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Abstract—Technical debt is currently receiving great attention
from researchers, because it is believed to affect software de-
velopment to a great extent. However, it is not yet clear how
technical debt should be managed. This is specifically true
in time-boxed development processes (e.g., in agile processes
organized into development sprints of fixed duration), where it
is possible to remove technical debt as soon as it is discovered,
or wait until the debt reaches a given threshold, or wait until
a whole sprint can be dedicated to technical debt removal, etc.
We aim at investigating the effectiveness of different technical
debt management strategies and the consequences of a wrong
perception of the actual technical debt. We are interested in
the consequences on both the amount of functionality and the
quality of the delivered software. We propose a System Dynamics
model that supports the simulation of various scenarios in time-
boxed software development and maintenance processes. The
proposed model is conceived to highlight the consequences of
management decisions. The proposed model shows how produc-
tivity and product quality depend on the way technical debt is
managed. Our study shows that different strategies for managing
technical debt in a time-boxed development and maintenance
process may yield different results—in terms of both productivity
and delivered software quality—depending on a few conditions.
Software project managers can use customized System Dynamics
models to optimize the development and maintenance processes,
by making the proper decisions on when to carry out maintenance
dedicated to decreasing the technical debt, and how much effort
should be devoted to such activities.

Keywords–Technical debt; System Dynamics; Simulation; Tech-
nical debt management; Software project management.

I. INTRODUCTION

Both practitioners and researchers are dedicating a growing
amount of attention to technical debt (TD). In general, TD
is connected with a lack of quality in the code. The idea is
that, if maintaining a piece of software of “ideal” quality has a
given cost, maintaining a piece of software of “less than ideal”
quality implies an extra cost.

It is also common knowledge that if no action is performed
to improve code quality, a sequence of maintenance interven-
tions will decrease quality, that is, TD increases and the cost of
maintenance increases as well. Not managing TD at all could
lead to code that is not maintainable.

However, it is easy to realize that too much time and effort
dedicated to TD removal activities could have a negative effect
on the overall speed of development, since time and effort
devoted to TD management are usually subtracted to ‘regular’

development activities (developing new code, applying require-
ments changes, testing, etc.). So, a project manager should
look for the optimal tradeoff between TD removal and regular
development.

These considerations show that project managers need to
identify the best TD management strategies and methods, and
evaluate their effectiveness before putting them in practice.
Quite importantly, managers need to reason in quantitative
terms, in order to maximize the amount of released function-
ality at the best reasonable quality level.

For this purpose, we proposed a System Dynamics model
that represents the development of software via a sequence
of time-boxed development phases (e.g., Scrum sprints) [1].
Like any System Dynamics model, the proposed model can be
simulated, thus providing quantitative indications concerning
the effectiveness of development in terms of amount and
quality of code delivered. The proposed model [1] was used to
illustrate a few development scenarios and the consequences of
TD and the adopted TD management practices. It was shown
that dedicating a fixed fraction f of the available effort to TD
remediation is more or less effective—with respect to both the
delivered amount of functionality and the resulting software
quality—depending on the value of f . In other words, to obtain
good results, it is critical that the project manager guesses the
value of f that optimizes the quantity and quality of delivered
code at the beginning of the process. This is quite difficult, in
general. On the contrary, it is easier to dedicate to TD removal
a quantity of effort that is proportional to the size of the debt;
it is also quite effective, with respect to both the delivered
amount of functionality and the resulting software quality.

However, we can note that to implement the latter strategy,
one has to know the amount of TD that is associated with the
code. Generally, the amount of TD is evaluated by software
managers via tools that perform static analysis of code and
apply “expert” rules that detect the presence or absence of
specific situations that contribute to the TD. Quite often,
software managers do not have the time or the technical
knowledge needed to verify the measure of TD provided by
tools, hence they decide how much effort will be dedicated to
TD removal based on the indications from tools.

Now, the indications from tools could overestimate (respec-
tively, underestimate) the amount of TD. As a consequence,
the project manager could dedicate more (respectively less)
effort than needed to manage TD: we expect that in such cases
the results—in terms of amount of delivered functionality and
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quality—will worsen, with respect to the situation when the
proper amount of effort is dedicated to TD management.

Accordingly, in this paper we enhance the results presented
in [1] by exploring the effects of basing decisions concerning
TD management on an inaccurate perception of the amount of
TD in the code.

The paper is organized as follows. In Section II, we provide
background concerning TD and System Dynamics. In Sec-
tion III, we introduce our model of software development and
maintenance, characterized by time-boxed incremental phases.
In Section IV, the model is used to simulate the behavior of
the process when different strategies for allocating effort to pay
off the TD are used. In Section V, we discuss the outcomes
of simulations, especially as far as productivity and delivered
quality are concerned. In Section VI the model is enhanced to
take into account errors in the perception of TD, and the results
of simulations are reported. Section VII accounts for related
work. Finally, in Section VIII, we draw some conclusions and
outline future work.

II. BACKGROUND

We here concisely recall the TD concepts proposed in the
literature that we later model and illustrate via simulations
(Section II-A) and the principles of System Dynamics model-
ing (Section II-C).

A. Technical Debt
In the last few years, TD has received great attention from

researchers. For example, a recent Systematic Mapping Study
on TD and TD management (TDM) covering publications
from 1992 and 2013 detected 94 primary studies to obtain
a comprehensive understanding on the TD concepts and an
overview on the current state of research on TDM [2].

An updated Systematic Mapping Study identified elements
that are considered by researchers to have an impact on TD
in the industrial environment [3]. The authors classified these
twelve elements in three main categories: (1) Basic deci-
sion making factors, (2) Cost estimation techniques, and (3)
Practices and techniques for decision-making. They mapped
these elements to the stakeholders’ point of view, specifically,
for business organizational management, engineering manage-
ment, and software engineering areas.

Several authors proposed definitions for TD and its inter-
ests. Nugroho et al. [4] define TD as “the cost of repairing
quality issues in software systems to achieve an ideal quality
level” and the interests of the debt as “the extra maintenance
cost spent for not achieving the ideal quality level.” Other
works try to empirically correlate TD with software size,
software quality, customer satisfaction, and other software
properties, in the context of enterprise software systems [5].

In a recent Dagstuhl Seminar [6], the following definition
of TD was proposed: “In software-intensive systems, technical
debt is a collection of design or implementation constructs
that are expedient in the short term, but set up a technical
context that can make future changes more costly or impossi-
ble. Technical debt presents an actual or contingent liability
whose impact is limited to internal system qualities, primarily
maintainability and evolvability.”

The Software Quality Assessment based on Lifecycle Ex-
pectations (SQALE) method [7] addresses a set of external

qualities (like Reliability, Efficiency, Maintainability, etc.).
Each of these qualities is associated with a set of requirements
concerning internal qualities, each provided with a “remedia-
tion function,” which represents the cost of changing the code
so that the requirement is satisfied. Based on these functions,
the cost of TD is computed for each external quality and for
all qualities.

The Object Management Group has published a beta ver-
sion of the specification of a measure of TD principal, defined
as “The cost of remediating must-fix problems in production
code” [8]. The measure can be computed automatically as a
weighted sum of the “violations of good architectural and
coding practices,” detected according to the occurrence of
specific code patterns. The weight is computed according to the
expected remediation effort required for each violation type.

B. Tools Detecting Technical Debt
Several tools are now available to detect TD automatically.

Examples of tools are (alphabetically ordered): CAST [9], [10],
SonarCloud [11], Squore [12], [13], TeamScale [14], [15], and
many more.

The CAST Research Labs (CRL) is part of the enterprise
CAST Application Intelligence Platform and is focused on the
calculation of the TD for software applications by collecting
metrics and structural characteristics of software. CRL also re-
turns insights that can help developers improve the application
structural quality.

SonarCloud (aka SonarQube) is an open source cloud
platform where software developers can upload their software
and collect a set of quality metrics, bugs, vulnerabilities, code
smells, code coverage, and code duplications. Starting from all
these data, SonarCloud estimates the TD of the software under
analysis. Developers may study also the evolution of the TD
over time by navigating interactive charts.

Squore is a commercial solution similar to SonarCloud. A
set of dashboards visually report quality metrics and 4 key
insights (i.e., the overall rating of the software under analysis,
trend analysis, forecasts, and project portfolio comparison).
Moreover, a specific section is related to TD where four in-
dicators (efficiency, portability, maintainability, and reliability)
are used to calculate the TD density and ranking (similar to the
six grades used by SonarCloud). The remediation cost shows
how many man-days are supposed to be needed to eliminate
all TD highlighted.

TeamScale is a commercial tool based on a set of dash-
boards where managers can monitor the evolution of the
quality of their applications. TeamScale is able to analyze the
architecture conformance, code clones, missing tests, coding
conventions, documentation, external and internal software
metrics, and TD. Developers and managers can track the
evolution of their software applications by comparing different
releases and visualizing the history trend of quality metrics.

All of the mentioned tools can be used to get an overall
evaluation of code quality, expressed in terms of TD.

C. System Dynamics
System Dynamics was developed by Jay Forrester [16] as

a modeling methodology that uses feedback control systems
principles to represent the dynamic behavior of systems. The
elements of System Dynamics models are levels, constants,
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auxiliary variables and rates. The dynamics of systems is
determined by how levels work: given a level L, its value
in time is always determined by an equation L(t + ∆t) =
L(t) + (in(t) − out(t))∆t, where in(t) and out(t) are rates.
Levels and rates can concern anything (e.g., people, rabbits,
bricks, lines of code, etc.), depending on the application scope
and goal of the model. The value of a rate at time t is defined
based on the values of auxiliary variables, other rates and
levels at time t. Likewise for auxiliary variables, which are
not necessary, but are useful to write readable models.

The elements of a System Dynamics model are intercon-
nected just like in the real world, to form a network, where
causes and effects are properly represented. Models can be
executed, so that the behavior of the modeled system can be
simulated. Via System Dynamics models, it is quite easy to
perform what-if analyses: you obtain different behaviors by
changing the initial state of the system (given by the values of
levels), how rates and variable are computed, how they depend
on each other, etc.

III. THE PROPOSED MODEL

As already mentioned, the proposed model describes in
an operational way the time-boxed development process, es-
pecially in terms of maintenance activities concerning the
reduction of TD. The proposed model aims at evaluating
the productivity of development and maintenance activities,
and the quality of the released product. Productivity is here
defined as the ratio of the amount of product—measured in
Function Points (FP) [17][18]—developed in a time period to
the amount of effort/resources used.

To focus on the main objectives, we abstract from all those
aspects of the model that deal with activities and software
products that are not directly connected with TD management.
For instance, in a real process, the productivity of individuals
tends to increase because of learning effects, the number of
developers allocated may change during a project, etc.: we
exclude all of these variables because they would introduce
noise in our investigation, which focuses on the effects of TD
management decisions alone.

A. Assumptions
The main reason why practitioners and researchers are

interested in TD is that maintaining code burdened with a big
TD (i.e., low-quality code) costs much more than maintaining
code with little TD (i.e., high-quality code). This is because
more work is needed to carry out any code-related activity
when code is of low quality (e.g., difficult to understand, poorly
structured, full of hidden dependencies, etc.).

To account for the relation that links TD to maintenance
cost, we need a measure of TD. To this end, we measure
TD via a “TD index,” an indicator that takes into account the
internal qualities of code that concur to determine the amount
of TD embedded in the code. Here, we are not interested in
defining precisely the TD index, based on the measures of
individual internal qualities, because this is not relevant for
our purposes. Clearly, accurately modeling individual internal
qualities of code would make the model more apt at reproduc-
ing the behavior of real development environments. But this
is not our purpose: we aim at building a model that shows—
at a fairly high level—the effects of decisions concerning TD
management in a generic realistic development environment.

We assume that the TD index ranges between 0 (highest
quality) and 1 (worst quality). The extreme values represent
limiting cases, which may not occur in practice. When the TD
index is 1, maintenance is so difficult that one is better off by
simply throwing away the code and building a new version
from scratch, and productivity is null, i.e., prod = 0. When
the TD index is 0, maintenance activities attain their optimal
productivity prodopt. When 1>TD index>0, prod steadily
increases from 0 to prodopt when the TD index decreases.

Figure 1. Effect of technical debt on productivity.

The value of productivity for a given value of the TD
index prod(TDindex) can be expressed as prodMult(TDindex)
×prodopt. Figure 1 shows a possible behavior of prod-
Mult(TDindex). Namely, Figure 1 implies that there is a linear
relationship between TD and productivity: when the TD index
is zero (i.e., quality is optimal) productivity is maximum,
when the TD index is one (i.e., quality is as bad as possible)
productivity is null.

We use the function illustrated in Figure 1 to build models
to exemplify our proposal. Other monotonically decreasing
functions (e.g., concave or convex function) that go through
points (0, 1) and (1, 0) could be used as well. Here we use the
linear model because we have no reason to do otherwise, es-
pecially considering that the TD index itself is not thoroughly
defined.

Here, we assume that development is carried out in a
time-boxed way. This is coherent with the organization of
development in most agile processes. We assume that the
development is composed of a sequence of “sprints,” each of
which has a fixed duration and involves a constant number
of developers, hence a sprint “consumes” a fixed number of
Person Days (PD). For instance, if sprints last 20 work days
and involve 5 developers, then each sprint “costs” 100 PD. If
at the end of 5 sprints 416 FP are released, we have achieved a
productivity of 416/(5·100)=0.832 FP/PD; if at the end of these
sprints 378 FP are released, we have achieved a productivity
of 378/500=0.756 FP/PD. Quite clearly, in the former case the
management of TD was more effective, a higher productivity
was achieved, more functionality was released, and bigger
returns can be expected.

A consequence of our assumptions is that the amount of
effort spent is strictly proportional to development duration,
which can be expressed in number of sprints. Given this
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proportionality between effort and the number of sprints, we
can express productivity as the amount of code released after
N sprints. Thus, we measure the productivity values above as
416/5=83.2 FP/Sprint (instead of 416/500=0.832 FP/PD) and
378/5=75.6 FP/Sprint (instead of 378/500=0.756 FP/PD).

During each sprint, the developers can carry out two types
of activities: 1) increase the functionality of the system, by
adding new code, and 2) decrease TD, by refactoring code
structure, removing defects and improving the qualities that
make development and maintenance easier. Since in each
sprint the amount of work is fixed, managers have to decide
what fraction of work has to be dedicated to new code
development—the remaining fraction being dedicated to TD
management. Several different criteria can be used in setting
such fraction, as illustrated in Section IV.

We assume that during each sprint a constant fraction of
the new code affected by quality problems (hence, increasing
the TD) is released. This fraction depends on several factors,
like the experience and ability of developers, the availability
of sophisticated tools, problem complexity, etc. We assume
that these factors are constant throughout all the sprints: in
this way, we do not generate noise and we can highlight the
effects of TDM decisions.

B. The Model
The proposed System Dynamics model involves two level

variables: CodeSize (measured in FP) and TDIndex.
The constants in the model are:

nominal_maintenance_productivity, the productivity in
FP/Sprint in ideal conditions, i.e., when the TD index is zero.
We assume that the nominal productivity is 80 FP/Sprint, cor-
responding to 0.1 FP/PersonHour, a fairly typical value [19].
nominal_TDimprovement_productivity, the amount of
code that can be optimized—i.e., whose TD is completely
repaid—in a sprint, when the effort is completely devoted to
TD improvement. We assume that this value is 40 FP/Sprint.
In real developments, this amount is not necessarily constant:
a sprint could be sufficient to “clean” 40 FP or relatively good
code, but not to “clean” 40 FP of very bad quality code.
bad_fraction_of_new_code, the fraction of the new code
(released at the end of each sprint) that contributes to increas-
ing TD. We here assume that the value of this constant is 0.2.
available_effort: the effort available at each sprint. As
already mentioned, we assume it to be a constant. The actual
value is not relevant, however, we can take 100 PD as a
reference value.

The rate and auxiliary variables of the model are:
fraction_of_effort_for_quality_maintenance:
the fraction of available_effort dedicated to
repaying TD. This variable is computed via function
fracEffortForQuality, which has the TD index as an
argument.
quality_maintenance_effort: the effort available for
improving the quality of code in a sprint.
maintenance_effort: the effort available for developing
new code in a sprint.
maintenance_productivity: the productivity
of developing new code in a sprint. It depends
on the nominal_maintenance_productivity,
the maintenance_effort and the decrease of
productivity due to the TD (computed via function

productivity_considering_TD).
TD_dec_rate: the TD decrease rate.
TD_inc_rate: the TD increase rate.

The values of the aforementioned variables are determined
by the following equations:

available_effort=1
fraction_of_effort_for_quality_maintenance=
fracEffortForQuality(TDindex)
quality_maintenance_effort=available_effort*
fraction_of_effort_for_quality_maintenance
maintenance_effort=
available_effort-quality_maintenance_effort
maintenance_productivity=
nominal_maintenance_productivity*
maintenance_productivity_considering_TD(TDindex)
TDimprovement_productivity=
nominal_TDimprovement_productivity*

quality_maintenance_effort
TD_inc_rate=bad_fraction_of_new_code*
maintenance_productivity/CodeSize
TD_dec_rate=TDimprovement_productivity/CodeSize

where the following functions are used:
maintenance_productivity_considering_TD(TDindex):
the loss of productivity due to TD, as described in Figure 1.
fracEffortForQuality(TDindex): this function describes
the strategy used for tackling TD. In Section IV, we use a few
different strategies, hence, a few different function definitions.

The levels are computed as follows (where all auxiliary
and rate variables are computed at time t):
CodeSize(t+∆t)=CodeSize(t)+

∆t*maintenance_productivity
TDindex(t+∆t)=TDindex(t)+

∆t*(TD_inc_rate-TD_dec_rate))

IV. SIMULATING THE MODEL

We simulate the model with a few different TD man-
agement strategies. The considered case is characterized as
follows. Initially, the software system to be maintained has
size 80 FP and its TD index is 0.2 (representing the quality
gap between the “ideal” quality and the actual initial quality
accepted to speed up development and release the product
early). The nominal productivity (i.e., new code development
productivity in ideal conditions, when no extra effort is due
because of TD) is 80 FP/Sprint. The nominal TD repayment
productivity (i.e., the amount of functionality for which the
TD is completely repaid in a sprint) is 40 FP/Sprint. At the
end of every sprint, 20% of the added code is “bad” code.

Our software organization goes through a sequence of 30
maintenance sprints. We assume that there are always enough
new requirements to implement to use up the development
capacity of sprints. This is a situation that occurs quite often
in practice. We also assume that the same amount of effort
is allocated to all sprints. In actual developments, this does
not always happen. Anyway, simulations that do not depend
on variations in the available effort provide better indications
of the effects of TD management strategies, since they do not
depend on accidental phenomena, like the amount of available
workforce.
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A. Constant Effort for TD Management
In the first simulation, we assume that the considered

software development organization allocates a constant fraction
of the effort available in each sprint, to tackle the TD. It
is reasonable to expect that the achieved results depend on
how big the fraction of effort dedicated to TD management
is. Hence, we run the simulation a few times, with different
fractions of the available effort dedicated to TD management,
ranging from zero (i.e., nothing is done to decrease the TD)
to 40%. The main results of the simulation are given in
Figure 2, which shows, from left to right: the functional size
of the software product version released after each sprint;
the functional size increment due to each sprint (i.e., the
enhancement productivity of each sprint); the evolution of the
TD through sprints (i.e., the quality of the software product
versions released after each sprint).

The amount of functionality delivered at the end of the
sprints, and the corresponding TD index are also given in
Table I.

TABLE I. RESULTS WITH DIFFERENT FRACTIONS OF EFFORT
DEDICATED TO TD MANAGEMENT

Fraction of effort Delivered Final
for TD management functionality [FP] TD index

0 960 0.77
0.1 1244 0.54
0.2 1461 0.3
0.3 1616 0.05
0.4 1480 0.01

We can examine the achieved results starting with the solid
black lines, which represent the case in which no effort at all is
dedicated to repaying the TD. It is easy to see that the results
obtained by this TD management strategy (a no-management
strategy, actually) are quite bad. In fact, after 30 sprints we
get only 960 FP: about 500 FP less than the most efficient
TD management strategy. Not only: the final product has TD
index = 0.77, that is, a very low quality, probably hardly
acceptable in practice. The effects of TD on maintenance
productivity are apparent: the continuously growing TD makes
maintenance less efficient over sprints and after the first 15
sprints, productivity has dropped from 80 FP/Sprint to less
than 30 FP/Sprint, due to TD. So, just ignoring the TD is not
a good practice. Definitely, we have to allocate some effort to
decrease the TD, but how much effort should we dedicate to
repaying TD?

By looking at Figure 2 and Table I, it is easy to see that
dedicating 10% of the available effort to repaying TD improves
the situation with respect to not managing the TD at all: the
final size (1244 FP) is bigger, and the final TD index (0.54) is
better, though not really good. When we dedicate 20% of the
available effort to repaying TD the results improve further: the
final size (1461 FP) is bigger, and the final TD index (0.3) is
better, though still not very good.

In summary, by increasing the fraction of effort dedicated
to repaying TD from 0 to 20% we improve both the amount of
functionality that we are able to release, and the quality of the
software product. Hence, it would be natural to hypothesize
that, by further increasing the fraction of effort dedicated to
repaying TD, we obtain improvements in both the amount and
quality of delivered software. Actually, this is not the case:
when 30% of the available effort is dedicated to repaying

TD, we further improve both the released functionality (1616
FP) and the quality (TD index = 0.05), but if an even bigger
fraction (40%) of effort is dedicated to repaying TD, we
achieve practically ideal quality (the final TD index is 0.01),
but substantially less functionality (the final size being 1480
FP).

The explanation of these results is that this is a case of
Pareto-optimality: beyond a given point it is not possible to fur-
ther improve quality without decreasing the amount of released
functionality, and vice-versa. Increasing the fraction of effort
dedicated to TD improvement clearly improves maintenance
productivity by decreasing TD, but at the same time subtracts
effort from enhancement maintenance activities. Hence, one
should look for a trade-off, to achieve both a reasonably
high productivity level and an acceptable quality level (i.e.,
a sufficiently small TD).

Via a series of simulations, it is possible to find the
fraction of effort dedicated to repaying TD that maximizes
the released functionality, hence maintenance productivity. In
the considered case, allocating 32% of the available effort to
TD improvement eventually results in yielding 1638 FP, the
final TD index being 0.007.

Finally, it should be noticed that in the short term—i.e., in
the first eight sprints or less—not managing TD does not seem
to cause relevant negative consequences. For instance, in the
considered case, if the goal is to achieve a 400 FP software
product, not managing the TD may be a viable choice: you
get the product faster than by managing TD. Of course, one
should be sure that no further maintenance will be needed,
otherwise maintenance cost would be quite high, that is, one
has just postponed paying the debt, also adding some interest.

B. Variable Effort for TD Management
In the previous section, the fraction of effort dedicated to

quality improvement was fixed, i.e., it was constant over the
sprints. This can be used as a first assumption, but it may
not be a good managerial choice, for at least the following
two reasons. First, the initial TD could be greater than in the
case described in Section IV-A. Hence, it would be a good
practice to devote a substantial amount of effort to improve
quality at the beginning of development, with the objective
of decreasing the TD, and then proceed with easier and more
productive maintenance. This corresponds to repaying (all or
a substantial part of) the TD in the first sprints: the following
sprints will have to pay low or null interests.

Second, the effort dedicated to TD management could be
excessive. Consider the evolution of the TD index through
sprints illustrated in Figure 2: when the fraction of effort
dedicated to quality improvement is 40%, the TD is practically
nil after 10 sprints. In the following sprints, the fraction of
effort for TD management is partly used to balance the increase
of debt caused by new code, and part is wasted. This effect is
easy to see when you compare the effects of dedicating 30%
and 40% of the available effort to TD management. After a
few sprints, in both cases the TD index is practically constant
(about 0.07 in the former case, about 0.01 in the latter case).
Maintenance productivity is also constant in the two cases,
but higher in the former case, as shown in the central graph
of Figure 2. How is it possible that, when 30% of effort is
dedicated to TD management, we are using some effort to
manage a higher TD, and still we get a higher productivity?
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Figure 2. Size of delivered code, Sprint productivity and TD index, depending on a constant fraction of effort allocated to improving the TD.

Because the effort needed to keep TD close to zero is much
less than the allocated 40%: the exceeding part is wasted.

A better strategy for TD management would be to allocate
to TD improvement a fraction of effort that is larger when the
TD is large and smaller when the TD is little. Of course, there
are various ways to decide the fraction of effort to be dedicated
to decrease TD. We adopt the function shown in Figure 3,
which defines the fraction of effort for TD improvement as
1 − (1 − TDindex)k. By changing the value of k we decide
how aggressive the approach to debt repayment is: with k =
1 the fraction of the effort dedicated to debt repayment is
proportional to the debt; with k > 1 as soon as TD index raises
above zero, a substantial fraction of the effort (the greater k
the bigger the fraction) is dedicated to decrease TD.

Figure 3. Percentage of effort dedicated to TD improvement, as a function
1-(1-TDindex)k of TD.

In this section, the fraction of effort dedicated to TD
management is decided at every sprint, as 1−(1−TDindex)3:
a moderately aggressive policy. When debt increases, we try
to decrease it fairly soon, to avoid paying large interests.
Figure 4 shows the results of the simulation. The adopted
policy provides good results: at the end of the sprints we get

1653 FP, more than in any of the simulations performed in
Section IV-A. The final TD index is < 0.1, that is, a very
good quality.

It is interesting to note that after a few sprints, the TD index
remains constant, and, as a consequence, productivity remains
constant as well. The reason is that, at the beginning of each
sprint, the effort dedicated to TD management is adequate for
repaying the existing TD, but, during the sprint, new TD will
be created. This situation is perpetuated over the sprints. To
completely repay TD, a policy should allocate enough effort
to both repay the existing TD, and to anticipate the new TD,
by performing maintenance in a way that preserves optimal
code structure and quality.

However, the strategy simulated in this section dedicates a
large fraction of effort to decrease the TD in the first sprints,
which guarantees very good results, in terms of both the
amount of functionality delivered and the delivered quality.

C. Dedicating Sprints to Technical Debt Removal
In time-boxed development, it is often the case that a

sprint is either completely dedicated to enhancement or to
decreasing TD (especially via refactoring). So, the policy for
allocating effort to TD management is simple: if the TD
index is sufficiently high (i.e., above a given threshold), the
next sprint will be completely dedicated to TD repayment;
otherwise, the next sprint will be dedicated completely to
maintenance. In our case, if a sprint is dedicated completely
to TD management, developers will be able to optimize a
portion of code 40 FP large. Hence, we can allocate a sprint
to TD management when a portion of code of at least 40 FP
is affected by TD: this is the threshold for deciding to stop
developing and have a refactoring sprint.

We simulated development with this criterion for allocating
effort to TD management and we obtained the results illus-
trated in Figure 5. It is easy to see that this strategy results, on
average, in two consecutive development sprints followed by a
refactoring sprint. TD progressively decreases until it becomes
practically nil (oscillating between 0.01 and 0.03). At the end
of sprints, 1623 FP are released, that is, a bit less than with
the policy described in Section IV-B. However, at the end of
refactoring sprints the achieved TD index is better, compared
to the TD index achieved in Section IV-B.
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Figure 4. Size of delivered code, Sprint productivity and TD index through sprints, when the fraction of effort for TD improvement is 1-(1-TDindex)3.

Figure 5. Size of delivered code, Sprint productivity and TD index through sprints, when sprints are dedicated to either TD management or maintenance.

As a final observation, we should consider that applying
this strategy is relatively easy, while applying the ‘variable
fraction’ strategy described in Section IV-B is more difficult:
with that strategy, both enhancements and refactoring are
performed in each sprint: event though this is a fairly natural
way of working for developers, it is difficult to assure that
exactly the planned amount of effort is dedicated to refactoring.

V. DISCUSSION

The results obtained with the different criteria for allocating
effort to TD improvement are summarized in Table II. In Ta-
ble II, we have added the results—not given in Section IV-B—
obtained when the fraction of effort dedicated to TD improve-
ment is 1-(1-TDindex)1/3. In such case, the fraction of effort
dedicated to TD improvement decided at the beginning of each
sprint is based on the current TD index, but the approach is
not aggressive. On the contrary, a substantial fraction of effort
is dedicated to TD improvement only when the TD index is
relatively large.

The results given in Table II, along with the more detailed
results reported in Section IV, suggest a few observations.

First, allocating a constant amount of effort to TD improve-
ment does not seem to be a good idea. In fact, if the chosen
fraction of effort allocated to TD improvement is too high or
too low, the productivity of enhancement maintenance will be
lower than possible. Also, the final quality of the product (as
indicated by the TD index) could be quite low. In practice,

TABLE II. RESULTS WITH VARIOUS CRITERIA

Criterion Delivered Final
functionality [FP] TD index

Constant (0%) 960 0.77
Constant (10%) 1244 0.54
Constant (20%) 1461 0.30
Constant (30%) 1616 0.05
Constant (40%) 1480 0.01
1-(1-TDindex)3 1653 0.10
1-(1-TDindex)1/3 1282 0.44
Threshold 1623 0.02

allocating a constant amount of effort to TD improvement
works well only if the right fraction of effort is allocated, but
choosing such fraction may not be easy.

On the contrary, computing the amount of effort for TD
improvement at the beginning of each sprint, based on the
current TD index seems very effective, especially as far as
optimizing the productivity of enhancement maintenance is
concerned.

One could observe that in some situations it may be hard to
separate clearly the effort devoted to enhancements from the
effort devoted to TD improvement. This is particularly true
when developers perform refactoring activities while they are
enhancing the existing code. For this reason, an organization
may want to have sprints entirely dedicated to refactoring
and other TD improving activities, and sprints entirely ded-
icated to enhancements. In this case, the evaluations given



63

International Journal on Advances in Software, vol 12 no 1 & 2, year 2019, http://www.iariajournals.org/software/

2019, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in Section IV-C show that allocating an entire sprint to TD
improvement whenever there is enough TD to absorb one
spring effort provides quite good results, in terms of both
productivity and quality.

In any case, we have to stress that all the presented
strategies for TD management are based on the quantitative
evaluation of TD, which results in the TD index. So, devising
a way to measure TD appears fundamental to managing TD
effectively and efficiently.

VI. CONSEQUENCES OF A WRONG EVALUATION OF
TECHNICAL DEBT

Based on the considerations given in Section V above, an
organization may decide to adopt the strategy that allocates
entire sprints to decrease TD, whenever the TD index becomes
big enough, i.e., when the effort spent in a sprint can be
absorbed entirely by refactoring and other TD decreasing
activities.

Now, the value of the TD index is computed based on the
analysis of the code quality performed by tools. Let us suppose
that the evaluation reported by tools is not accurate, or that
the computation of the TD index based on such evaluation
is biased. This will likely result in dedicating too much or
too less effort to TD management. In this section, we study
the dependence of the effectiveness of managerial decisions
concerning TD management on the accuracy of the TD index
used to take those decisions.

A. Revised System Dynamics Model
In the model given in Section III-B we have

fraction_of_effort_for_quality_maintenance=
fracEffortForQuality(TDindex)

quality_maintenance_effort=available_effort*
fraction_of_effort_for_quality_maintenance

where the function fracEffortForQuality(TDindex)
specifies the strategy used for tackling TD, based in the TD
index. In this model, variable TDindex is assumed to represent
the real amount of TD currently associated with the code.

We modified the model as follows:

reportedTD=perceivedTD(TDindex)
fraction_of_effort_for_quality_maintenance=
fracEffortForQuality(reportedTD)

quality_maintenance_effort=available_effort*
fraction_of_effort_for_quality_maintenance

where function perceivedTD(TDindex) provides the
amount of TD that is perceived by the project manager. Such
value depends on the actual TDindex and possibly on many
other factors. As already mentioned, here we are not interested
in defining a detailed model that accounts for all the relevant
factors that may affect development, but only to highlight the
effect of a few factors specifically related to TD management.
Therefore, we define function perceivedTD(TDindex)
simply as returning TDindex×TDperceptionFactor,
where TDperceptionFactor is a constant. Clearly, when
TDperceptionFactor is one, the perceived value of
the TD index is the real value of the TD index, while
TDperceptionFactor< 1 (respectively, > 1) indicates an
underestimation (respectively, overestimation) of the TD index.

The value given by function perceivedTD(TDindex) is
assigned to variable reportedTD, which is then used as the
argument of function fracEffortForQuality to decide how
much effort should be dedicated to TD maintenance. With the
adopted strategy, if this effort is greater or equal than the effort
available in a sprint, the next sprint is dedicated completely to
decreasing the TD.

B. Simulating the Effects of Wrong Evaluations of Technical
Debt

We simulated the system with different values of
TDperceptionFactor.

The first outcome we obtained is that when the TD
index is moderately overestimated, the results tend to im-
prove, even though only marginally. For instance, when
TDperceptionFactor=1.2, i.e., when a TD index equal
to 0.2 is perceived as 0.24, we get the results described in
Figure 6. After 30 sprints, we get 1629 FP and a (real) final
TD index slightly above = 0.02. That is, we slightly increased
the amount of released functionality at the expenses of very
little (practically negligible) decrease of quality.

Underestimating the TD might appear to be more danger-
ous: when the TD index is underestimated by 10%, we get the
results in Figure 7.

After 30 sprints, we get 1588 FP and a (real) final TD
index slightly above = 0.03. Although the loss of quality is
marginal, we get 46 FP less than when perceiving the amount
of TD exactly.

By increasing the underestimation, the results do not
change dramatically. When the perceived TD is 75% of the
actual TD, we achieve 1546 FP with a still quite good quality
(TD index is 0.04).

Probably, we should be more worried about overestimation.
In fact, tools performing static code analysis tend to reveal
many “violations” of code correctness rules, that may induce
project managers—with special reference to those not having
a deep understanding of how tools work—to think that their
code carries a much larger TD than it actually does.

With our simulated system, a breakpoint occurs when the
TD index is overestimated by 135% or more. In such cases, we
get the situation depicted in Figure 8. Figure 8 shows that the
overestimation of TD induces the project manager to dedicate
every second sprint to TD removal. This greatly decreases
the amount of effort dedicated to enhancement. The released
functionality at the end of the sprints is thus just 1280 FP.

C. Considerations on the Required Accuracy of Technical Debt
Evaluation

The simulations described in Section VI-B above show that
the correct evaluation if the quantity of TD is important to
achieve optimal results. The effects of errors in evaluating the
TD index are summarized in Table III.

It can also be observed that the adopted strategy, namely
the allocation of entire sprints to TD removal when there is
enough TD to justify such allocation, is fairly robust with
respect to errors in evaluating the amount of TD. In fact,
when the TD evaluation error is relatively small, the ‘pattern’
of enhancement and TD removal sprints remains unchanged.
This is evident by looking at the central graphs of Figures 5, 6
and 7: in all these cases, after the initial sprints we have a TD
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Figure 6. Size of delivered code, Sprint productivity and TD index through sprints, when sprints are dedicated to either TD management or maintenance and
TD index is overestimated by 20%.

Figure 7. Size of delivered code, Sprint productivity and TD index through sprints, when sprints are dedicated to either TD management or maintenance and
TD index is underestimated by 10%.

TABLE III. EFFECTS OF ERRORS IN EVALUATING TD

Error Delivered Final
functionality [FP] TD index

-25% 1546 0.03–0.04
-10% 1588 0.02–0.03

0% 1623 0.01–0.02
+10% 1626 0.01–0.02
+25% 1629 0.01–0.02
+50% 1556 0.00–0.02

+100% 1565 0.00–0.01
+135% 1257 0.00–0.01

removal sprint every three sprints, with just an exception (in
Figures 5 a sequence of three enhancement sprints is present).
So, the variations in the amount of delivered functionality are
due only to the fact that productivity depends on the amount
of TD in the code.

On the contrary, when the overestimation of TD is large, we
have that every second sprint is dedicated to TD removal (see
the central graph of Figure 6): half of the project development
effort is dedicated to removing non-existent TD.

In conclusion, it appears useful to evaluate the TD as
correctly as possible, and it is absolutely necessary to avoid
large overestimations of TD.

VII. RELATED WORK

The term “technical debt” (TD) was forged by Cunning-
ham [20]. Cunningham observes that sometimes code whose
internal quality is not really optimal is released to achieve some
immediate advantage, e.g., to ship a product in the shortest
possible time, and that “Shipping first time code is like going
into debt. A little debt speeds development so long as it is paid
back promptly with a rewrite. [...] The danger occurs when the
debt is not repaid” because “excess quantities [of immature
code] will make a program unmasterable.”

TD has received a good deal of attention from researchers.
For example, a recent Systematic Mapping Study on TD
and TD management covering publications from 1992 and
2013 detected the existence of 94 primary studies that were
used to obtain a comprehensive understanding on the TD
concepts and an overview on the current state of research
on TD management [2]. As for TD management, the study
reported that some activities—such as TD identification and
measurement—received a good deal of attention, while other
activities—such as TD representation and documentation—did
not receive any attention at all. Finally, a clear lack of tools
for managing TD was highlighted: only four tools are available
and dedicated to managing TD.

In another Systematic Mapping Study [21], among others,
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Figure 8. Size of delivered code, Sprint productivity and TD index through sprints, when sprints are dedicated to either TD management or maintenance and
TD index is overestimated by 135%.

the following research question was addressed: What strategies
have been proposed for the management of TD, which em-
pirical evaluations have been performed, and which software
visualization techniques have been proposed to manage TD?
The findings of the study show that most studies deal with
TD at the source code level (i.e. design, defect, code and
architecture debt) and researchers detected the existence of
TD throughout the entire lifecycle of the project. This implies
that ensuring the quality of the project’s source code is not the
only way to enhance project quality. However, researchers limit
the study to the existing problems in the source code. Several
studies focus on strategies to manage TD. However, only five
strategies (Portfolio Approach, Cost-Benefit Analysis, Analytic
Hierarchy Process, Calculation of TD Principal, and Marking
of dependencies and Code Issues) were cited and evaluated
in more than two papers. Few studies addressed the evolution
of TD during the development and maintenance phases of a
project.

System Dynamics was first applied in Software Engineer-
ing by Abdel-Hamid and Madnick [22], who proposed a model
that accounted for human resource management, software
development, and planning and control.

The model by Abdel-Hamid and Madnick was used to
study software effort and schedule estimation [23], project
staffing [24], project control with unreliable information [25],
as well as several other aspects of software project manage-
ment and development.

A software tool for writing and simulating System Dy-
namics models dealing with software development was also
developed [26].

System Dynamics models were also used for simulating,
understanding and optimizing the software development pro-
cess [27] and various activities involved in software develop-
ment, like requirements engineering [28], reliably control [29],
knowledge management [30], outsourcing [31], [32], secu-
rity [33], and system acquisition [34].

System Dynamics was then extensively used to model
software development and its management. A survey of System
Dynamics applied to project management was published by
Lyneis and Ford [35], while in [36] De Franca and Travassos
propose a set of reporting guidelines for simulation-based

studies with dynamic models in the context of SE to highlight
the information a study of this type should report.

Cao et al. [37] proposed a System Dynamics simulation
model that considers the complex interdependencies among the
variety of practices used in Agile development. The model can
be used to evaluate—among others—the effect of refactoring
on the cost of implementing changes. The model proposed
by Cao et al. is quite comprehensive: it includes sub-models
of human resource management, Agile planning and control
and Customer involvement, which are not present in our
model. Besides, the models of Software production, Change
management, and Refactoring and quality of design are more
detailed than in our model. In fact, the model by Cao et al.
aims at providing a complete and realistic simulation of real
Agile processes, so it needs to be complete and detailed, while
we just aim at showing the occurrence of phenomena that are
described by the literature on TD.

Glaiel et al. [38] used System Dynamics to build the Agile
Project Dynamics model, which captures each of the Agile
main characteristics as a separate component of the model
and allows experimentation with combinations of practices and
management policies. Like our model, the APD model ad-
dresses developments that proceed through sprints and includes
the representation of TD; nonetheless, the APD model is quite
different from ours. In fact, the APD model is quite complex,
as it aims at capturing several (if not all) of the characteristics
of agile development, while our model is a proof of concept,
aiming at showing how the TD works. As a result, the effects
of basic managerial decision (like the proportion of effort to
be devoted to quality improvement) on TD are more evident
in our model.

We remind the reader that our model is by no means
suitable for realistic simulations, being oversimplified. The
ADP model is for sure more suitable for simulating the likely
behavior of a real agile development project.

Finally, it should be noted that both Glaiel et al. [38]
and Cao et al. [37] model agile software development pro-
cesses, while we propose a model of a software development
process that—although incremental and time-boxed—is not
constrained by several features of typical agile development
processes.

A consequence of this difference is that the models by
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Cao et al. and by Glaiel et al. consider quality improvements
exclusively connected with refactoring, while in our model
quality improvement is a specific goal, which is supported
by ad-hoc budget (the fraction of effort dedicated to quality
improvement) and can be performed continuously and in
conjunction with development activities.

Cao et al. develop a system dynamics simulation model that
–although comprehensive– does not focus on technical debt
and how to optimize its management, as we propose to do.
Glaiel et al. model technical debt and its management as part
part of the refactoring section of a larger model. As such, the
effect and the management options for dealing with technical
debt are somewhat hidden in the model. On the contrary, our
model lets us focus on the technical debt, its effects and the
consequences of specific management strategies.

In conclusion, to the best of our knowledge, no other paper
addresses the TD management problem as we did. Although
less comprehensive than the mentioned System Dynamics
models, our proposal helps better understand the consequences
of TD and the effectiveness of its management strategies.

VIII. CONCLUSIONS

The term “technical debt” indicates several concepts and
issues related to software development and maintenance. The
latter are complex and multifaceted activities: accordingly, it
is not surprising that managing TD is quite difficult [6].

In this paper, we have provided a formal, executable model
of time-boxed software development, where the effects of TD
are explicitly and quantitatively represented and accounted for.
The model is usable to show—via simulation—the effects that
TD have on relevant issues such as productivity and quality,
depending on how TD is managed, with special reference on
how much effort is dedicated to TD repayment and when—in
a sequence of sprints—such effort is allocated.

The model also accounts for errors in the evaluation of
the amount of TD affecting the code. Measuring the TD is
necessary, because the decisions of how much effort should be
conveniently subtracted from code enhancement and dedicated
to debt reduction is often based on the knowledge of how
much debt has been accumulated. In fact, the assumption that
more TD decreases productivity leads to increasing the effort
for debt reduction, in order to restore high productivity levels.
The proposed mode shows how to evaluate –via simulation–
the effects of errors in the measure of TD.

The proposed model can be used to prove or disprove
concepts and hypotheses, to perform what-if analyses, etc.
However, our model is not intended to be used in practical
software project management as-is, because, the model illus-
trated above is too abstract and contains hypotheses that could
not match the target development environment. Whoever wants
to use the presented model for practical project management
should first enhance it; examples of models representing all
the main aspects of software development can be found in the
papers by Cao et al. [37] and Glaiel et al. [38].

We plan to extend the presented model in several direc-
tions: to account for different effects of TD on productivity
(i.e., with functions different from the one in Figure 1), to
explicitly model defects, to test different debt management
policies, etc.
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