
Data Science as a Service

Prototyping an Integrated and Consolidated IT Infrastructure Combining Enterprise Self-Service

Platform and Reproducible Research

Hans Laser

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: laser.hans@mh-hannover.de

Steve Guhr

NetApp Deutschland GmbH

Berlin, Germany

e-mail: steve.guhr@netapp.com

Jan-Hendrik Martenson

NetApp Deutschland GmbH

Hamburg, Germany

e-mail: jan-hendrik.martenson@netapp.com

Jannes Gless

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: gless.jannes@mh-hannover.de

Branko Jandric

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: jandric.branko@mh-hannover.de

Joshua Görner

Airbus Operations GmbH

Hamburg, Germany

e-mail: joshua.goerner@gmail.com

Detlef Amendt

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: amendt.detlef@mh-hannover.de

Benjamin Schantze

NetApp Deutschland GmbH

Hamburg, Germany

e-mail: benjamin.schantze@netapp.com

Svetlana Gerbel

Center for Information Management

Hannover Medical School

Hannover, Germany

e-mail: gerbel.svetlana@mh-hannover.de

Abstract–A data scientific process (e.g., Obtain, Scrub, Explore,

Model, and iNterpret (OSEMN)) usually consists of different

steps and can be understood as an umbrella for the

combination of different most modern techniques and tools for

the extraction of information and knowledge. When developing

a suitable IT infrastructure for a self-service platform in the

academic environment, scientific requirements for

reproducibility and comprehensibility as well as security

aspects such as the availability of services and of data are to be

taken into account. In this paper, we show a prototypical

implementation for the efficient use of available data center

resources as a self-service platform on enterprise technology to

support data-driven research.

Keywords-data science as a service; reproducible research;

enterprise information technology; research data infrastructure;

self-services; data science platform; cloud infrastructure.

I. INTRODUCTION

One of the most important aspects of building service
portfolios in the company is to make them as simple and
usable as possible for the end user [1].

Data centers at German universities are increasingly
confronted with challenges in the areas of availability and
operational security, data privacy and IT security, operating
costs and use of cloud services, data management and access
to high computing capacity, increasing standardization and
consolidation of IT systems [2]. The availability of services
and especially of data requires a corresponding
infrastructure. Services are increasingly subjected to risk
classification in order to define how the operation of
university IT must be ensured. The technology used must
allow to scale out (horizontally) performance of a platform,
because scaling up a platform is limited to hardware
resources. Today, virtualization technology is often used to

104

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compress computing power and at the same time to have the
flexibility to move parts of the computing nodes and
redistribute the load in case of a failure. Hardware
maintenance does not necessarily result in the unavailability
of a service, as it can usually be moved without interruption
to another node in the data center cluster or even the cloud
[3]. This infrastructure is supplemented by container
technology as a further step in service encapsulation. At the
same time, similar demands are made on the availability of
data. Redundant Arrays of Independent (Inexpensive) Disks
(RAID systems) combine performance, reliability and
scalability but show weaknesses in the speed of recovery [4].
Monitoring the health of IT infrastructures with suitable tools
is indispensable for professional operation [5].

The main challenge is to "transfer" (integrate) these well-
known tools and solutions into a scalable and powerful
platform that can be equipped with enterprise technology to
ensure service level agreements (SLAs) from a centralized
enterprise information technology [3].

Users of documented services are provided with more
specific minimum and maximum performance measures,
such as quality, punctuality or cost of a service, through the
SLAs and can adapt and understand the expectations and
limitations of a service accordingly [6].

The process of combining or connecting different
systems and individual software applications to form a
common functional system with comprehensive functionality
to increase user acceptance and customer satisfaction is also
known as system integration. IT service providers have an
interest in the continuous improvement of product and
service quality [7]. The added value for the company can be
increased by improving service response times, reducing the
costs for the operation of IT infrastructure, and lowering
operating costs by intelligently linking the IT systems used
[8].

A. The Data Science Process

To obtain information (e.g., based on patterns) for
relevant business decisions from data of heterogeneous data
sources, a classical multi-stage process for data preparation
and analysis is used, the so-called data mining process [9].
Data science, on the other hand, can be understood as an
umbrella for the combination of various state-of-the-art
techniques for the extraction of information and knowledge
(so-called insights) to develop data-based applications and,
thus, automating processes. One approach to describe the
individual steps for the data science process is Obtain, Scrub,
Explore, Model and INterprenting (OSEMN) [10]. In the
Obtain step, for example, query languages are required for
databases that can be extracted in various formats. Python
[11] and R [12] encapsulate the otherwise heterogeneous
data query tools (e.g., Structured Query Language (SQL),
eXtensible Markup Language (XML), Application
Programming Languages (API), Comma Separated Value
(CSV), Hybrid File System (HFS)). Classic database
techniques such as Extract Transform Load (ETL) process
can be used in the cleanup step (Scrub). Computer languages
like Python and R or application suits like SAS Enterprise

Miner [13] or OpenRefine [14] can also be used to transform
data. To examine the data (Explore) languages like Python or
R specialize in particular appropriate libraries (e.g., Pandas
[15] or Scipy [16]). In this step, however, familiar players
from the business intelligence world (e.g., Rapid Miner [17]
or KNIME [18]) can also be found for data-wrangling. To
build a model, there are again specialized Python libraries
like “Sci-kit learn” [19] or CARET [20] for R. Other tools
like KNIME or Rapid Miner find reuse in this step as well.
Finally, for interpreting the model and the data as well as
evaluating the generalization of the algorithm, tools for data
visualization are reused (e.g., matplotlib [21], Tableau [22]
or MS Power BI [23]). In summary, it means, that for the
many single steps in OSEMN, many different tools can be
necessary.

An example of a platform solution that maps these
process steps in a so-called pipelining functionality is the
Pachyderm software [24]. Pachyderm offers components that
support the developer (data scientist) with regard to data
provenance in development work and analyses and can thus
map a logical and chronological sequence of process steps.
This platform solution offers many degrees of freedom and
requires the user to have a well-developed hypothesis or data
processing or data management plan and is therefore suitable
for the development of concrete and declarable products
[25]. However, if the workflow initially requires exploration
for hypothesis generation, it may be better to use tools of
lower complexity.

B. Reproducible Research

Scientific studies, experiments and numerical
calculations can only be reproduced or reconstructed if all
important steps are comprehensible [26]. The importance of
reproducibility of scientific work can be illustrated by the
following quotation from Jon Clearbout: “An article about
computational science in a scientific publication is not the
scholarship itself, it is merely advertising of the scholarship.
The actual scholarship is the complete software development
environment and the complete set of instructions which
generated the figures.” [27]

A scientist should therefore always have an interest in
describing the runtime environment as transparently and
understandably as possible. However, complex runtime
environments are difficult to penetrate due to the sometimes
high technological complexity (e.g., package dependencies).
The technical reproducibility enables scientific results to be
reproduced at all, but this requires a very high degree of
knowledge about the method and technology used.
Simplifying the technological limits can increase the
practical reproducibility, i.e., the actual and problem-free
repeatability of the experiment [28].

In the field of computer-based data-driven science (data
science), researchers today often use free and open-source
tools and libraries [29]. The reproducibility and repeatability
of research results and the description of the specific runtime
environment in which the results were generated are not
described in the respective publications or only in text form
[29] [30]. An important factor in the publication of scientific
work is the reproducibility of the research results [30] [31]. It

105

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is therefore necessary that deterministic environments are
available to a data scientist. Determinism can be spoken of
when all events, especially future events, are clearly defined
by preconditions. In other words, development environments
are specified accordingly and work as expected, although the
methods or algorithms used cannot deliver deterministic
results [32].

In data-driven research projects, the application of
appropriate data management procedures helps to maintain
the data integrity of digital data generated in the research
process (“research data”). The preservation of data integrity
in the data flow can be maintained by documenting the data
origin and applied transformations during the research
process. Data is considered reliable if results and errors in
the data creation and data analysis process can be reproduced
through traceability (good data provenance) [33].

Data provenance is encapsulated by so-called research
data management, among other things. Research data
management includes all measures to ensure the usability
and reusability of research data before, during and after the
research project [34]. Systematic representation of these
points in the project life cycle is a Data Management Plan
(DMP), which describes the data and how the data is
processed in the project [35]. A data life cycle illustrates the
steps from collection to re-use (creation, preparation,
analysis, archiving, access, re-use) [36]. There are more
complex models, such as the Curation Lifecycle Model
(DCC), which describes various fields of activity in the
preservation and maintenance of data [37]. A DMP is
required by funders when submitting a proposal (see DFG
Form for the continuation of a Collaborative Research
Center, 1.4.3, [38]) and serves to ensure effective research
data management and long-term usability of the data [34].
Various retention periods apply in order to preserve the
reusability of research data. According to good scientific
practice, primary data should be stored permanently in
research institutions for at least ten years, together with clear
and comprehensible documentation of the methods used
(e.g., laboratory books) (see Recommendation 7 [39]).

In addition to the requirements arising from research data
management, the data principles published in 2016, which
define the basis for research data and research data
infrastructures to ensure sustainability and reusability, must
be taken into account [40]. It was defined by researchers,
financiers, publishers and university representatives to
increase the reusability of research data (FORCE 11 group).
Scientific data should therefore be searchable, accessible,
interoperable and reusable. The FAIR data principles can be
applied to the entire data life cycle and, as an extension to
research data management, provide a collection of best
practices for sharing data under ethical and contractual
conditions (copyrights, intellectual property rights, etc.).

Highly simplified, data and services should be stored in
central data repositories using appropriate metadata (F),
taking into account aspects of long-term archiving (A), and
should be able to be exchanged and interpreted (semi-
)automatically (I) and thus be comparable and reusable (R).
If research data cannot be published due to legal
requirements, the FAIR principles provide procedures for

publishing a description to make the underlying data more
understandable. Metadata on machine or human-readable
interpretability facilitate comprehensibility and data
processing (see Dublin Core Metadata Initiative, Data
Documentation Initiative, etc.), open data formats facilitate
interchangeability and reusability, metadata on privacy and
copyright regulations facilitate accessibility, persistent
identifiers assist in finding and easily accessing the
information, the indication of licenses (e.g., Creative
Commons, etc.) specify the type of usability of the data [41].
Numerous tools support the work with FAIR-Data [42].

In the context of data-driven science, several concepts
that place demands on an ecosystem of IT systems must
therefore be considered. Following the OSEMN process, the
data life cycle of research data management and the FAIR
data principles, a schematic summary is shown in Figure 1.

Figure 1. A schematic summary of OSEMN process, the data life cycle of

research data management and the FAIR data principles (Source: own

illustration).

In addition, depending on the subject area, further

guidelines are to be considered. For the secondary data
analysis of health data, these are, among others, the "Good
Practice in Secondary Data Analysis (GPS)" [43] and the
"Good Clinical Practice of the International Council for
Harmonisation of Technical Requirements for
Pharmaceuticals for Human Use (ICH E6 GCP) [44][45].

IT operators at research institutions should therefore
work together with researchers and libraries on IT
infrastructures to support the above points. Results of
systems research show that open source tools in particular
are suitable for the requirements of reproducibility. Although
Docker was introduced primarily for business needs and the
isolation and deployment of web applications in so-called
containers, it provides solutions for virtualization, platform
portability, reuse, sharing, archiving and versioning [17] for
the scientific community.

106

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The use of tools such as JupyterNotebooks (jupyter.org)
enables semantically interoperable publishing of program
code, including through the use of the IPYNB format [29].
JupyterNotebooks supports workflows in scientific
computing, astrophysics, geology, genetics and computer
science [29]. Various applications and programming
languages (e.g., Python, R) provide interfaces to
JupyterNotebooks [30][46]. Jupyter collects many valuable
tools that are needed in the steps of the OSEMN process
model.

C. The aims of the project

The aim of this project is to create an easy-to-maintain
and cost-effective consolidated IT infrastructure to support
data-driven research and implementation in the existing data
center infrastructure at the Center for Information
Management (ZIMt) at Hannover Medical School (MHH).
The requirements for IT systems of the known process
models, research data management, FAIR and the operation
of applications on enterprise level (such as data security and
system recoverability) and numerous other standards,
guidelines, directives and recommendations (such as Good
Research Practice, Good Practice for Secondary Use of Data,
etc.) have to be met.

The ZIMt centralizes operative systems and is a service
provider especially for the areas of research and teaching,
clinic and administration. IT services (applications) are used
in clinical operations to optimize clinical processes and legal
documentation and place high demands on system
availability and fail-safe IT services. This has an impact on
the processes and IT systems of the computer center. In
addition, simple interfaces are provided for end users
(nursing, doctors, administration) for problem presentation
and reporting, which enable centrally controlled fault
clearance via an IT service desk. In order to guarantee
interference suppression, high demands are placed on the
standardization of IT processes and system documentation.
The ZIMt operates a class 3 [47] data center at the MHH to
guarantee these requirements and is certified according to
ISO 9001:2015. In the area of research, however, the IT
process landscape is sometimes disruptive, as rapidly
changing requirements and moving targets are sometimes
necessary to achieve the research goal. The centralization of
applications to support the scientific sector is a strategic goal
of the MHH.

We have defined three main areas of focus which are to
be given special consideration in this proof of concept draft:
(1) usability to evaluate the integratability of the IT solution
into the system landscape established at the MHH and the
working environment familiar to the end user; (2) disaster
recovery to evaluate the recoverability of the proposed
solution. By integrating a system into the MHH
environment, the system has to meet special requirements
(front-end branding to maintain corporate identity and
security aspects). The user administration and access
authorization (3) should be used centrally via an existing
directory service ("Active Directory") and security groups
defined therein, and must therefore be evaluated.

Requirements on the usability of the service can in turn have
an influence on the security factors.

These dependencies should therefore be emphasized in
this concept. For easy control of used storage resources, the
available storage system of the data management provider
NetApp [48] was applied. Available interfaces should be
used and thus not require any additional effort in the
management and monitoring of the system for the IT
operator.

This paper is an extended version of our previous work
[1] and the further course of this paper is structured as
follows. In Section II we describe the methods used to meet
the above challenges. In Section III we describe the results
achieved in relation to the main topics. Section IV concludes
this paper, addressing open questions and the next steps.

II. METHODS

As an interactive shell for various programming
languages, JupyterNotebooks is provided as development
environments at the MHH. The solution is browser-based
and the end user does not need to install any additional
software on his device [49]. The open source environment
JupyterHub Notebook Server is used to operate
JupyterNotebooks in the data center. It enables users to
access computer environments and resources without
bothering them with installation and maintenance tasks.

Standardized environments (the Docker software/binaries
that run on many different operating systems today) built for
containers are suitable for using individual application
manifests in different locations (e.g., locally as well as in a
public cloud infrastructure provided by Google, Amazon
Web Services (AWS) or Microsoft Azure) without having to
change the code. JupyterHub uses Docker as the basis for the
deployment of JupyterNotebooks. The Jupyter Docker
Stacks project [50] provides standardized JupyterNotebook
environments for various applications using Docker images,
including preconfigured environments for use in data
science. For special requirements of the development
environment, additional images can be offered that can be
individually adapted to the user's needs.

In Kubernetes, several containers (e.g., Docker
Containers) with common memory and network (common
context) can be defined and delivered in a so-called capsule
("Pod") as a coherent structure [51]. For more design
flexibility, a hypervisor (VMware) was used to provide the
hosts for container orchestration based on Dockers and
Kubernetes. Snapshots on VMware enable point-in-time
copies of virtual disks can be used to switch to a virtual
machine state at an earlier time.

Terraform and Ansible are fully automated. Terraform is
an open-source tool that offers the possibility to describe
infrastructure configurations programmatically as code
(CaaS [52]) (Hashicorp Configuration Language) [53]. As an
open-source tool, Ansible provides automation tools for
orchestration, general configuration (e.g., software
distribution) and administration of IT infrastructures [54].
Terraform creates the virtual machines within the hypervisor,
Ansible takes care of the installation of the packages and the
configuration of the hosts (configuration management). To

107

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

avoid configuration inconsistencies, the DevOps (Software
Development and Information Technology Operations)
paradigm is considered an "immutable" infrastructure where
every change in the ecosystem leads to a completely new
deployment of the entire stack [55].

A JupyterHub is a multi-user server for
JupyterNotebooks, consisting of several applications that
provide different services (hub, notebooks, proxy,
authenticator, spawner), which allow secure access to central
computing environments and resources.

Figure 2. Overview of JupyterHub components [56]

The most important components and their interaction can
be briefly explained using the JupytherHub architecture (see
Figure 2). The JupyterHub proxy forwards the user to the
JupyterHub or to the user's existing JupyterNotebook,
depending on the user's sign-on status (SIGNED IN/OUT
USER). Existing JupyterNotebooks are managed in the Hub
and after successful authentication new JupyterNotebooks as
well as a defined user storage (Pods + Volumes) are
provided and registered in the proxy. The Hub Container of
the JupytherHub as a central component contains three
services (Authenticator, User Database, Spawner), which on
the one hand can be adapted to the personal requirements
and on the other hand are particularly worth protecting [56].
The so-called "Authenticator" authenticates the users against
a directory service, in our case a Microsoft Active Directory
using the Lightweight Directory Access Protocol (LDAP),
and provides the required input mask as a web page. The
"User Database" stores login and JupyterNotebook
information of the respective users. This data is required for
operation and recovery [57]. It is recommended to replace
the standard database (SQLite) in a productive environment
with a classic relational database management system
(RDBMS) such as PostgreSQL or MySQL. The spawner
provides the notebooks, is able to communicate with the
Kubernetes API and creates ("spawned") Docker Containers.
The spawner can be parameterized, so that resources can be
limited or a special image can be passed to create the
containers via Kubernetes [58][59].

For the proper implementation and configuration of all
components, in addition to a manual deployment, helm as
used, a package manager for easy installation, publishing,
administration, updating and scaling of preconfigured

Kubernetes applications. All configurations and
communications between the containers can be predefined,
as well as the accessibility of the end users from outside. In
this project we used a predefined Helm-Chart [60] for the
deployment of JupyterHub on Kubernetes. Any changes to
the predefined default values can be overwritten by a
configuration file during deployment and thus be
individually adapted to the requirements in the respective
system environment.

Since Docker Containers do not persist data after their
life cycle has ended, the storage of configuration and user
data must be guaranteed. You must therefore mount
persistent volumes to retain the data beyond the life cycle of
the container. For this purpose, Kubernetes offers Persistent
Volumes, which are usually stored on the nodes of a
Kubernetes cluster [61]. In the MHH data center, a high-
performance and highly available NetApp storage system is
used as the central storage system for consolidating and
storing data. To prevent data from being stored on individual
distributed devices, the data from the Kubernetes containers
should be persisted on this central storage. For this purpose,
persistent volumes were provided automatically and
centrally via an open source for Kubernetes from NetApp,
Trident [62]. Trident offers an ideal interface between
persistent volumes and the containers or Pods for this
purpose. For each Pod, a separate volume was created on the
storage cluster, which by default is only provided for one
Pod (e.g., JupyterNotebook). Using so-called storage classes,
NetApp storage can map various guidelines for quality of
service level or back-up guidelines, among other things, in
order to differentiate resource allocation between storage
services for students (short availability, balanced
performance, daily back-ups) and researchers (long
availability, high performance, high back-up frequency).

Figure 3. Sketch access to network drive on DFS from a JupyterNotebook

context (Source: own illustration).

108

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The workstations at the MHH are equipped with

Microsoft Windows by default. The operating mode is
strongly influenced by the look and feel of the graphical user
interfaces, and project documents are stored on network
drives provided by the data center. Microsoft enables
directories distributed on different data storage devices in the
network to be combined into directory structures via the
Distributed File System (DFS). The Server Message Block
(SMB) protocol is used to map the file system authorizations
with authorization objects of the Active Directory in the
network (via DFS) (see Figure 3) [64]. In JupyterHub the
user's network drives are not available in raw state, but he
must be able to store raw data, the generated program codes
and result files from and to the network drive where the
central access (also of the team members) takes place.

The used JupyterHub container is based on a Linux
operating system (Ubuntu). A user can mount SMB shares in
the available directory structure under Linux using the
LinuxCIFS utils package [64]. For the use of LinuxCIFS
utils increased system rights are required. This requires a
corresponding implementation within the container, but
Docker also implements standard security rules and thus, for
example, prohibits the execution of the command for
mounting network drives in the default settings, which in
Kubernetes is done via the so-called "privileged mode" [65]
[66]. For security reasons, applications should only be given
the most necessary privileges (see chapter 6 [67]). To enable
the privileged mode, the corresponding configuration
parameters were transferred via the Helm-values-file
(config.yaml). The LinuxCIFS utils are not included in the
used Dockerfile [68] of JupyterNotebook of this JupyterHub
Helm chart. We have manipulated the Dockerfile
accordingly, and integrated the LinuxCifs utils. In addition,
the user under which the JupyterNotebook is executed
("jovyan") needs increased rights of the superuser (so-called
"root") to execute the command. The assignment of the
execution rights is done via the "sudoers" file. The user
jovyan has only been granted rights to execute the following
modules (mount/umount). Then the Docker image was built
with this customized Dockerfile and deployed on each
Kubernetes worker node. The JupyterHub Helm chart with a
customized helm-values-file (config.yaml) was installed to
use the new Docker image [69]. To give the end user the
familiar look and feel of the corporate environment, it is
necessary to customize the application according to the
corporate design of MHH. On the log-in page, the user
receives the company logo so that there is direct recognition
value to an in-house application. For this purpose, an adapted
version of the HTML files for the log-in page of JupyterHub
was provided on the Kubernetes workstations. The files are
located in the container of JupyterHub in the Unix path
“/usr/local/share/jupyterhub/templates” and were adapted to
a path on the Kubernetes-Worker using helm-values.
Kubernetes controls this process automatically. The log-in
pages can thus be adjusted at runtime.

Even though we are in a "proof of concept" phase of the
project, we wanted to integrate authentication methods from
the beginning to control access to the platform while

achieving security compliance. At the MHH, a local security
area for managing objects (e.g., user names, computers,
printers, etc.) is implemented as a domain via Microsoft
Windows Active Directory. To centralize the administration
of user IDs using Role-Based Access Control (RBAC),
authentication to the Active Directory was accessed using
JupyterHub's Lightweight Directory Access Protocol
(LDAP) implementation. A further step towards simplifying
the login to a service, centralizing authentication and
ensuring the company's password policies was the
integration of user authentication via LDAP. For this
purpose, the section for the Authenticator in the Helm-values
was adapted. A special security group was defined in the
Active Directory to restrict the user circle and to allow a
control of user releases for this service.

The user can decide via different spawners which Docker
image and thus which standard runtime environment and
amount of resources should be provided. This was also
realized via the Helm-values. With preconfigured spawners,
the user does not have to configure the runtime environment
every time he/she starts the environment, e.g., to get an
integration of special packages. A selection of preconfigured
Dockerfiles is available on the Docker-Hub [70].

Due to the central storage of the runtime environment
and the strict alignment of the project to CaaS, a quick
recovery of the service is easily possible. The following
measures were taken to achieve this:

1. creating the Kubernet cluster and separate needed
virtual machines via Vagrantfiles

2. configuration of machines using Ansible Playbooks
3. restore the Kubernetes database including Trident

configuration [19]
4. restore JupyterHub using Helm-chart and persistent

volumes
JupyterHub is a central element in the OSEMN process

model. It can be used for data preparation, feature extraction
and model programming in the steps Scrub, Explore and
Model. We recommend the use of the openData Platform
CKAN [71] for the acquisition and administration of data
sets. This modern UI enables easy navigation and search for
available data sets from other or own projects using suitable
metadata in accordance with the FAIR principles (see, e.g.,
[72]). CKAN is thus a possible technological component in
the Obtain process step. CKAN also offers the possibility to
store the files in an object storage via an Amazon S3
interface [73]. During the entire data science process, it may
be necessary to load, process or store data or artifacts from
different sources. Especially for different "unstructured"
data, the use of object storage as data storage is
recommended, since the administration of the objects by
means of metadata provides a higher flexibility and context
description of the data sets than when storing them on a
common file system. To manage the contents in object
storage, we recommend the use of Minio. Minio implements
interfaces to Java, Go, Node.js, Python and .NET [74] and is
therefore well suited for the most common programming
languages in the Data Science environment [75]. For
structured data and using the Python libraries pandas [76]
and SQLAlchemy [77] a database management system

109

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(DBMS) is recommended. An OpenSource solution of a
DBMS is Postgres [78]. In the steps Explore and Interpret it
is helpful to create visualizations of the data. A suitable open
source tool for this can be Superset [79]. Superset is a
dashboarding tool that is easy to use with little technical
know-how and offers a variety of ready-made and interactive
visualizations. As interfaces with databases Superset
implements the well-known JDBC or ODBC drivers [80].

The technological components used enable the
monitoring and evaluation of the health status of services
using various metrics. The number of running Pod's under
Kubernetes gives information about the indirect number of
users, the users logged on the system. The utilization of
individual Pods is possible via the Kubernetes service
"heapster" [81]. The latency is a measure to evaluate the
reaction time between application and client (end user). A
monitoring of the response time can be realized by different
methods. In our case, the central IT monitoring software
"Checkmk" [82] is used, which allows to monitor different
metrics of a device. This way, besides latency, other essential
metrics such as memory usage and resource utilization
(CPU/RAM) can be monitored. With the help of this
monitoring it is possible to react proactively to upcoming
problems. In addition, by storing the monitoring data, long-
term analyses and trends can be identified, which can be
used to plan the expansion of the environment.

Kubernetes exposes interfaces to Kubernetes
management and cluster control in its own network segment.
To prevent users from the corporate network from accessing
these management interfaces, the Kubernetes Cluster was
configured with a separate network having its own IP range.
Via a so-called reverse proxy [83] we enable services from
the network segment of the Kubernetes Cluster to be exposed
in the corporate network (separate segment). The reverse
proxy accepts requests from the company network and
forwards them (depending on the given address), e.g., into
the network of the Kubernetes Cluster. In this way this proxy
provides, e.g., for JupyterHub centrally the URL to access
the platform and extends the environment by an encrypted
data transfer between end user and the JupytherHub Proxy,
using the Transport Layer Security (TLS) [84]. When
providing Pods on Kubernetes, services are bound to the IP
address of the possible Kubernetes node via ports. By
default, these IP addresses and ports are assigned
dynamically at the time of provision [85]. We have assigned
each service via a specific port according to the
LoadBalancer principle [86][87]. This way the reverse proxy
can reach the service at any time in the Kubernetes Cluster.
Kubernetes takes care of the failover thanks to the integrated
High Availability functions using LoadBalancer.

III. RESULTS

Based on the methods described in II, an ecosystem
consisting of the proposed software components for mapping
services was implemented. Using JupyterHub as an example,
the levels at which such a service must be integrated into an
enterprise in order to meet the requirements placed on an IT
service provider were illustrated.

The operator of the infrastructure (ZIMt) achieves a
reduction of workload through the chosen reference
architecture (see Figure 4) by automating the provision of
resources for the users (researchers) and minimizing the
effort to provision resources for research purposes.

Figure 4. Prototypical architecture for deploying JupyterNotebooks on

enterprise technology. To the centrally indicated OSEMN process, the
Kubernetes node for the JupyterHub infrastructure is shown on the left. On

the right, another Kubernetes node is shown with additional exemplary

tools to support the OSEMN process. The components are in failover to a

second data center (see bottom) (Source: Own illustration).

The prototypically implemented infrastructure enables
the end user (students, scientists) to easily use
JupyterNotebooks. With the Docker-based approach, the
description of the runtime environment required for the
research approach can be fixed using the Docker-specific
tagging facility and stored in a manifest for publication in a
comprehensible and interoperable manner [30].

JupyterHub allows users to interact with a computing
environment via a web page. Since most devices have access
to a web browser, JupyterHub makes it easy to deploy and
standardize the computing environment to a group of people
(for example, a class of students or an analysis team).
Additional tools (CKAN, Postgres, Minio, Superset) are also
accessible via a web interface and provide additional
programming interfaces that can be addressed in
JupyterNotebook. Furthermore, it could be shown that
Docker images of the JupyterNotebooks, especially adapted
to the specific requirements of the company, could be created
and made available for selection via the JupyterHub Spawner
(Basic and Data Science). Additional libraries or tools, which
must not be included in the standardized environment, can be
flexibly installed in a separate area within the current
runtime environment. JupyterNotebooks thus offer the
possibility to use several tools without changing the
environment. Requirements for different tools, such as those

110

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needed in processes like OSEMN, can be mapped with the
software products mentioned above (see Table I).

TABLE I. MAPPING OSEMN PROCESS PHASES AND PROPOSED

TECHNOLOGY

OSEMN

Phase

Domain Proposed Technology

Obtain

Data Search CKAN

Data I/O Postgres

Minio

Scrub

Data Transformation Jupyter

Data I/O

Postgres

Minio

Explore

Pattern Finding Superset

Feature Extraction Jupyter

Data I/O

Postgres

Minio

Model

Modeling Jupyter

Data I/O

Postgres

Minio

iNterpret Review Superset

If the researcher chooses a working environment based

on JupyterNotebooks, necessary work steps and results can
be stored together with the notebook [29][46]. The basic
requirements for the implementation of requirements from
research data management and the FAIR principles can be
fulfilled. A notebook acts as a laboratory book and describes
the steps of data processing. The GitLab also provides a
history function, so that the researcher can ensure data
provenance in the research project. The isolation of a
researcher's specific work area can therefore be achieved by
using container technology. Kubernetes offers the possibility
to consolidate central computing resources in a data center
and to use them efficiently due to the integrated load
distribution and error bypass.

It could be shown that already available IT infrastructure
could be sensibly integrated (including storage systems,
hypervisor infrastructure, management, monitoring). The
connection of the components to the company's own IT
monitoring system consolidates the various metrics in one
place and facilitates the management of the prototypically
implemented infrastructure.

Since JupyterHub is provided via Dockers, branding
requirements to maintain corporate identity can be easily
met. It was shown that the login page of JupyterHub could
be adapted to the corporate design of the company and,
among other things, be branded with the company logo. By
using the existing Active Directory, user access can be
managed centrally. Authentication via LDAP simplifies the
login to the system, since no separate access data has to be
maintained and incorrect logins can be registered and used to
block the user account in case of attempted misuse.

Each time a user logs on to the start page, the system
checks whether the user already owns a JupyterNotebook
created in the past. In this case he can be redirected to his

previously created environment. Otherwise, a new notebook
(in the form of a new container) is created and new storage
space is provided (because this user did not exist before). By
providing the required storage space at runtime, resources
can be provided centrally and efficiently. The persistence of
research data outside the Docker Container runtime on the
existing enterprise storage system could be solved efficiently
by using Trident (see Figure 4). This means that the
processing steps required during the process (including
temporary ones) can be performed on a high-performance
storage system that can guarantee the persistence of research
data in any case. Nevertheless, the user is able to make the
final script files and data of the project available to other
members of the department via the mountable department
drive. The department drive (DFS) (see Figure 4) can thus be
reused in its original function and offers researchers without
technical affinity the possibility to access the project data via
their usual working methods.

IV. DISCUSSION

In this paper we show a prototypical implementation for
the efficient use of available data center resources as a self-
service platform on enterprise technology to support data-
driven research.

Although the OSEMN process is a suitable, easy-to-
understand reference, there are some extensions that are
proposed below. A major drawback of the OSEMN process
is that it is understood as a linear, aperiodic process.
Compared to other established process models for data
analysis/data science, such as Knowledge Discovery in
Databases (KDD) [88] or Cross Industry Standard Procedure
for Data Mining (CRISP-DM) [89], the knowledge gained is
not played back and (at least formally) no iterations take
place. However, this re-iteration is a decisive step, since
many projects are more successful due to their exploratory
character [90], if they are carried out in short iterations. In
the course of these cycles many of the tasks are repeated,
such as data cleansing or training of models. In order to use
the available resources as effectively as possible, it is
recommended to aim for the highest possible degree of
automation (extension by the Repeat component). Possible
tools for this would be Apache Airflow [91] or the Python
library Kedro [92]. Another crucial step, which is included in
the CRISP-DM model in contrast to OSEMN, is the
deployment of the developed (ready-to-use) model (see
"Phase 6 - Deployment" in CRISP-DM). This allows the
trained models to be decoupled from the underlying
technology (e.g., Python, R, Julia) and made available to a
wider audience via standardized web interfaces (REST via
HTTP). Examples are Python libraries like Flask [93] or
HUG [94]. When providing models, the aforementioned
automation aspect has quality assurance features. The
"decay" of a model can be detected and corrected proactively
by regular and automated testing of the endpoints (see Model
Decay & Concept Drift [95]). We therefore propose to
extend the OSEMN process model after the iNterpret step by
the steps Model Serve/Deploy ("Mo") and Repeat ("Re")
transversal to OSMEN (see Table II).

111

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Kubernetes was used as an open source solution to
orchestrate, automate and fulfil these high availability
requirements for the container-based infrastructure [96]-[98].
It is a widely used and proven technology for providing
services like Jupyter. Since Kubernetes is designed to host a
huge number of containerized applications with minimal
overhead, it is perfectly suited for many JupyterNotebooks
and other potential applications within the science ecosystem
[99][100].

TABLE II. MAPPING OSEMN PROCESS PHASES AND PROPOSED

TECHNOLOGY

MoRE

OSEMN

Phase

Domain Component Proposed

Technology

Model Serve
& Deploy

Deployment API End Point API Star

Tracking Usage Monitoring CheckMK

Model Monitoring Superset

Repeat Automation Scheduling Engine Airflow

For the prototypical implementation of this infrastructure

a Kubernetes master with two Kubernetes nodes ("Worker")
was used. For productive operation, at least two Kubernetes
Masters should be used in order to meet the requirements for
fail-safe operation. In the event of a disaster recovery
scenario and the loss of the entire Kubernetes cluster, the
storage volumes provided via Trident must be reconnected
manually. An automatism for recovery procedures would
still have to be created. In an emergency, the administrator
can migrate the contents of the corresponding volume using
an NFS interface.

Docker Containers are more convenient to implement,
easier to manage, minimize the overhead of resource usage,
and are therefore more efficient than traditional virtual
infrastructures [99]. The provision of environments (e.g., by
containers) in the academic sector can be very large, thus
increasing the burden on the operators and maintainers of the
environment. Automating the deployment and orchestration
of the environment is strongly recommended. Running
applications in containers does not automatically solve the
challenge of protecting these applications from outages (such
as hardware failures or resource bottlenecks on the one
server we are working on). Even if containers are
encapsulated on an operating system, there may be problems
with the underlying host on which the container is running -
therefore an additional software layer is required to take care
of resource planning and availability of any services.

The use of the predefined configurations of the
JupyterNotebooks is initially limited by the Docker Images.
If the service is used for a longer period of time, it will
become apparent whether the provision of additional images
makes sense.

The authorization of the user in the JupyterNotebook
Docker Container to mount SMB network drives by sharing
via the sudoers file and the activation of the increased
privileges in Kubernetes inevitably leads to serious security
vulnerability. The user would be able to provide his own file

system and replace the sudoers file with a specially
manipulated file. The consequence would be system
administrator privileges. The solution used must therefore be
adapted taking security aspects into account. For example,
Kubernetes could be enabled via the vSphere API
[https://github.com/kubernetes-sigs/cluster-api-provider-
vsphere] to provide each JupyterNotebook-Pod in an isolated
virtual machine, which would result in a stricter isolation of
the Docker Containers from each other.

In order to make it as easy as possible for end users to
transfer the artefacts created in the JupyterNotebook to the
project repositories on the network drives, the end user
should be able to integrate the network drive into his
JupyterNotebook environment. We expect a higher user
acceptance despite the use of new technology / application.

A Pod (container), in which a JupyterNotebook is
running, expires after a certain time without activity (max
idle time) [101], so that the resources can be released again
and used for other users / Pods (downscaling). If a Pod
expires, changes made at runtime are also discarded, since
they are not part of the Docker image that is called by
JupyterHub every time a Pod is initialized. The user must
therefore remount his network drives after such a reset.

Existing and established authentication methods such as
OAuth [102] or OpenID [103] offer additional flexibility, as
users outside of the Active Directory could be integrated.
The necessary components were not available during the
project. However, these security concepts will be considered
in later phases of the project after the validation of the first
thesis (if this software stack is suitable for the use case at
all).

Despite monitoring and a high degree of automation of
the individual system components, errors can occur during
operation. These can be of different nature, but can be
roughly divided into logical and physical errors. Logical
errors in data lead to inconsistencies and physical (hardware)
errors are associated with data loss. As a countermeasure, the
system components are protected by creating backups. For
this purpose, system copies - so-called "snapshots" - are
created at regular intervals by the hypervisor or storage
technology used, which can be accessed as required. If the
JupyterHub internal database is lost, the connection to the
Pod and thus to the individual runtime environment is lost
and must be restored.

The presented proof of concept could demonstrate the
feasibility of IT operations by combining common data
science tools with the enterprise architecture. In the next
development stages, tools such as Airflow [91] or
Pachyderm [24] (as a platform solution) for pipelining and
automation can be used in addition to JupyterNotebooks in
connection with machine learning. These tools could support
process models like OSEMN as well as aspects of
reproducibility and reusability. Integration of tools
specifically for big data use cases is not recommended, as
these may require special ecosystems (see [104]). More often
than not, the end user can already interact with available big
data platforms at any time using the programming languages
available in JupyterNotebooks.

112

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

REFERENCES

[1] S. Guhr et al., “Data Science as a Service - Prototyping for an
Enterprise Self-Service Platform for Reproducible Research“,
IARIA - The Fifth International Conference on Fundamentals
and Advances in Software Systems Integration (FASSI 2019),
2020

[2] Landesarbeitskreis Niedersachsen für
Informationstechnik/Hochschulrechenzentren, “Landes-IT-
Konzept Hochschulen Niedersachsen”, 2018,
https://www.lanit-hrz.de/fileadmin/user_upload/Landes-IT-
Konzept_Hochschulen_Niedersachsen_2019-2024.pdf, last
accessed 2020/02/27

[3] V. Kale, “Big Data Computing: A Guide for Business and
Technology Managers”, Chapman and Hall/CRC, 2016,
ISBN: 978-1498715331

[4] W. C. Preston, “Does Object Storage kill RAID?”, Storage
Switzerland, 2016, https://storageswiss.com/2016/02/09/does-
object-storage-kill-raid/, last accessed 2020/02/27

[5] J. Hernantes, G. Gallardo, and N. Serrano, "IT Infrastructure-
Monitoring Tools," IEEE Software, vol. 32, no. 4, pp. 88-93,
2015. DOI: 10.1109/MS.2015.96

[6] The International Foundation for Information Technology,
2009,
https://www.if4it.com/SYNTHESIZED/GLOSSARY/S/Syste
m_Integration_Management_Service_Level_Agreement_SLA
.html/, last accessed 2020/02/27

[7] C.-P. Praeg and D. Spath, “Quality Management for IT
Services: Perspectives on Business and Process Performance
(Advances in Logistics, Operations, and Management
Science)”, Business Science Reference, 2011, ISBN: 978-
1616928896)

[8] M. A. Vonderembse, T. S. Raghunathan, and S. Subba Rao,
“A post-industrial paradigm: To integrate and automate
manufacturing”, International Journal of Production Research,
35:9, 2579-2600, 1997, DOI: 10.1080/002075497194679

[9] C. Li, “Preprocessing Methods and Pipelines of Data Mining:
An Overview”, CoRR, 2019, arXiv:1906.08510

[10] H. Mason and C. Wiggins, “A Taxonomy of Data Science”,
dataists.com, 2010, http://www.dataists.com/2010/09/a-
taxonomy-of-data-science/, last accessed 2019/07/22

[11] Python Programming Language, 2019,
https://www.python.org, last accessed 2020/02/23

[12] The R Project for Statistical Computing, https://www.r-
project.org, last accessed 2020/02/23

[13] SAS® Enterprise Miner™, 2019, https://www.sas.com/en_us/
software/enterprise-miner.html, last accessed 2020/02/23

[14] Open Refine, http://openrefine.org/, last accessed 2020/02/23

[15] Pandas Python Data Analysis Library,
https://pandas.pydata.org/, last accessed 2020/02/23

[16] Scipy, 2019, https://www.scipy.org/, last accessed 2020/02/23

[17] Rapid Miner, 2019, https://rapidminer.com/, last accessed
2020/02/23

[18] KNIME End to End Data Science, 2019,
https://www.knime.com/, last accessed 2020/02/23

[19] scikit-learn: machine learning in Python, https://scikit-
learn.org/stable/, last accessed 2020/02/23

[20] A Short Introduction to the caret Package, https://cran.r-
project.org/web/packages/caret/vignettes/caret.html, last
accessed 2020/02/23

[21] matplotlib, 2019, https://matplotlib.org/, last accessed
2020/02/23

[22] Tableau, 2019, https://www.tableau.com, last accessed
2020/02/23

[23] Microsoft Power BI, 2019, https://powerbi.microsoft.com, last
accessed 2020/02/23

[24] Pachyderm - Reproducible Data Science that Scales!, 2019,
https://www.pachyderm.io/, last accessed 2020/02/23

[25] A. Woodie, “Inside Pachyderm, a Containerized Alternative
to Hadoop”, datamai, 2018, https://www.datanami.com/2018/
11/20/inside-pachyderm-a-containerized-alternative-to-
hadoop/, last accessed 2020/02/23

[26] Max Planck Society, “Rules of Good Scientific Practice”,
2000, https://www.evolbio.mpg.de/3306231/rules-of-good-
scientific-practice.pdf, last accessed 2020/02/28

[27] J. B. Buckheit and D. L. Donoho, “WaveLab and
Reproducible Research”, Wavelets and Statistics, pp. 55-81,
1995, DOI: 10.1007/978-1-4612-2544-7_5

[28] M. Bussonnierk et al., “Binder 2.0 - Reproducible, interactive,
sharable environments for science at scale”, Conference:
Python in Science Conference, 2018, DOI: 10.25080/Majora-
4af1f417-011

[29] T. Kluyver et al., Jupyter Development Team,
“JupyterNotebooks – a publishing format for reproducible
computational workflows”, IOS Press. pp. 87-90, 2016, DOI:
10.3233/978-1-61499-649-1-87

[30] C. Boettiger, “An introduction to Docker for reproducible
research, with examples from the R environment”, ACM
SIGOPS Oper. Syst. Rev.. 49. 10.1145/2723872.2723882.
https://arxiv.org/pdf/1410.0846.pdf

[31] Nature Editors 2012. “Must try harder”. Nature. 483,7391
Mar. 2012, 509–509.

[32] D. L. Donoho, “An invitation to reproducible computational
research”, Biostatistics, Volume 11, Issue 3, July 2010, pp.
385–388, DOI: 10.1093/biostatistics/kxq028

[33] E. Boose et al., “Ensuring reliable datasets for environmental
models and forecasts”, Ecological Informatics 2(3):237-247,
2007, DOI: 10.1016/j.ecoinf.2007.07.006

[34] K.F. Holmstrand, S.P.A. den Boer, E. Vlachos, P.M.
Martínez-Lavanchy, and K.K. Hansen, “Research Data
Management (eLearning course)”, Eds., 2019. doi:
10.11581/dtu:00000047

[35] Wikipedia contributors, “Data management plan”, Wikipedia,
The Free Encyclopedia, https://en.wikipedia.org/w/
index.php?title=Data_management_plan&oldid=918458183,
last accessed 2020/02/29

[36] UK Data Service, “Research data lifecycle”,
https://www.ukdataservice.ac.uk/manage-data/lifecycle.aspx,
last accessed 2020/02/28

[37] Digital Curation Centre University of Edinburgh, “DCC
Curation Lifecycle Model”,
http://www.dcc.ac.uk/resources/curation-lifecycle-model, last
accessed 2020/02/28

[38] Deutsche Forschungsgemeinschaft (DFG), “Antragsmuster
für die Fortsetzung eines Sonderforschungsbereichs”, 2019,
https://www.dfg.de/formulare/60_200/60_200_de.pdf, last
accessed 2020/02/28

[39] German Research Foundation (DFG), “Safeguarding Good
Scientific Practice”, 2013, DOI:
10.1002/9783527679188.oth1

[40] M. D. Wilkinson et al., “The FAIR Guiding Principles for
scientific data management and stewardship”, Scientific Data
3, doi : 10.1038/sdata.2016.18, 2016.

[41] P. M. Martínez-Lavanchy, F. J. Hüser, M. C. H. Buss, J. J.
Andersen, and J. W. Begtrup, “FAIR Principles, DOI:
10.11581/dtu:00000049

[42] Danish e-infrastructure Cooperation (DeiC), “FAIR for
Beginners”, https://vidensportal.deic.dk/en/FAIR, last
accessed 2020/02/28

[43] E. Swart et al., “Good Practice of Secondary Data Analysis
(GPS), guidelines and recommendations), Gesundheitswesen

113

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2015; 77(02): 120-126, Third Revision 2012/2014, DOI:
10.1055/s-0034-1396815

[44] International Council for Harmonisation of Technical
Requirements for Pharmaceuticals for Human Use (ICH),
“Guideline for good clinical practice”, 2016,
https://database.ich.org/sites/default/files/E6_R2_Addendum.
pdf, last accessed 2020/02/28

[45] G. Tancev, “An Introduction to Clinical Data Science”, 2019,
https://towardsdatascience.com/clinical-data-science-an-
introduction-9c778bd83ea2, last accessed 2020/02/28

[46] E. Cirillo, “TranSMART data exploration and analysis using
Python Client and JupyterNotebook”, 2018,
http://blog.thehyve.nl/blog/transmart-data-exploration-and-
analysis-using-python-client-and-jupyter-notebook,last
accessed 2019/07/22

[47] OVH SAS. 2018 “Understanding Tier 3 and Tier 4”.
https://www.ovh.com/world/dedicated-servers/understanding-
t3-t4.xml, last accessed 2018/09/15.

[48] K. Kerr, “Gartner Named NetApp a Leader in Magic
Quadrant for 2019 Primary Storage”, 2019,
https://blog.netapp.com/netapp-gartner-magic-quadrant-2019-
primary-storage/, last accessed 2020/02/23

[49] J. VanderPlas, “Python Data Science Handbook: Essential
Tools for working with Data”, O'Reilly UK Ltd., 2016,
https://jakevdp.github.io/PythonDataScienceHandbook/, last
accessed 2020/02/28

[50] Jupyter Docker Stacks, 2018, https://jupyter-Docker-
stacks.readthedocs.io/en/latest/, last accessed 2020/02/23

[51] Kubernetes Authors, “Pods”, 2020, https://kubernetes.io/docs/
concepts/workloads/Pods/Pod/, last accessed 2020/02/28

[52] C. de Botton, “Writing Your Code as a Service, Part I”, 2015,
https://medium.com/@brooklynfoundry/writing-your-code-
as-a-service-part-i-2b960c19ca6e, last accessed 2020/02/28

[53] HashiCorp, “How Terraform Works”,
https://www.terraform.io/docs/extend/how-terraform-
works.html, last accessed 2020/02/28

[54] Red Hat, “OVERVIEW How Ansible Works”,
https://www.ansible.com/overview/how-ansible-works, last
accessed 2020/02/28

[55] P. Debois and J. Humble, “The DevOps Handbook: how to
create World-Class agility, Reliability, and Security in
Technology Organizations”, IT Revolution Press, 2016,
ISBN: 978-1942788003

[56] Project Jupyter team, “JupyterHub”, 2016,
https://jupyterhub.readthedocs.io/en/stable/, last accessed
2020/02/28

[57] M. van Niekerk, “Recovering from a Jupyter Disaster”, 2019,
https://medium.com/flatiron-engineering/recovering-from-a-
jupyter-disaster-27401677aeeb, last accessed 2020/02/28

[58] jupyterhub_config.py,
https://github.com/jupyterhub/jupyterhub/blob/master/exampl
es/spawn-form/jupyterhub_config.py, last accessed
2020/02/28

[59] Project Jupyter team, Spawners, 2016,
https://jupyterhub.readthedocs.io/en/stable/reference/spawners
.html, last accessed 2020/02/28

[60] The JupyterHub Helm chart,
https://github.com/jupyterhub/helm-chart, last accessed
2020/02/28

[61] The Kubernetes Authors, “Persistent Volumes”, 2020,
https://kubernetes.io/docs/concepts/storage/persistent-
volumes/, last accessed 2020/02/28

[62] NetApp Trident, 2019, https://netapp-
trident.readthedocs.io/en/latest/introduction.html, last
accessed 2020/02/23

[63] D. Batchelor and M. Satran, “Microsoft SMB Protocol and
CIFS Protocol Overview”, https://docs.microsoft.com/en-
us/windows/win32/fileio/microsoft-smb-protocol-and-cifs-
protocol-overview, last accessed 2020/02/23

[64] Samba.org, “LinuxCIFS utils”, 2019, https://wiki.samba.org/
index.php/LinuxCIFS_utils, last accessed 2020/02/23

[65] Docker Inc., “Runtime privilege and Linux capabilities”,
https://docs.Docker.com/engine/reference/run/#runtime-
privilege-and-linux-capabilities, last accessed 2020/02/23

[66] The Kubernetes Authors, “Pod Security Policies”,
https://kubernetes.io/docs/concepts/policy/Pod-security-
policy/, last accessed 2020/02/28

[67] A. Martin, “11 Ways (Not) to Get Hacked”, 2018,
https://kubernetes.io/blog/2018/07/18/11-ways-not-to-get-
hacked/, last accessed 2020/02/28

[68] Docker Hub, “Minimal Jupyter Notebook Stack”,
https://hub.Docker.com/r/jupyter/minimal-notebook/, last
accessed 2020/02/28

[69] Project Jupyter Contributors, “Setting up JupyterHub”, 2020,
https://z2jh.jupyter.org/en/latest/setup-jupyterhub/setup-
jupyterhub.html, last accessed 2020/02/28

[70] Docker Hub, “jupyter repositories”,
https://hub.Docker.com/u/jupyter, last accessed 2020/02/28

[71] CKAN Association, “ckan”, https://ckan.org/, last accessed
2020/02/28

[72] UK Government, “Find open data”, https://data.gov.uk/, last
accessed 2020/02/28

[73] Amazon Web Services, “Introduction to Amazon S3,
https://docs.aws.amazon.com/en_en/AmazonS3/latest/dev/Intr
oduction.html, last accessed 2020/02/28

[74] Minio, Inc, “minio”, https://min.io, last accessed 2020/02/28

[75] IEEE, “Interactive: The Top Programming Languages”, 2020,
https://spectrum.ieee.org/static/interactive-the-top-
programming-languages-2019, last accessed 2020/02/28

[76] pandas, https://pandas.pydata.org/, last accessed 2020/02/28

[77] SQLAlchemy authors and contributors, “The Python SQL
Toolkit and Object Relational Mapper”,
https://www.sqlalchemy.org/, last accessed 2020/02/28

[78] The PostgreSQL Global Development Group, PostgreSQL,
https://www.postgresql.org/, last accessed 2020/02/28

[79] The Apache Software Foundation, “Apache Superset
(incubating)”, https://superset.incubator.apache.org/, last
accessed 2020/02/28

[80] J. Görner, “Beyond Jupyter Notebooks”, https://github.com/
jgoerner/beyond-jupyter, last accessed 2020/02/28

[81] The Heapster contributors, “Heapster”, https://github.com/
kubernetes-retired/heapster, last accessed 2020/02/28

[82] tribe29 GmbH, https://checkmk.com/, last accessed
2020/02/28

[83] Wikipedia contributors, “Reverse proxy”, Wikipedia, The
Free Encyclopedia., 2020,
https://en.wikipedia.org/w/index.php?title=Reverse_proxy&ol
did=937552513, last accessed 2020/02/29

[84] Wikipedia contributors, “Transport Layer Security”,
Wikipedia, The Free Encyclopedia., 2020,
https://en.wikipedia.org/w/index.php?title=Transport_Layer_
Security&oldid=943166788, last accessed 2020/02/29

[85] The Kubernetes Authors, “Using a Service to Expose Your
App”, https://kubernetes.io/docs/tutorials/kubernetes-basics/
expose/expose-intro/, last accessed 2020/02/28

[86] The Kubernetes Authors, “Service”,
https://kubernetes.io/docs/
concepts/services-networking/service/#loadbalancer, last
accessed 2020/02/28

114

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[87] S. Dinesh, “Kubernetes NodePort vs LoadBalancer vs
Ingress? When should I use what?”,
https://medium.com/google-cloud/kubernetes-nodeport-vs-
loadbalancer-vs-ingress-when-should-i-use-what-
922f010849e0, last accessed 2020/02/28

[88] W. J. Frawley, G. Piatetsky-Shapiro, and C. J. Matheus,
“Knowledge Discovery in Databases: An Overview”, AI
Magazine, 13(3), 57, 1992, DOI: 10.1609/aimag.v13i3.1011

[89] P. Chapman et al. "CRISP-DM 1.0: Step-by-step data mining
guide”, Computer Science, 2000

[90] R. Jurney, “A manifesto for Agile data science”, 2017,
https://www.oreilly.com/radar/a-manifesto-for-agile-data-
science/, last accessed 2020/02/28

[91] The Apache Software Foundation, “Apache Airflow”,
https://airflow.apache.org/, last accessed 2020/02/28

[92] The Kedro contributors, “Kedro”, https://github.com/
quantumblacklabs/kedro, last accessed 2020/02/28

[93] A. Ronacher and contributors, Flask,
https://palletsprojects.com/p/flask/, last accessed 2020/02/28

[94] https://www.hug.rest/, last accessed 2020/02/28

[95] A. Chilakapati, “Concept Drift and Model Decay in Machine
Learning”, 2019, https://towardsdatascience.com/concept-
drift-and-model-decay-in-machine-learning-a98a809ea8d4,
last accessed 2020/02/28

[96] L. Hecht, “What the data says about Kubernetes deployment
patterns”, 2018, https://thenewstack.io/data-says-kubernetes-
deployment-patterns/, last accessed 2019/07/22

[97] Project Jupyter Contributors, “Zero to JupyterHub with
Kubernetes”, 2019, https://zero-to-
jupyterhub.readthedocs.io/en/latest/, last accessed 2019/07/22

[98] S. Conway, “Survey shows Kubernetes leading as
orchestration Platform”, 2018, https://www.cncf.io/blog/2017/
06/28/survey-shows-kubernetes-leading-orchestration-
platform/, last accessed 2019/07/22

[99] Q. Zhang, L. Liu, C. Pu, Q. Dou, L. Wu, and W. Zhou, “A
comparative study of Containers and Virtual Machines in Big
Data environment”, arXiv:1807.01842v1

[100] S. Talari, “Why Kubernetes is a great choice for Data
Scientists”, https://towardsdatascience.com/why-kubernetes-
is-a-great-choice-for-data-scientists-e130603b9b2d, last
accessed 2019/07/28

[101] Project Jupyter Contributors, “Customizing User
Management”, https://zero-to-jupyterhub.readthedocs.io/en/
latest/customizing/user-management.html, last accessed
2019/07/28

[102] OAuth community site, https://oauth.net/, last accessed
2020/02/23

[103] OpenID Foundation, 2019, https://openid.net, last accessed
2020/02/23

[104] S. Gerbel, “Implementation of a sustainable IT ecosystem for
the use of clinical data to support patient-oriented research”,
GI (Gesellschaft für Informatik): Medizininformatik (Medical
Informatics), 2020, https://www.researchgate.net/publication/
340925601_Implementation_of_a_sustainable_IT_ecosystem
_for_the_use_of_clinical_data_to_support_patient-
oriented_research, last accessed 2020/05/21

115

International Journal on Advances in Software, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

