage is the restriction of handling spe-
cial cases within questionnaires and reports only via the
data model although it appears sometimes faster and easier
to implement them directly. Such special cases need the
extension of the data model and, therefore, mostly more
time. Examples are the representations of items in HTML.
Sometimes these representations need only minor modifi-
cations to fit the desired visualization. However, since the
modification of the representation may result in undesired
side effects in other already implemented questionnaires, a
new representation has to be introduced or the representation
has to be extended by additional parameters.

There are other kinds of surveys which cannot be han-
dled intuitively with our architecture, yet. For example, in
computerized adaptive testing (CAT), the items of the test
(survey) are not shown in sequence [38]. Their visibility
depends on the answers of the previous items and they are
randomly chosen based on a user-specific score. Most parts
of CAT can be achieved with our architecture proposal.
However, the randomly chosen selection of items and the
highly connected structure of the items are not implemented
yet and needs extensions of the current data models.

Although there are weaknesses and open issues on the
current design, the benefits at practice prevail the issues.
Since its introduction in our department, the software com-
pletely supports all phases of our surveys with high flexibil-
ity.

VI. CONCLUSION AND OUTLOOK
This paper described the realization of a survey system

called Coast. The survey system keeps the interdependencies
between the survey phases intact. Since the analysis and
reporting phases of surveys are highly individual tasks and
need a lot of information of the preceding phases, it was
necessary to focus on the links between the phases.

The focus on the phases manifested in the paper as a
detailed consideration of how questionnaires and reports
are structured. This consideration took place both as a
mathematical and a data model. The latter forms a DSL,
which can be used to construct arbitrary questionnaires,
reports, and other survey-related parts. Furthermore, the
data model is the centre of the architecture of Coast. The
architecture is, therefore, build up around the data model

and describes how the models are transformed within the
application. It also describes the necessary services, flows,
and components.

In the end, the paper discussed the benefits and disadvan-
tages of the proposed architecture as lessons learned. This
was done especially regarding our advanced requirements
on a survey tool, which were introduced too. There is no
other survey tool, which fulfils all those requirements. This
made this work necessary.

Since the Coast system is currently in an alpha version,
the system is unpublished up to now. The future versions
should be available to everyone via the web. For this
purpose, the application has to reach a stable stage, and
some of the concepts have to be extended. For example,
the services and models used in the analysis and reporting
phases can be used also for surveys conducted outside the
Coast environment. This is possible by building a report
model up from scratch without having a preceding ques-
tionnaire model. This report would receive the externally
collected data as input. These data have to be described with
the data model introduced in this paper. The concept of the
user interface has to be extended to allow the description of
variables and codomains subsequent to the data collection
phase.

REFERENCES

[1] T. M. Prinz, R. Bernhardt, L. Gräfe, J. Plötner, and A. Vetterlein,
“Using Service-oriented Architectures for Online Surveys in Coast,”
in Service Computation 2018: The Tenth International Conferences
on Advanced Service Computing, Barcelona, Spain, February 18–22,
2018. Proceedings, pp. 1–4.

[2] V. M. Sue and L. A. Ritter, Conducting Online Surveys, 2nd ed.
Los Angeles, USA: SAGE Publications, 2012.

[3] J. Reinecke, Handbuch Methoden der empirischen Sozialforschung
(Handbook Methods of Empirical Social Research). Wiesbaden,
Germany: Springer, 2014, vol. 1, ch. Grundlagen der standardisierten
Befragung (Basics of standardized Surveys), pp. 601–617.

[4] Electric Paper Ltd., “Survey Automation Software - EvaSys and
EvaExam,” Website, available: http://en.evasys.de/main/home.html,
retrieved: February, 2019.

[5] Problem Free Ltd., “KwikSurveys: Make online surveys, quizzes
and forms,” Website, available: https://kwiksurveys.com/, retrieved:
February, 2019.

[6] LimeSurvey GmbH, “LimeSurvey: the online survey tool - open
source surveys,” Website, available: https://www.limesurvey.org/, re-
trieved: February, 2019.

[7] SurveyMonkey, “SurveyMonkey: The Worldś Most
Popular Free Online Survey Tool,” Website, available:
https://www.surveymonkey.com/, retrieved: February, 2019.

[8] QuestBack GmbH, “Startseite — Unipark,” Website, available:
https://www.unipark.com/en/, retrieved: February, 2019.

[9] Butter CMS, “Microservices for Startups,” Open Access,
https://s3-us-west-2.amazonaws.com/buttercms/ButterCMS+
presents+MicroservicesForStartups.pdf, retrieved: February, 2019.

[10] J. Fritzsch, J. Bogner, A. Zimmermann, and S. Wagner, “From
Monolith to Microservices: A Classification of Refactoring
Approaches,” CoRR, vol. abs/1807.10059, 2018.

[11] O. Vogel, I. Arnold, A. Chughtai, E. Ihler, T. Kehrer, U. Mehlig,
and U. Zdun, Software-Architektur: Grundlagen - Konzepte - Praxis
(Software Architecture: Basics - Concepts - Practice), 2nd ed.
Heidelberg, Germany: Springer, 2009.

[12] T. Mika and M. Stegmann, Handbuch Methoden der empirischen
Sozialforschung (Handbook Methods of Empirical Social Research).

165

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Wiesbaden, Germany: Springer, 2014, vol. 1, ch. Längsschnittanalyse
(Longitudinal Analysis), pp. 1077–1087.

[13] IBM United Kingdom Limited, “IBM SPSS Statistics - Overview
- United Kingdom,” Website, available: https://www.ibm.com/uk-
en/marketplace/spss-statistics, retrieved: February, 2019.

[14] Microsoft, “Microsoft Excel 2016, Download Spreadsheet software
— XLS XLSX,” Website, available: https://products.office.com/en-
gb/excel, retrieved: February, 2019.

[15] The R Foundation, “R: The R Project for Statistical Computing,”
Website, available: https://www.r-project.org/, retrieved: February,
2019.

[16] J. Bethlehem, “The TADEQ Project: Documentation of Electronic
Questionnaires,” in Survey Automation: Report and Workshop Pro-
ceedings, pp. 97–116, 2003.

[17] G. Chartrand and P. Zhang, Discrete Mathematics, ser. 1 edn. Long
Grove, Illinois, USA: Waveland Press, Inc., 2011.

[18] T. H. Cormen, C. E. Leiserson, R. Rivest, and C. Stein, Introduction
to Algorithms, ser. 3. Cambridge, UK: PHI Learning, 2010.

[19] M. Bühner and M. Ziegler, Statistik für Psychologen und Sozialwis-
senschaftler (Statistics for psychologists and social scientists), ser. 1.
Auflage. Munich, Germany: Pearson, 2009.

[20] G. Brancato, S. Macchia, M. Murgia, M. Signore, G. Simeoni,
K. Blanke, T. Körner, A. Nimmergut, P. Lima, R. Paulino, and
J. Hoffmeyer-Zlotnik, Handbook of Recommended Practices for
Questionnaire Development and Testing in the European Statistical
System, 1st ed. European Statistical System (ESS), 2006, no.
European Commission Grant Agreement 200410300002.

[21] S. S. Stevens, “On the Theory of Scales of Measurement,” Science,
vol. 103, no. 2684, pp. 677–680, 1946.

[22] J. Rost, Lehrbuch Testtheorie – Testkonstruktion (Textbook Test
Theory – Test Construction), ser. Zweite, vollständig überarbeitete
und erweiterte Auflage. Bern, Switzerland: Huber, 2004.

[23] M. A. Robinson, “Using multi-item psychometric scales for research
and practice in human resource management,” Human Resource
Management, vol. 57, no. 3, pp. 739–750, 2018.

[24] H. Moosbrugger and A. Kelava, Eds., Testtheorie und Fragebo-
genkonstruktion (Test Theory and Survey Construction), ser. 2.,
aktualisierte und überarbeitete Auflage. Berlin, Germany: Springer,
2011.

[25] E. Martin, Encyclopedia of Social Measurement. Elsevier, ch.
Survey Questionnaire Construction, pp. 723–732, 2005.

[26] J. B. Gregg, “Questionnaire Construction,” Hospitality Review,
vol. 7, no. 2, pp. 45–56, 1989.

[27] P. J. Pahl and R. Damrath, Mathematical Foundations of Computa-
tional Engineering: A Handbook, ser. 1. Auflage, F. Pahl, Ed. Berlin,
Germany: Springer, 2001.

[28] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Pear-
son New International Edition: Principles, Techniques, and Tools,
2nd ed. Essex, UK: Pearson Education, 2013.

[29] E. J. Evans, Domain-Driven Design: Tackling Complexity in the
Heart of Software. Addison Wesley, 2003.

[30] R. Soley and OMG Staff Strategy Group, “Model Driven Archi-
tecture,” Object Management Group, Needham, USA, White Paper
Draft 3.2, 2000.

[31] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF:
Eclipse Modeling Framework, 2nd ed., ser. The Eclipse Series,
E. Gamma, L. Nackman, and J. Wiegand, Eds. Boston, USA:
Addison Wesley, 2008.

[32] E. Yourdon and L. L. Constantine, Structured Design: Fundamentals
of a Discipline of Computer Program and Systems Design, 1st ed.
Upper Saddle River, New Jersey, USA: Prentice Hall, 1979.

[33] J. Ooms, “The OpenCPU System: Towards a Universal Interface for
Scientific Computing through Separation of Concerns,” Computing
Research Repository (CoRR), vol. abs/1406.4806, pp. 1–23, 2014.

[34] T. M. Prinz, L. Gräfe, J. Plötner, and A. Vetterlein, “Statische
Aanalysen von Online-Befragungen mit der Programmiersprache
liQuid (Static Aanalysis of Online Surveys with the Help of the
Programming Language liQuid),” in Proceedings 19. Kolloquium
Programmiersprachen und Grundlagen der Programmierung, KPS
2017, Weimar, Germany, pp. 59–70, September 25–27, 2017.

[35] T. M. Prinz, R. Bernhardt, J. Plötner, and A. Vetterlein, “Progress
Indicators in Web Surveys Reconsidered — A General Progress
Algorithm,” in ACHI 2019: The Twelfth International Conference
on Advances in Computer-Human Interactions, Athens, Greece,
February 24–28, 2019. Proceedings, pp. 101–107.

[36] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford,
Patterns of Enterprise Application Architecture, 1st ed., M. Fowler,
Ed. Boston, USA: Addison Wesley, 2003.

[37] B. Cavalier and D. Denicola, Promises/A+ Promise Specification,
Open Access, Promises/A+ organization Std. 1.1.1, 2014, available:
https://promisesaplus.com/, retrieved: January, 2018.

[38] W. J. van der Linden and C. A. W. Glas, Eds., Computerized
Adaptive Testing: Theory and Practice. Netherlands: Kluwer
Academic Publishers, 2000.

