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Abstract- The main contribution of the paper is to address the 
necessity of both macro and micro explanations for Social Big 
Data (SBD) applications and to propose an explanation 
framework integrating both, allowing SBD applications to be 
more widely accepted and used. The framework provides both 
a macro explanation of the whole procedure and a micro 
explanation of the constructed model and an explanation of the 
decisions made by the model. Application systems including 
Artificial Intelligence (AI) or Data Mining (DM) need 
reproducibility to ensure their reliability as scientific systems. 
For that purpose, it is important to illustrate the procedures of 
the system explicitly and abstractly (that is, macro 
explanations). This paper has scientific value in that it proposes 
a data model for that purpose and illustrates the possibility of 
macro explanations through one use case of social science. 
Scientists also need to provide evidence that the results obtained 
by AI or DM are valid. In other words, this paper also has 
scientific value in that it reveals how the features of the model 
and concrete grounds for judgment can be explained through 
two use cases of natural science. 

Keywords- social big data; explanayion; data model; data 
management; data mining. 

I. INTRODUCTION 
We are surrounded by big data, which are waiting to be 

analyzed and used. Big data are real data, such as automobile 
driving data and space observation data, generated from real 
world measurement and observation, social data derived 
from social media, e.g., Twitter and Instagram, and open data 
published by highly public groups, e.g., weather data and 
evacuation location data. These are generally called social 

big data (SBD) [1]. Furthermore, SBD are inherently 
represented by multimedia (MM). By integrating and 
analyzing social big data, new knowledge can be obtained, 
which is expected to bring new value to society [2] [3].  

SBD can include the same type of spatially different data, 
data obtained by different means for the same object, and 
temporally different data for the same object as well. 
Therefore, SBD applications cover not only use cases that 
include social data, but also use cases that include only 
engineering or scientific data generated in the real world. 

Further as the horizon of applications whose main task is 
data analysis spreads, the following problems have emerged:  

 Application to science, e.g., lunar and planetary 
science 

Analytical applications in this field require strictness as 
science. That is, explanation of the protocol (procedure) of 
analysis and explanation of the reason for decisions are 
required [1]. In addition, as to the interpretation of the 
analytical model, it is necessary to explain the input data (for 
learning and test) and the data manipulation on the data, and 
the procedure (algorithm and program) for model 
construction. In order to interpret the individual results, it is 
necessary to explain the input data (actual data) and the 
reasons for the decisions.  

 Application to Social Infrastructure, e.g., Mobility 
as a Service (MaaS) 

Analytical applications in this field require consent of 
practitioners. That is, the analysis result must be consistent 
with the practitioners’ own experiences, and especially in the 
case of applications such as ones related to human life, it is 
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necessary to fulfill the accountability to the concerned parties. 
Interpretation of both of the model and individual results is 
necessary as with science. In addition, especially if the data 
about the generic users are utilized in applications, 
interpretation of the model is also important in order to get 
rid of the general users’ concerns.  

In order for social big data to widely be used, it is 
necessary to explain the user the application system. Both 
microscopic description, that is, interpretation of the 
analytical model and explanation of individual decisions and 
macroscopic description, that is, description of the whole 
process including the data manipulation and the model 
construction are required.  

First of all, the reason why a macro explanation is 
necessary is described below. In order for social big data 
applications to be accepted by users, it is necessary to ensure 
at least their reliability. Since information science is one area 
of science, we should guarantee reproducibility as science. In 
other words, it is necessary to ensure that third parties can 
prepare and analyze data according to given explanation and 
can get the same results.  

In addition, in order for the service to be operatable, it is 
necessary for the final user of the service to be convinced of 
how the service processes and uses the personal information. 
In addition, if the users can be convinced of the description 
of way of using the personal information, the progress of data 
portability can be advanced based on the EU's GDPR 
(General Data Protection Regulation) law on personal 
information protection [4] and Japan-based information bank 
to promote the use of personal information [5]. 

Next, a micro explanation is necessary for the following 
reasons. In order for analysts of social big data and field 
experts using the data to accept decisions made by the 
constructed model, it is assumed that they must understand 
the structure, actions and grounds of the model and are 
satisfied with them as well.  

Up to now, the authors have been involved in the 
development of a wide range of social big data use cases 
ranging from tourism, disaster prevention to lunar and 
planetary science [6] [7]. In the course of these processes, 
from the users of the use cases, we have often received 
questions as to what kind of data are processed, what kind of 
models are created as the core of analysis, and furthermore, 
what are the grounds for the decisions. In other words, from 
the development experiences of multiple use cases, we have 
come to think that both the macro explanation proposed in 
this paper and the micro explanation emerging in AI are 
urgently needed.  

To date, the authors created multiple seismic source 
classifiers of the lunar quakes (i.e., moonquakes) in the field 
of lunar and planetary science using the Balanced Random 
Forest [8], and the features, e.g., the distance between the 
moon and the earth, were calculated and studied for 
extracting features strongly related to the cause of 

moonquakes as a micro explanation [6]. With regard to a 
macro explanation, the authors also showed that by 
observing many use cases, social big data applications should 
include different digital ecosystems such as data 
management (database operation) and data analysis (data 
mining, machine learning, artificial intelligence), we have 
noticed that it is necessary to have a method to generally 
describe the whole process of application consisting of such 
a hybrid digital ecosystem. Therefore, as a framework to 
describe processes in an abstraction level independent of a 
specific programming language, we have come to think of 
adopting a data model [9] developed in the field of database 
and proposed a framework for its description using the 
mathematical concept of family of sets [10]. As described in 
the subsequent section of the related works, the research on 
micro explanations is being actively carried out, whereas as 
far as research on the framework for a macroscopic 
description is not known except for our work.  

The main contribution of the paper is to address the 
necessity of both macro and micro explanations for SBD 
applications and to propose an explanation framework 
integrating both of them. This will allow SBD applications 
to be more widely accepted and used. Although this paper 
describes our research-in-progress, we propose an integrated 
framework for explanation and introduce a part of its 
functions through case studies.  

The contributions of this paper can be detailed as follows. 
First, as a science, a system that includes Artificial 
Intelligence (AI) or Data Mining (DM) needs reproducibility 
(How) [11] to ensure its reliability. For that purpose, it is 
important to show the procedures of the system explicitly and 
abstractly. We propose a dedicated data model for that 
purpose. For AI or DM, scientists need to show what model 
features are useful for making decisions and why the results 
obtained are valid (Why) [12]. This paper has scientific value 
in clarifying what features contribute more to the 
classification model and what can be shown as a basis for 
individual judgment through two use cases. The procedure 
can be modeled using a data model approach based on the 
mathematical concept family [10], using social data in the 
first case related to social science. The difference method 
[13] was used in the first case and the third case, related to 
natural science in order to model the hypotheses. In the 
explanation of the features of the analytical model in the 
second case, there is a skew in the data size for moonquake 
data, so we used Balanced Random Forest [8]. In the third 
case, for the basis of individual judgment we used CNN 
(deep learning) [14] and Grad-CAM (attention) [15] using 
Digital Elevation Model (DEM) provided by the Japan 
Aerospace Exploration Agency (JAXA).  

This paper is of scientific value in that it demonstrates 
through use cases what can be explained to scientists as a 
basis for validating the results obtained by AI or DM. In other 
words, moonquake classification is important in lunar and 
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planetary science to understand the internal structure of the 
moon. This paper illustrated which features contribute most 
to the classification. The crater with a central hill is also a 
promising place for exploring the internal structure of the 
moon. This paper could illustrate what is the basis for 
judging the craters with central hills. These are also 
scientifically significant in that they have shown the 
possibility that AI and DM, which are IT technologies, are 
accepted by scientists as scientific methods. 

The differences between this paper and the international 
conference paper [1] are as follows. The contribution and 
scientific value of this study were described in more detail. 
A description of the basic elements of the framework for 
explanation and the mechanism of its processing was added. 
A case of discovery of lunar craters with central hills was 
added as an example of a microscopic-explanation function 
(i.e., description of the grounds of judgment). The 
description of each use case was summarized according to 
the items such as scientific objectives, data, methods, and 
results. 

In Section II, we will introduce our explanation 
framework. Through use case examples of macroscopic 
description and microscopic description, we will describe 
features of the proposed approach in Sections III, IV, and V, 
respectively. 

II. OUR APPROACH 

A. Explanation Framework  
For a macro explanation of applications, the goal is to 

facilitate a data model for abstractly describing the entire 
processes from data acquisition to data analysis and to 
explain the processes based on the description. For the micro 
explanation, we aim to show the basis of the interpretation of 
the constructed model and the individual decisions made 
when applying it.  

Figure 1. Explanation framework 

The features of the proposed framework are summarized 
as follows. 

Based on the SBD model introduced in Section III, the 
parties who are users of the framework (application 
developers) can describe the procedures (i.e., data 
management and model generation) of the application 
system in a more abstract manner than programming 
languages. The framework outputs the described procedures 
as they are as a macro explanation to the parties (e.g., tourism 

operators in the tourism case). As a micro explanation, based 
on the results of the actual execution of the classification 
model, the framework outputs the features of the 
classification model (i.e., which features contribute to the 
classification) and the basis for judgment of each 
classification result to the scientists in the moonquake case 
and those in the moon crater case as the parties, respectively. 

Figure 1 shows the framework. We specify which 
function corresponds to each use case. Case One in Section 
III illustrates the macroscopic-explanation function (F1) that 
explains the application procedures. Case Two in Section IV 
illustrates the microscopic-explanation function (F2) that 
explains which features contribute to the model classification, 
Case Three in Section V illustrates the microscopic-
explanation function (F3) that explains the basis for 
individual judgment of the model classification. 

We describe the framework in more detail as follows. 
1) Construction of a theoretical foundation for integrated 

explanation  
For that purpose, we build a theoretical framework of the 

technical foundation that integrates the following 
microscopic- and macroscopic-explanatory methods.  

a) Macro explanation function: The application system is 
a hybrid ecosystem consisting of data management and data 
mining (including machine learning and Artificial 
Intelligence, or AI), and the function must be able to describe 
the application seamlessly. Moreover, it must be able to 
describe the application in a high level not depending on 
individual environments or programming languages. For 
instance, we aim to enable to describe “partition foreign 
visitors’ tweets into grids based on geo-tags.” Therefore, we 
first create a framework to unify the hybrid ecosystem based 
on the data model approach. In other words, we develop a 
method to provide macro explanations with the constituent 
elements (data structure and data manipulation) of the model 
based on the mathematical family of sets as a basic unit. The 
explanation mechanism provided by the proposed 
framework presents as a macro explanation a sequence of 
operations on databases to the user based on the model of 
SBD applications consisting of data management and data 
mining as in a use case depicted in Section III. 

b) Microscopic-explanatory function: We develop an 
explanatory method independent of analytical model by 
extending explanatory functions based on attributes or 
constituent elements, which is an emergent approach in AI, 
discussed in the related work subsection. In other words, in 
model categories for structured data consisting of attributes, 
such as Support Vector Machine (SVM) and decision trees, 
we develop a method for systematically discovering subsets 
of attributes with strong influence on analysis results based 
on multiple weak classifiers. For instance, we aim to enable 
to illustrate a possibility that the features of the Earth and 
some of the features of Jupiter are effective for classification 
of the moonquakes when the moon is the origin of the 

Macroscopic-explanation function (F1)  
= data management procedure + model generation 

procedure 
Microscopic-explanation function  
= model feature explanation (F2) + judgement basis 

explanation (F3) 
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coordinate system. Especially this function is used to 
interpret the model itself. In model categories like Deep 
Neural Network (DNN) suitable for non-structured data such 
as images, we develop a method of explaining the analysis 
result based on the constituent elements or decomposition of 
the image with the use of annotation or attention. Especially 
this function is used to show the basis of individual decisions. 
For the micro explanation of the reasons for decisions, if the 
analysis target is image data, a part of the image which leads 
to the conclusion is indicated by concepts or words as its 
annotations based on a heat map. For instance, we aim to 
enable to illustrate that the contribution area for “central-
peak crater” on the moon has heating area inside the crater, 
and the heating area is covering a central peak. If the object 
is structural data, that is, it consists of attributes, the micro 
explanation is presented in terms of the contribution ratios of 
the attributes as in a use case depicted in Section IV. 

Please also note that data management and model 
construction in SBD applications are more complex than 
linear model construction frequent in traditional applications. 

2) Collection of use cases and verification of basic 
technology  

First, we collect several different kinds of use cases 
(tourism, mobility service, lunar exploration). We generate 
concrete explanations as targets for typical ones, using the 
integrated explanatory platform developed in items a and b 
and verify its feasibility  

3) Implementation of Explanation generation and 
presentation method  

Based on the theoretical framework of the integrated 
infrastructure, an automatic generation method of 
explanation and a presentation function of explanations are 
implemented. We evaluate their effectiveness by performing 
the experiments. We also incorporate InfoGraphics [16] as a 
method of presenting explanations to users since the users 
are not always analysis experts.  

Basically, for micro explanation, we create explanations 
of individual decisions by solving partial problems that 
restrict information existing in original problems.  

In this research, we aim to develop both the emerging 
microscopic-explanatory functions and macroscopic-
explanatory functions and to build a framework for 
integrating two kinds of explanations.  

B. Related Research  
As a trend other than the authors' research, research 

corresponding to microscopic-explanatory functions has 
become active in AI, what is so called eXplainable AI (XAI) 
at present.  

First, there is an attempt [17] to try to give a basic 
definition to the possibility of interpretation of a model in 
machine learning and research [18] on the evaluation method 
of interpretability.  

Next, individual studies on XAI are roughly classified 
into (1) description based on features, (2) interpretable model, 
and (3) derivation of explanation model. Research is done to 
create a classification rule for explanation by creating a 
subset of features in SVM as a category of (1) [19]. In 
addition, in the image classification using Convolutional 
Neural Network (CNN) and Long Short-Term Memory 
(LSTM), there is research to generate explanations based on 
both image features and class features [20]. Further there is 
research introducing the explanation vector to make explicit 
the most important attributes [21]. In the category of (2), 
there is research using a AND/OR tree to discover the 
components of the model [22] and research to make models 
that can be interpreted by considering the generation process 
of features [23]. Research deriving description with 
reference of any classifier of the local approximation model 
falls into the category (3) [24].  

In particular, the paper [25] is related to our framework. 
Post-hoc global explanation introduced in this paper 
corresponds to the explanation of the model features (micro 
explanation F2) in the proposed framework, Post-hoc local 
explanation introduced in the paper corresponds to the 
explanation of the basis for the judgement (micro 
explanation F3). However, the paper differs from our work 
in that the former takes no account of the macro explanation 
F1 (data management and model generation) in the proposed 
framework. 

While developing along the approaches of (1) and (3) as 
a microscopic-explanatory technique, we aim to build a 
comprehensive explanation basis by conducting research on 
macroscopic-explanation technology.  

In addition, although there is an application of 
infographics to a tourism use case [26], our research aims at 
basic research that can be widely used for visualization of 
explanation of general analysis.  

III. CASE STUDY: MACRO EXPLANATION OF 
TOURISM APPLICATION 

We will describe the case that explains how our data is 
used in analysis application. For that purpose, an integrated 
data model is introduced as a macroscopic description of an 
analytical application which is a hybrid ecosystem. Thus, the 
application is described using the integrated model just as a 
basis for macro explanation (see Figure 1). In other words, 
the data model introduced for model construction and reuse 
in the previous works [3] [13] is used for different purposes, 
i.e., the explanation functions for hypothesis generation. 

A. Integrated Model  
In the following subsections, we describe our data model 

approach to SBD, which consists of both of data structures 
and operations [9].  

1) Data model for SBD 
Our SBD model uses a mathematical concept of a family 
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[10], a collection of sets, as a basis for data structures. Family 
can be used as an apparatus for bridging the gaps between 
data management operations and data analysis operations.  

Basically, our database is a Family. A Family is divided 
into Indexed family and Non-Indexed family. A Non-Indexed 
family is a collection of sets. 

An Indexed family is defined as follows: 

a) {Set} is a Non-Indexed family with Set as its element.  

b) {Seti} is an Indexed family with Seti as its i-th element. 
Here, i: Index is called indexing set and i is an element 
of Index. 

c) Set is {<time space object>}. 

d) Seti is {<time space object>}i. Here, object is an 
identifier to arbitrary identifiable user-provided data, 
e.g., record, object, and multimedia data appearing in 
social big data. Time and space are universal keys 
across multiple sources of social big data. 

e) {Indexed familyi} is also an Indexed family with 
Indexed familyi as its i-th element. In other words, 
Indexed family can constitute a hierarchy of sets.  

Please note that the following concepts are 
interchangeably used in this paper. 

• Singleton family  set 

• Singleton set  element 
As described later in this section, we can often observe 

that SBD applications contain families as well as sets and 
they involve both data mining and data management. Please 
note that a family is also suitable for representing 
hierarchical structures inherent in time and locations as well 
as matrices and tensors associated with social big data. 

If operations constructing a family out of a collection of 
sets and those deconstructing a family into a collection of sets 
are provided in addition to both family-dedicated and set-
dedicated operations, SBD applications will be described in 
an integrated fashion by our proposed model.  

2) SBD Operations.  
SBD model constitutes an algebra with respect to Family 

as follows. SBD is consisted of Family data management 
operations and Family data mining operations. Further, 
Family data management operations are divided into Intra 
Family operations and Inter Family operations. 

First, Intra Family Data Management Operations will be 
described as follows: 

a) Intra Indexed Intersect (i:Index Db p(i)) returns a 
singleton family (i.e., set) intersecting sets which 
satisfy the predicate p(i). Database Db is an indexed 
Family, which will not be mentioned hereafter.  

b) Intra Indexed Union (i:Index Db p(i)) returns a 
singleton family union-ing sets which satisfy p(i). 

c) Intra Indexed Difference (i:Index Db p(i)) returns a 
singleton family, that is, the first set (i.e., a set with 
smallest index) satisfying p(i) minus all the rest of sets 
satisfying p(i) 

d) Indexed Select (i:Index Db p(i) sp(i)) returns an 
Indexed family with respect to i (preserved) where the 
element sets satisfy the predicate p(i) and the elements 
of the selected sets satisfy the selection predicate sp(i). 
As a special case of true as p(i), this operation returns 
the whole indexed family. In a special case of a 
singleton family, Indexed Select is reduced to Select (a 
relational operation). 

e) Indexed Project (i:Index Db p(i) a(i)) returns an 
Indexed family where the element sets satisfy p(i) and 
the elements of the sets are projected according to a(i), 
attribute specification. This also extends also 
relational Project. 

f) Intra Indexed cross product (i:Index Db p(i)) returns 
a singleton family obtained by product-ing sets which 
satisfy p(i). This is extension of Cartesian product, one 
of relational operators. 

g) Intra Indexed Join (i:Index Db p(i) jp(i)) returns a 
singleton family obtained by joining sets which satisfy 
p(i) based on the join predicate jp(i). This is extension 
of Join (a relational operator). 

h) Select-Index (i:Index Db p(i)) returns i:Index of seti 

which satisfy p(i). As a special case of true as p(i), it 
returns all index. 

i) Make-indexed family (Index Non-Indexed Family) 
returns an indexed Family. This operator requires 
order-compatibility, that is, that i corresponds to i-th 
set of Non-Indexed Family. 

j) Partition (i:Index Db p(i)) returns an Indexed family. 
Partition makes an Indexed family out of a given set 
(i.e. singleton family either w/ or w/o index) by 
grouping elements with respect to p (i:Index). This is 
extension of “groupby” as a relational operator.  

k) ApplyFunction (i:Index Db f(i)) applies f(i) to i-th set 
of DB, where f(i) takes a set as a whole and gives 
another set including a singleton set (i.e., Aggregate 
function). This returns an indexed family. f(i) can be 
defined by users. 

Here the operations a) to g) are extensions of 
corresponding relational operators. 

Second, Inter Family Data Management Operations will 
be described as follows: 

All are assumed to be Index-Compatible.  

a) Indexed Intersect (i:Index Db1 Db2 p(i)) union-
compatible 
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b) Indexed Union (i:Index Db1 Db2 p(i)) union-
compatible 

c) Indexed Difference (i:Index Db1 Db2 p(i)) union-
compatible 

d) Indexed Join (i:Index Db1 Db2 p1(i) p2(i)) 

e) Indexed cross product (i:Index Db1 Db2 p(i)) 
Finally, Family Data Mining Operations will be 

described as follows: 

a) Cluster (Family method similarity {par}) returns a 
Family as default, where Index is automatically 
produced. This is an unsupervised learner.  

b) Make-classifier (i:Index set:Family learnMethod 
{par}) returns a classifier (Classify) with its accuracy. 
This is a supervised learner. 

c) Classify (Index/class set) returns an indexed family 
with class as its index. 

d) Make-frequent itemset (Db supportMin) returns an 
Indexed Family as frequent itemsets, which satisfy 
supportMin. 

e) Make-association-rule (Db confidenceMin) creates 
association rules based on frequent itemsets Db, 
which satisfy confidenceMin. This is out of range of 
our algebra, too. 

Please note that the predicates and functions used in the 
above operations can be defined by the users in addition to 
the system-defined ones such as Count. 

B. Tourist Applications   
First, we will summarize this case as follows. 

a) (Social scientific and explanatory objectives) In this 
case related to social science, it is important for the 
EBPM (Evidence-Based Policy Making) [27] parties 
(tourist operators) to identify where there is a gap 
between social needs (many foreigners want to use the 
Internet) and the infrastructure to meet them (free Wi-
Fi access spots for foreigners are available). The 
procedure to realize this consists of data management 
and model generation (data mining and difference 
method). In other words, it is necessary to explain to 
the EBPM parties how to draw the conclusions 
(results of gap detection). 

b) (Data used for use case) Social media data Flickr [28] 
images and Twitter [29] articles were used. We 
collected 4.7 million Tweet articles (tweets) with geo 
tags by using the site provided API and selected 7,500 
tweets posted by foreign visitors in Yokohama. We 
also collected 0.6 million Flickr images by using the 
site provided API and selected 2,100 images posted by 

foreign visitors in Yokohama.  

c) (Methods used for use case) We used SQL to prepare 
social data and used a dedicated DM technique [30] 
to select only data posted by foreign visitors. We 
calculated the final result by using the difference 
method [3] [13] on separate results obtained from 
to the different data sources. 

d) (Result) As a result of social science, we could identify 
the areas with the gaps between social needs and 
available infrastructures. The model-based 
explanation of the whole processes for obtaining the 
result was found useful by talks with tourism 
operators.  

Next, we will describe the case in more depth. 
We describe a case study, finding candidate access spots 

for accessible Free Wi-Fi in Japan [31]. This case is classified 
as integrated analysis based on two kinds of social data.  

This section describes our proposed method of detecting 
attractive tourist areas where users cannot connect to 
accessible Free Wi-Fi by using posts by foreign travelers on 
social media. 

Our method uses differences in the characteristics of two 
types of social media: 

Real-time: Immediate posts, e.g., Twitter 
Batch-time: Data stored to devices for later posts, e.g., 

Flickr 
Twitter users can only post tweets when they can connect 

devices to Wi-Fi or wired networks. Therefore, travelers can 
post tweets in areas with Free Wi-Fi for inbound tourism or 
when they have mobile communications. In other words, we 
can obtain only tweets with geo-tags posted by foreign 
travelers from such places. Therefore, areas where we can 
obtain huge numbers of tweets posted by foreign travelers are 
identified as places where they can connect to accessible Free 
Wi-Fi and /or that are attractive for them to sightsee.  

Flickr users, on the other hand, take many photographs 
by using digital devices regardless of networks, but whether 
they can upload photographs on-site depends on the 
conditions of the network. As a result, almost all users can 
upload photographs after returning to their hotels or home 
countries. However, geo-tags annotated to photographs can 
indicate when they were taken. Therefore, although it is 
difficult to obtain detailed information (activities, 
destinations, or routes) on foreign travelers from Twitter, 
Flickr can be used to observe such information. In this study, 
we are based on our hypothesis of “A place that has a lot of 
Flickr posts, but few Twitter posts must have a critical lack 
of accessible Free Wi-Fi.” We extracted areas that were 
tourist attractions for foreign travelers, but from which they 
could not connect to accessible Free Wi-Fi by using these 
characteristics of social media. What our method aims to find 
is places currently without accessible Free Wi-Fi.  

6

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Our method envisaged places that met the following two 
conditions as candidate access spots for accessible free Wi-Fi: 

• Spots  where  there  was  no accessible  Free  Wi-Fi  

• Spots that many foreign visitors visited 
We  use the number of photographs taken at locations to extract 

tourist spots. Many people might take photographs of subjects, 
such as landscapes based on their own interests. They might then 
upload those photographs to Flickr. These   locations at which 
many photographs had been taken might also be interesting places 
for many other people to sightsee or visit. We have defined such 
places as tourist spots. We specifically examined the number of 
photographic locations to identify tourist spots to find locations 
where photographs had been taken by a lot of people.  We  mapped 
photographs that had a photographic location onto a two-
dimensional grid based on the location  at  which a photograph 
had been taken to achieve this.  Here, we created individual cells in 
a grid that was 30 square meters.  Consequently, all cells in the grid 
that was obtained included photographs taken in a range.  We then 
counted the number of users in each cell. We regarded cells with 
greater numbers of users than the threshold as tourist spots.  

[Integrated Hypothesis] Based on different data 
generated form Twitter and Flickr, the following fragment as 
the macro explanation for hypothesis generation discovers 
attractive tourist spots for foreign visitors but without 
accessible free Wi-Fi currently (see Figure 2): 

DBt/visitor ← Tweet DB of foreign visitors obtained by 
mining based on durations of their stays in Japan; 

DBf/visitor ← Flickr photo DB of foreign visitors obtained 
by mining based on their habitations; 

T  ← Partition (i:Index grid DBt/visitor p(i)); This 
partitions foreign visitors’ tweets into grids based on geo-
tags; This operation returns an indexed family. 

F ← Partition (j:Index grid DBf/visitor p(j)); This partitions 
foreign visitors’ photos into grids based on geo-tags; This 
operation returns an indexed family. 

Index1 ← Select-Index (i:Index T Density(i) >= th1); 
Density counts the number of foreign visitors per grid. th1 is 
a threshold. This operation returns a singleton family. 

Index2 ← Select-Index (i:Index F Density(i) >= th2); 
Density also counts the number of foreign visitors per grid. 
th2 is a threshold. This operation returns a singleton family. 

Index3 ← Difference (Index2 Index1); This operation 
returns a singleton family. 

Plaese note that Partition and Select-Index are family 
data management operations while Difference is a relational 
(set) data management operation. 

We collected more than 4.7 million data items with geo-
tags from July 1, 2014 to February 28, 2015 in Japan. We 
detected tweets tweeted by foreign visitors by using the 
method proposed by Saeki et al. [30]. The number of tweets 
that was tweeted by foreign visitors was more than 4.7 

million. The number of tweets that was tweeted by foreign 
visitors in the Yokohama area was more than 7,500. We 
collected more than 0.6 million photos with geo-tags from 
July 1, 2014 to February 28, 2015 in Japan. We detected 
photos that had been posted by foreign visitors to Yokohama 
by using our proposed method. Foreign visitors posted 2,132 
photos. For example, grids indexed by Index3 contain 
“Osanbashi Pier.” Please note that the above description 
doesn’t take unique users into consideration. The visual 
comparison of the same grids with unbalanced densities can 
help the decision makers to understand the proposal.   

Figure 2. Differences of high-density areas of Tweets (left) and of Flickr 
photos (right). 

IV. CASE STUDY: MICRO EXPLANATION FOR 
MOONQUAKE APPLICATION 

First, we will summarize this case as follows. 

a) (Scientific and explanatory objectives) In this case 
related to lunar and planetary science, in order to 
know the internal structure of the moon, it is necessary 
to analyze the moonquake. As a preliminary study, the 
classification of moonquakes based on multiple 
epicenters is indispensable. However, it is not fully 
understood what features are more effective for 
moonquake classification. Therefore, it is necessary to 
determine the features that contribute most to the 
classification result as an explanation of the 
classification model. 

b) (Data used for use case) We used passive seismic data 
regarding to the moonquakes collected by the NASA 
Apollo program. The dataset [32] has 16 seismic 
sources and 2,480 events as depicted in Table II. 
There is a skew with respect to the size of each source.  

c) (Methods used for use case) We used Balanced 
Random Forest [8] to explain which features most 
contribute to one-to-one classification of moonquakes 
with respect to seismic sources.    

d) (Result) Results of the classification performance 
using orbit parameters of objects in our Solar System 
(Earth, Sun, Jupiter, and Venus) suggest that the 
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Earth orbit parameter is the most effective feature 
among them. The Jupiter orbit parameter is effective 
for classification of some seismic sources. The effect 
was validated by discussions in our research team 
consisting of IT specialist and natural scientists. 

Next, we will describe the case of determining features 
important for interpreting the constructed model by 
reducing features with small contribution ratios. We apply 
Balanced Random Forest [8], which extends Random 
Forest [33], a popular supervised learning method in 
machine learning, to lunar and planetary science to verify 
the key features in analysis. Our verification method tries to 
confirm whether the known seismic source labels can be 
reproduced by Balanced Random Forest using the features 
described below based on the features constructed from the 
moonquakes with the seismic source label of the known 
moonquake as the correct label.  

A. Features for Analysis 
TABLE I shows the parameters in the coordinate systems 

used in this section. We use as seismic source of moonquakes 
the position on the planets of the moon, the sun, the earth, 
and Jupiter ( X , y , z ) , velocity ( v x , v y , v z ) , and distance 
(lt). Based on the time of moonquake occurrence, we 
calculate and use features using SPICE [34]. SPICE assists 
scientists in planning and interpreting scientific observations 
from space-borne instruments, and to assist engineers 
involved in modeling, planning and executing activities 
needed to conduct planetary exploration missions.  

Here, sun perturbation is the solar perturbation. The IAU 
MOON coordinate system is a fixed coordinate system 
centered on the moon. The z axis is the north pole direction 
of the moon, the x axis is the meridian direction of the 
moon, the y axis is the right direction with respect to the 
plane xz. The IAU EARTH coordinate system is a fixed 
coordinate system centered on the earth. Here, the z axis is the 
direction of the conventional international origin, the x axis is 
the direction of the prime meridian, and the y axis is the right 
direction with respect to the xz plane.  

We also calculate the period of the perigee at the 
distance of earth_from_moon, the period based on the period 
of the perigee, the periods of the x coordinate and the y 
coordinate of the solar perturbation. sin and cos values are 
calculated from these periodic features and the phase angle 
based on them. In addition, at the positions 
moon_from_earth and sun_from_earth, we calculate the cos 
similarity as the features of the sidereal moon. Most 
importantly, as all possible combinations of these features, a 
total of 55 features are used in our experiments described here.  

B. Balanced Random Forest 
Random Forest is an ensemble learning that combines a 

large number of decision trees and is widely used in fields 
such as data mining and has a characteristic that the 

contribution ratio of features can be calculated. However, 
Random Forest has a problem such that when there is a large 
difference in the size of data to be learned depending on class 
labels, the classifier is learned biased towards classes with a 
large size of data. Generally, we address the problem of 
imbalanced data by weighting classes with a small number 
of data. However, if there is any large skew between the 
numbers of data, the weight of data belonging to classes with 
a small number will become large, which is considered to 
cause over fitting to classes with a small number of data. 
Since the deep moonquakes have a large difference in the 
number of events for each seismic source, it is necessary to 
apply a method considering imbalanced data.  

As analysis considering imbalanced data, we apply 
Balanced Random Forest [8], which makes the number of 
samples even for each class when constructing each decision tree. 
Balanced Random Forest divides each decision tree based on 
the Gini coefficient. Gini coefficient is an index representing 
impurity degree, which takes a value between 0 and 1. The 
closer it is to 0, the higher the purity is, that is, the less 
variance the data have. The contribution ratio of the feature 
is calculated for each feature by calculating the reduction 
ratio by the Gini coefficient at the branch of the tree. The 
final contribution ratio is the average value of contribution 
ratios of each decision tree.  

C. Experiment Setting  
Here, we describe experiments for evaluating features 

effective for seismic source classification, together with the results 
and considerations. Based on the classification performance 
and the contribution ratio of the features by Balanced 
Random Forest, we analyze the relationship between the 
seismic sources in the features used in this paper.  

The outline of feature analysis is as follows: Features are 
calculated based on the time of occurrence of moonquake. 
Balanced Random Forest is applied to each pair of all seismic 
sources. Classification performance and the contribution 
ratio of the features by Balanced Random Forest are 
calculated and analyzed. 

In this paper, as one-vs-one method, by constructing the 
classifier for every pair of two seismic sources in the dataset, 
we perform analysis paying attention to characteristics of each 
seismic source and the relationship between seismic sources. 
100 Random Forests are constructed for each classifier.  The 
number of samples used to construct each decision tree are 
taken 50 by bootstrap method. Bootstrap is a test or metric 
that relies on random sampling with replacement. Also, 
scikit-learn [35] was used to construct each decision tree in 
Random Forest. scikit-learn is a machine learning library for 
the Python programming language. In this paper, we perform 
the following analysis as feature selection.  

• We create a classifier that learns all of the extracted 55 
features.  
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TABLE I. PARAMETERS IN THE COORDINATE SYSTEMS COMPUTED USING SPICE. 

Target                                 Observer                  Coordinate system Parameter 
EARTH BARYCENTER             MOON                       IAU MOON earth_from_moon  
SOLAR SYSTEM BARYCENTER    MOON                       IAU MOON sun_from_moon 
JUPITER BARYCENTER          MOON IAU MOON jupiter_from_moon  
SOLAR SYSTEM BARYCENTER   EARTH BARYCENTER        IAU EARTH     sun_from_ earth 
JUPITER BARYCENTER          EARTHBARYCENTER        IAU EARTH     jupiter_from_ earth 
SUN                      SOLAR SYSTEM BARYCENTER     IAU EARTH     sun_ perturbation 

TABLE II. NUMBER OF DATA FOR EACH SEISMIC SOURCE. 
Seismic source A1  A5  A6 A7 A8   A9 A10  A14  A18  A20  A23  A25 A35 A44 A204 A218 

Number of data   441  76  178   85  327  145  230  165  214   153 79 72 70 86 85 74 
 

  

Figure 3. Averages of F-measures for pairs of seismic sources. 
 

 

Figure 4. Averages of contribution ratios for each feature. 
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• Using the Variance Inflation Factor (VIF), we construct 
a classifier after reducing features. VIF quantifies the 
severity of multicollinearity, that is, a phenomenon in which 
one predictor variable in a multiple regression model can be 
linearly predicted from the others accurately. 

Here, VIF is one of the indicators used to evaluate 
multicollinearity. In this paper, in order to make VIF of each 
feature 6 or less, experiments were conducted on a subset 
with reduced features. Based on the experimental results 
using all features, we calculate VIF and delete features with 
6 or more VIF. To calculate VIF, statsmodel [36] was used. 

TABLE II shows the dataset in this paper. We select 
events of 16 seismic sources whose observed number of 
moonquake events is 70 or more.  

In this paper, the precision ratio, recall ratio, and F-value 
are used as indexes for evaluating the performance of 
classification of seismic sources.  

The precision ratio is an index for measuring the accuracy 
of the classification, and the recall ratio is an index for 
measuring the coverage of the classification. F-value is the 
harmonic mean of recall and precision ratios and is an index in 
consideration of the balance of precision and recall. The score 
of the classifier in this paper is the average value of the F-
values of the two classes targeted by the classifier.  

D. Experiment Results  
1) Experimental results using all features  
a) Classification performance  
Figure 3 is the average of the F-measures of classifiers 

for each seismic source. F-measure is the harmonic mean of 
precision and recall in statistical analysis. The vertical axis 
and the horizontal axis show seismic sources, each value is a 
score of the average of F-measure of classifier. In Figure 3, 
the highest classification performance is 0.96 and it is 
observed in multiple pairs of seismic sources. Also, the 
lowest classification performance is 0.54 as of classifier 
between A9 and A25. Figure 3 shows that some classification 
is difficult depending on combinations of seismic sources. 
Also, the number of classifiers with 0.9 or higher as 
classification performance is 20, about 17% of the total 
number of the classifiers. The number of classifiers with 0.8 
or more and less than 0.9 is 60, 50% of the total. The number 
of classifiers with performance below 0.6 is only one. Most 
of the classifiers show high classification performance and 
show that the positional relationships of the planets are 
effective for the seismic source classification of the deep 
moonquakes.  

b) Contribution ratio of features  
Figure 4 shows the average value of contribution ratios for 

each feature. All features with the higher contribution ratios 
are those of the earth when they are calculated as the moon as 
the origin of the coordinate system. In addition, it shows that 
the contribution ratios of Jupiter 's features are high when the 
moon is the origin. By comparing features when the moon is 

the origin and when the earth is the origin, the features with 
the moon as the origin has a higher contribution ratio than 
the features with the earth as the origin. These observations 
suggest that the tidal forces are among the causes of 
moonquakes. Figure 4 indicates that relationships between the 
moon and the Earth affect the classification most strongly. 
However, there is a possibility that correlation between features, 
then it is necessary to further analyze each feature from view 
point of mutual independence. Therefore, in the following 
subsection, considering the correlations between features, we 
will describe the experimental results after feature reduction 
using VIF.  

2) Experimental results of feature reduction using VIF. 
a) Classification performance  
Figure 5 shows the average of the F-measures of the 

classifier when the features are reduced. Similarly, as in 
Figure 3, the vertical axis and the horizontal axis are seismic 
sources, respectively, and each value is the score of the F-
measure of the classifier in Figure 5. In addition, the number 
of classifiers whose classification performance is 0.9 or 
higher is 26, about 22% of the total. 54 classifiers with 0.8 or 
higher but less than 0.9 are 45% of the total. There is one 
classifier whose classification performance is less than 0.6. 
Compared with Figure 3, these show that the classification 
performance does not change significantly.  

b) Contribution ratio of features 
Figure 6 shows the average value of the contribution 

ratios of each seismic source after feature reduction. After 
reducing features, earth features when the origin is the moon 
are reduced to 4 features of the top 10 features which existed 
before feature reduction. The four features between top 11 and 
14 positions of the features of Jupiter when the origin is the 
moon, as shown in Figure 4, are reduced to one feature. Other 
parameters of Jupiter are thought to have been affected by 
other features. The subset of the features after feature 
reduction is considered to have small influence of 
multicollinearity. Therefore, there is a possibility that the 
features of the Earth and some of the features of Jupiter are 
effective for classification when the moon is the origin. These 
results are microscopic explanations made directly from the 
model constructed by Balanced Random Forest.      
E. Discussion of methods and features 

By using Balanced Random Forest, contribution ratios of 
features can be easily calculated in addition to classification 
performance, so it is useful for feature analysis like the 
scientific research described in this section. However, in this 
method, there is room for consideration of parameters of 
classification techniques depending on the seismic sources as 
the classification targets. Moreover, in order to obtain higher 
classification performance, it is necessary to consider many 
classification methods. Furthermore, it is necessary to apply 
a method considering waveform information simultaneously 
collected by the NASA Apollo project. In addition, since the 

10

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



findings obtained in this paper are only correlations, it is 
difficult to directly estimate the causal mechanism of the 
deep moonquakes. However, the results of this paper are 
shown to be useful for further analysis and knowledge 
creation by experts. If the knowledge of experts such as 
the physical mechanism about moonquakes is available, 
the elucidation of the causal relationships between the 
seismic sources and the planetary bodies and ultimately 
that of the causal mechanism of the moonquakes 
(possibly related to tidal forces) can be expected. In 
general, expertise in any domain is expected to increase 
our understanding of the causal relationships suggested 
by our correlation analysis. 

 

Figure 5. Averages of F-measures for pairs of seismic sources after feature reduction. 

 

Figure 6. Averages of contribution ratios for each feature after feature reduction. 

 

 
V. CASE STUDY: MICRO EXPLANATION FOR 

CENTRAL PEAK CRATER APPLICATION 
First, we will summarize this case as follows. 

a) (Scientific and explanatory objectives) In this case, 
also related to lunar and planetary science, in order 
to understand the internal structure and movement 
of the moon, it is conceivable to use the materials 
inside the moon as a clue. The central hill in the 
crater is attracting attention as a place where the 
materials inside the moon are exposed on the moon 

surface. However, not all craters with central hills 
on the moon have been identified. Therefore, it is 
scientifically necessary to make the catalog. 
Therefore, it is also necessary to explain to the 
relevant scientists the grounds for judging the 
craters included in the found candidates as craters 
with central hills. 

b) (Data used for use case) We used about 7,200 images 
provided by both NASA and JAXA. Each image has 
been resized to 512 (height) * 512 (width) * 1 
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(normalized elevation). We divided the whole images 
into equal numbers of images with three labels, that 
is, craters with central hills (central-hill craters), 
craters without central hills (normal craters), and 
non-craters. 

c) (Methods used for use case) We used RSPD [37] to 
detect craters only for preparation of training data 
of CNN [14][38]. Next, we applied learnt a CNN to 
find central-hill craters including unknown and 
known ones and used Grad-CAM [15] to know the 
evidence for judging central-hill craters.   

d) (Result) We could classify three classes with 96.9 % 
accuracy, which was verified by the scientific 
members of our research team. We also could show 
the scientific members of our research team 
individual evidences for judging central-hill craters 
consisting of crater rims and central hills. 

Next, we will describe this case in more depth for the 
explanation functions although we have already introduced 
it to explain the way of model construction in our previous 
work [3]. 

A. Discovery of central peak craters 
Scientific data are a kind of real-world data. By taking 

an example of research conducted by our team including 
JAXA researchers using scientific data which are also open 
data, we explain integrated analysis [39]. We use hypothesis 
generation based on differences between original data and 
their rotations. 

A detailed map of the surface of the moon was provided 
by JAXA launched lunar orbiter KAGUYA (SELENE) 
[40]. Of course, KAGUYA’s purpose goes beyond making a 
map of the moon. The goal is to collect data that will help 
elucidate the origin and evolution of the moon. In order to 
further pursue such purposes, it is important to examine the 
internal structure of the moon. 

One of the methods to examine the internal structure of 
the moon is to analyze the data of moonquakes (i.e., 
corresponding to earthquakes) that occur in the moon. 
Research is also being conducted to classify the hypocenters 
of moonquakes based on the data of moonquakes provided 
by the NASA Apollo program. Among these studies are our 
research which showed that it is possible to classify 
moonquakes by features such as the distance between the 
moon and the planet alone without using seismic waves 
themselves as described in Section IV. 

Another method is to launch a spacecraft to directly 
explore the internal structure of the moon. However, it is not 
sufficient to land the spacecraft anywhere on the moon. That 
is naturally because there are limited resources such as budgets 
that can be used for lunar exploration. In other words, it is 
necessary to determine the effective point as the target of the 
spacecraft based on the evidence. This way is an example of 

EBPM, making an effective plan based on evidence under 
limited resources. 

On the other hand, whether large or small, a lot of craters 
exist in the moon. Among them, special crater with a 
structure called “central peak” (hereinafter referred to as 
“central peak craters”) is present (see Figure 7). The central 
peak is exposed on the moon and lunar crustal substances 
are also exposed therein. Therefore, it is likely that central 
peak craters scientifically have important features. In other 
words, the exploration of the surface of the central peak 
makes it possible to analyze the surrounding internal 
crustal materials in a relatively easy way. By this, it is 
expected that not only the origin of the crater and central 
peak can be estimated, but also the surface environment of 
the past lunar surface and the process of crustal 
deformation of the moon can be estimated. 

But with respect to the central peak crater as the 
exploration target, conventionally the confirmation of 
existence of the central peaks has been visually done by the 
experts. So, the number of craters known as central peak 
craters is rather small. This problem can be solved by 
automatic discovery and cataloguing of central peak craters 
to significantly increase the number of central peak craters 
as candidate exploration points. 

Thus, in this case with creating the catalog of central 
peak craters as our final goal, a specific technique for 
automatic discovery of central peak craters has been 
proposed. This case uses DEM (Digital Elevation Model) 
of the lunar surface as results observed by the lunar orbit 
satellite “KAGUYA” of JAXA [40]. Paying attention to the 
image characteristics of DEM, we apply CNN (Convolutional 
Neural Network [14] [38]) as a popular technique for deep 
learning, which is recently in the limelight as AI, to construct 
the discrimination model. We evaluate discriminability of 
the central peak crater by the model by experiments. 

 

 

Figure 7. Example of central peak crater. 

 

 

B. Integration Hypothesis 
The central peak crater is identified by the following 

two-step procedure. 
1) Crater extraction on the moon by RPSD method 
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Craters are extracted by using the popular and secure 
method called RPSD (Rotational Pixel Swapping for DTM) 
for digital terrain models. Here, DTM (Digital Terrain 
Model) is a digital terrain model similar to the digital 
elevation model (DEM). The RPSD method focusses on the 
rotational symmetry when rotating the image of the DEM at 
a certain point (i.e., central point). That is, RSPD uses the 
fact that the negative gradient property from the rim of the 
crater to the center in the lunar DEM does not change with 
rotation of craters. In other words, we make the difference 
between the original candidate crater and the rotated one 
(corresponding to the difference in the observation mode for 
the same object) and confirm that the feature about 
rotational symmetry does not change in order to 
discriminate craters. In a word, this method corresponds to 
our generalized difference method in which hypotheses 
(craters) are found by focusing on differences obtained by 
different means for the same object (candidate craters). 

2) CNN-based automatic discrimination of central peak 
crater from extracted craters 

In general, in the discrimination phase for each layer of 
deep learning, each output node multiplies the input values 
by weights, takes their sum, and adds their bias to the sum, 
and then outputs the result in the forward direction. 

In the learning phase of deep learning, as a problem of 
minimizing the error between the output of discrimination 
and the correct answer, the values of weights and biases are 
updated by differentiating the error function with respect to 
the weight and bias of each layer. 

C. Integrated Analysis 
First, using RPSD, we extract the DEM data of each 

candidate crater and provide them with a label (non-crater, 
non-central peak crater, and central peak crater) to create 
training data. We learn CNN model thus using the training 
data and discriminate the central peak craters by using the 
CNN model. From recall ratios obtained by experiments 
focusing on how much correct answers are contained in 
the results, the possibility that CNN is an effective 
technique in the central peak crater determination is 
confirmed. 

In order to confirm reasons for the classification results, 
we visualize the contribution areas in input images which 
affect the model (i.e., individual evidence). 

We use Grad-CAM [15], a method for visualizing 
contribution areas for each label in an input image. We use 
it because it has an affinity for CNN. 

The left part (see Figure 8) is an input image, the 
central part is the contribution area for “central-peak crater” 
label, and the right part is the contribution area for “normal 
crater” label. 

The contribution area for “central-peak crater” has 
heating area inside the crater, and heating area is covering 
a central peak. On the other hand, the central peak area 

does not have heating area at the contribution area for 
“normal crater.” Therefore, we think that the central peak 
area contributes classification for “central-peak crater” 
label. Thus, the contribution areas as the micro 
explanation can help the scientists to understand the 
corresponding classification results. 

Figure 8. Explanation of individual evidences. 

VI. CONCLUSION 
In this paper, we proposed a general framework of 

explanation necessary to widely promote implementation of 
analytical applications using SBD. The procedure of a 
tourism application based on integrated data model was 
described as an example of a macro explanatory function. 
In addition, we used Balanced Random Forest as a micro 
explanatory function to extract features effective for the 
seismic source classification of the deep moonquakes from 
the temporal and spatial features of the planets. We 
described another example of a microscopic-explanatory 
function to explain individual evidences for discrimination 
of central peak craters.  

The results of social science research (i.e., an example 
of macro explanation of procedures) were explained to 
external travel experts to confirm their effectiveness. 
Regarding to the explanation of scientific results (i.e., 
examples of micro explanations of model features and 
judgements), we have positive feedbacks from the relevant 
scientists in our research team based on the scientific 
effectiveness.  

We reiterate the whole process of the SBD application 
with explanations as the summarization of the contribution 
of this paper. 

1. The user describes the procedure for data 
management and model generation by utilizing the 
data model (i.e., SBD model) and the hypothesis 
generation methods (e.g., generalized difference 
method). 

2. The macroscopic-explanation function uses the 
constructed description for the explanation. 

3. The microscopic-explanation function finds the 
effective model features and individual judgement 
basis by executing the constructed model using the 
explanation-oriented techniques (e.g., Balanced 
Random Forest and Grad-CAM).    
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We will continue to verify the versatility of the 
explanatory framework by applying it to a wider variety of 
use cases in the future. We will also continue to interview 
the parties concerned and listen to the opinions of experts at 
international conferences on the effectiveness of the 
framework for explanation. In fact, we have already 
presented the candidate list of central hill craters with the 
micro explanations to the scientists in the related field. They 
have definitely found unidentified central hill craters among 
the candidates. As a result, a new project has recently been 
initiated to re-estimate the quantitative relationships 
holding between the radius of the central hill crater and the 
height of the central hill based on our findings. 
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