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Abstract—The automated generation of source code is a widely
adopted technique to improve the productivity of computer
programming. Normalized Systems Theory (NST) aims to create
software systems exhibiting a proven degree of evolvability. A
software implementation exists to create skeletons of Normalized
Systems (NS) applications, based on automatic code generation.
This paper describes how the NS model representation, and the
corresponding code generation, has been made meta-circular, and
presents its detailed architecture. It is argued that this feature
may be crucial to improve the productivity of metaprogramming,
as it enables scalable collaboration based on two-sided interfaces.
Some preliminary results from applying this approach in practice
are presented and discussed.

Index Terms—Evolvability, meta-circularity, normalized systems,
automatic programming; case study

I. INTRODUCTION

This paper extends a previous paper that was originally pre-
sented at the Fourteenth International Conference on Software
Engineering Advances (ICSEA) 2019 [1].

Increasing the productivity in computer programming has
been an important and long-term goal of computer science.
Though many different approaches have been proposed, dis-
cussed, and debated, two of the most fundamental approaches
toward this goal are arguably automated code generation
and homoiconic programming. Increasing the evolvability of
Information Systems (IS) on the other hand, is crucial for the
productivity during the maintenance of information systems.
Although it is even considered as an important attribute
determining the survival chances of organizations, it has not
yet received much attention within the IS research area [2].
Normalized Systems Theory (NST) was proposed to provide
an ex-ante proven approach to build evolvable software by
leveraging concepts from systems theory and statistical ther-
modynamics. In this paper, we present an integrated approach
that combines both Normalized Systems Theory to provide

improved evolvability, and automated code generation and
homoiconic programming to offer increased productivity. We
also argue that this combined approach can enable entirely
new levels of productivity and scalable collaboration.

The remainder of this paper is structured as follows. In
Section II, we briefly discuss two fundamental approaches to
increase the productivity in computer programming: automatic
and homoiconic programming. In Section III, we give an
overview of NST as a theoretical basis to obtain higher
levels of evolvability in information systems, and discuss the
NST code generation or expansion. Section IV presents the
realization of the meta-circular metaprogramming architecture,
and details the declarative control structure. Section V elab-
orates on the possibilities that the two-sided interfaces of the
metaprogramming architecture offer for scalable collaboration.
Finally, we report and discuss some results in Section VI, and
present our conclusions in Section VII.

II. AUTOMATIC AND HOMOICONIC PROGRAMMING

A. Automatic or Metaprogramming

The automatic generation of code is nearly as old as
coding or software programming itself. One often makes a
distinction between code generation, the mechanism where
a compiler generates executable code from a traditional high-
level programming language, and automatic programming, the
act of automatically generating source code from a model
or template. In fact, one could argue that both mechanisms
are quite similar, as David Parnas already concluded in 1985
that ”automatic programming has always been a euphemism
for programming in a higher-level language than was then
available to the programmer” [3]. In general, automatic pro-
gramming performs a transformation from domain and/or
intermediate models to programming code.
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Another term used to designate automatic programming
is generative programming, aiming to write programs ”to
manufacture software components in an automated way” [4],
in the same way as automation in the industrial revolution
has improved the production of traditional artifacts. As this
basically corresponds to an activity at the meta-level, i.e.,
writing software programs that write software programs, this
is also referred to as metaprogramming. Essentially, the goal
of automatic programming is and has always been to improve
programmer productivity.

Software development methodologies such as Model-Driven
Engineering (MDE) and Model-Driven Architecture (MDA),
focusing on creating and exploiting conceptual domain models
and ontologies, are also closely related to automatic program-
ming. In order to come to full fruition, these methodologies
require the availability of tools for the automatic generation
of source code. Currently, these model-driven code generation
tools are often referred to as Low-Code Development Plat-
forms (LCDP), i.e., software that provides an environment for
programmers to create application software through graphical
user interfaces and configuration instead of traditional com-
puter programming. As before, the goal remains to increase
the productivity of computer programming.

The field is still evolving while facing various challenges
and criticisms. Some question whether low-code development
platforms are suitable for large-scale and mission-critical en-
terprise applications [5], while others even question whether
these platforms actually make development cheaper or eas-
ier [6]. Moreover, defining an intermediate representation or
reusing Domain Specific Languages (DSLs) is still a subject
of research today. We mention the contributions of Wortmann
[7], presenting a novel conceptual approach for the systematic
reuse of Domain Specific Languages, Gusarov et al. [8],
proposing an intermediate representation to be used for code
generation, and Frank [9], pleading for multi-level modeling.
Hutchinson et al. elaborate on the importance of organizational
factors for code generation adoption [10], and suggest that the
benefit of model-driven development has to be found in a more
holistic approach to software architecture [11]. We have argued
in our previous work that some fundamental issues need to
be addressed, like the increasing complexity due to changes
during maintenance, and have proposed to combine automatic
programming with the evolvability approach of Normalized
Systems Theory (NST) [12].

B. Homoiconicity or Meta-Circularity

Another technique in computer science aimed at the in-
crease of the abstraction level of computer programming,
thereby aiming to improve the productivity, is homoiconicity.
A language is homoiconic if a program written in it can
be manipulated as data using the language, and thus the
program’s internal representation can be inferred just by
reading the program itself. As the primary representation
of programs is also a data structure in a primitive type of
the language itself, reflection in the language depends on
a single, homogeneous structure instead of several different

structures. It is this language feature that can make it much
easier to understand how to manipulate the code, which is an
essential part of metaprogramming. The best known example
of an homoiconic programming language is Lisp, but all Von
Neumann architecture systems can implicitly be described as
homoiconic. An early and influential paper describing the
design of the homoiconic language TRAC [13], traces the
fundamental concepts back to an even earlier paper from
McIlroy [14].

Related to homoiconicity is the concept of a meta-circular
evaluator (MCE) or meta-circular interpreter (MCI), a term
that was first coined by Reynolds [15]. Such a meta-circular
interpreter, most prominent in the context of Lisp as well, is
an interpreter which defines each feature of the interpreted
language using a similar facility of the interpreter’s host
language. The term meta-circular clearly expresses that there
is a connection or feedback loop between the activity at the
meta-level, the internal model of the language, and the actual
activity, writing models in the language.

There is a widespread belief that this kind of properties
increase the abstraction level and therefore the productivity of
programming. We will argue that this is even more relevant for
automatic programming, as the metaprogramming code, i.e.,
the programming code generating the code, is often complex
and therefore hard to maintain. Moreover, the potential of
meta-circularity with respect to productivity can be seen in
the context of other technologies. For instance, a transistor is
a switch that can be switched by another transistor. Therefore,
when a smaller and faster transistor/switch is developed, there
is no need to develop a new version of the switching device, as
such a new version of this device, i.e., the transistor itself, is
already there, and smaller and faster as well. Such a shortcut
of the design cycle can clearly foster rapid progress.

III. NORMALIZED SYSTEMS THEORY AND EXPANSION

In this section, we discuss the code generation or expansion
based on Normalized Systems Theory, attempting to address
some fundamental issues that automatic programming is facing
today: the lack of evolvability in information systems, and the
increasing complexity due to changes.

A. Evolvability and Normalized Systems

The evolvability of information systems (IS) is considered
as an important attribute determining the survival chances of
organizations, although it has not yet received much attention
within the IS research area [2]. Normalized Systems Theory
(NST), applying the concept of stability from systems theory
to the design cycle of information systems, was proposed
to provide an ex-ante proven approach to build evolvable
software [12], [16], [17]. Systems theoretic stability is an
essential property of systems, and means that a bounded
input should result in a bounded output. In the context of
information systems development and evolution, this implies
that a bounded set of changes should result in a bounded set
of impacts to the software. Put differently, it is demanded
that the impact of changes to an information system should
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not be dependent on the size of the system to which they
are applied, but only on the size of the changes to be
performed. Changes rippling through and causing an impact
dependent on the size of the system are called combinatorial
effects, and are considered to be a major factor limiting the
evolvability of information systems. The theory prescribes a
set of theorems, and formally proves that any violation of any
of the following theorems will result in combinatorial effects,
thereby hampering evolvability [12], [16], [17]:

• Separation of Concerns:
Every concern, defined as an independent change driver,
should be separated in its own class or module.

• Action Version Transparency:
Every computing action should be encapsulated to shield
other modules from internal implementation changes.

• Data Version Transparency:
Every data structure should be encapsulated to shield
modules passing this data from internal data changes.

• Separation of States:
Every result state from a computing action should be
stored, to shield other modules from having to deal with
new types of implementation errors.

The application of the theorems in practice has shown to
result in very fine-grained modular structures within a software
application. In particular, the so-called cross-cutting concerns,
i.e., concerns cutting across the functional structure, need to be
separated as well. This is schematically represented for three
domain entities (’Order’, ’Invoice’, and ’Payment’), and three
cross-cutting concerns (’Persistency’, ’Access Control’, and
’Remote Access’) in Figure 1. Though the actual implemen-
tation of the cross-cutting concern is in general provided by
an external framework (represented by the colored planes), the
code connecting to that framework (represented by the small
colored disks), is considered to be a change driver, and needs
to be separated and properly encapsulated.

Fig. 1. Representation of domain entities connecting to external frameworks.

As every domain entity needs to connect to various addi-
tional external frameworks providing cross-cutting concerns,
e.g., ’Transaction’ or ’REST Service’, these entities need to
be implemented by a set of classes. Such a set of classes,
schematically represented in Figure 2 for the domain entity
’Invoice’, is called an Element in NST.

Fig. 2. Representation of an element for the domain entity ’Invoice’.

Such structures are, in general, difficult to achieve through
manual programming. Therefore, the theory also proposes a set
of patterns to generate significant parts of software systems
which comply with these theorems. More specifically, NST
defines five types of elements to provide the main functionality
for information systems, and proposes five detailed design
patterns to implement these element structures [17] [12]:

• Data element to represent a data or domain entity.
• Action element to implement a computing action or task.
• Workflow element to orchestrate a flow or state machine.
• Connector element to provide a user or service interface.
• Trigger element to perform a task or flow periodically.

The implementation or instantiation of the element structures
results in a codebase with a highly recurring structure. Such a
recurring structure is desirable as it increases the consistency,
and reduces the complexity of the codebase. However, this
recurring structure will have to be adapted over time based
on new insights, the discovery of flaws, and/or changes
in underlying technologies or frameworks. These structural
changes may need to be applied in a retroactive way, but
the efforts increase with the frequency of these adaptations.
For instance, if one decides to adapt or refactor the element
structures in a growing system in a retroactive way every time
K additional elements have been created, the total amount
of refactored element structures when the system reaches N
different elements, will be equal to:

K + 2K + ...+N =

N/K∑
i=1

i.K =
N(N +K)

2K
(1)

Therefore, the element structures of NST software are gen-
erated and regenerated in a —rather straightforward— auto-
mated way. First, a model of the considered universe of dis-
cussion is defined in terms of a set of data, task and workflow
elements. Next, code generation or automated programming is
used to generate parametrized copies of the general element
design patterns into boiler plate source code. Due to the simple
and deterministic nature of this code generation mechanism,
i.e., instantiating parametrized copies, it is referred to as NS
expansion and the generators creating the individual coding
artifacts are called NS expanders. This generated code can,
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in general, be complemented with custom code or craftings
to add non-standard functionality that is not provided by
the expanders themselves, at specific places within the boiler
plate code marked by anchors. This custom code can be
automatically harvested from within the anchors, and re-
injected when the recurring element structures are regenerated.

B. Expansion and Variability Dimensions

In applications generated by a Normalized Systems (NS)
expansion process, schematically represented in Figure 3
around the symbolic blue icon, we identify four variability
dimensions. As discussed in [18] [19], the combination of
these dimensions compose an actual NS application codebase,
represented in the lower right of Figure 3, and therefore
determine how such an application can evolve through time,
i.e., how software created in this way exhibits evolvability.

First, as represented at the upper left of the figure, one
should specify or select the models or mirrors he or she wants
to expand. Such a model is technology agnostic (i.e., defined
without any reference to a particular technology that should be
used) and represented by standard modeling techniques, such
as ERD’s for data elements and BPMN’s for task and flow
elements. Such a model can have multiple versions throughout
time (e.g., being updated or complemented) or concurrently
(e.g., choosing between a more extensive or summarized
version). As a consequence, the chosen model represents a
first dimension of variability or evolvability.

Second, as represented on top of the blue icon in the figure,
one should provide the parametrized coding templates for
the various classes of the elements according to a specific
element structure as represented in Figure 2. The expanders
will generate (boiler plate) source code by instantiating the
various class templates or skeletons of the element structures,
i.e., the design patterns, taking the specifications of the model
as parameters. For instance, for a data element ’Invoice’, a
set of java classes InvoiceDetails, InvoiceProxy, InvoiceData,
InvoiceAccess, etcetera will be generated. This code can be
considered boiler plate code as it provides a set of standard
functionalities for each of the elements within the model,
though they have evolved over time to provide features like
standard finders, master-detail (waterfall) screens, certain dis-
play options, document upload/download functionality, child
relations, etcetera. The expanders and corresponding template
skeletons evolve over time as improvements are made and bugs
are fixed, and as additional features (e.g., creation of a status
graph) are provided. Given the fact that the application model
is completely technology agnostic, and that it can be used for
any version of the expanders, these bug fixes and additional
features become available for all versions of all application
models: only a re-expansion or “rejuvenation” is required. As
a consequence, the expanders or template skeletons represent
a second dimension of variability or evolvability.

Third, as represented in the upper right of the figure, one
should specify infrastructural options to select a number of
frameworks or utilities to take care of several generic or so-
called cross-cutting concerns. These options consist of global

options (e.g., determining the build automation framework),
presentation settings (determining the graphical user interface
frameworks), business logic settings (determining the database
and transaction framework to be used) and technical infrastruc-
ture (e.g., selecting versions for access control or persistency
frameworks). This means that, given a chosen application
model version and expander version, different variants of
boiler plate code can be generated, depending on the choices
regarding the infrastructural options. As a consequence, the
settings and utility frameworks represent a third dimension of
variability or evolvability.

Fourth, as represented in the lower left of the figure, “custom
code” or craftings can be added to the generated source code.
These craftings enrich, i.e., are put upon, the earlier generated
boiler plate code. They can be harvested into a separate
repository before regenerating the software application, after
which they can re-injected. The craftings include extensions,
i.e., additional classes added to the generated code base,
as well as insertions, i.e., additional lines of code added
between the foreseen anchors within the code. Craftings can
have multiple versions throughout time (e.g., being updated
or complemented), or concurrently (e.g., choosing between a
more advanced or simplified version). These craftings should
contain as little technology specific statements within their
source code as possible (apart from the chosen background
technology, i.e., the programming language). Indeed, craftings
referring to (for instance) a specific UI framework will only
be reusable as long as this particular UI framework is selected
for the generation of the application. In contrast, craftings
performing certain validations, but not containing any specific
references to the transaction framework, e.g., Enterprise Java
Beans (EJB), can simply be reused when applying other
versions or choices regarding such a framework. As a con-
sequence, the custom code or craftings represent a fourth
dimension of variability or evolvability.

In summary, each part in Figure 3 is a variability dimension
in an NST software development context. It is clear that talking
about the “version” of an NST application, as is traditionally
done for software systems, becomes more refined in such a
context. Indeed, the eventual software application codebase
(the lower right side of the figure) is the result of a specific ver-
sion of an application model, expander version, infrastructural
options, and a set of craftings [19]. Put differently, with M , E,
I and C referring to the number of available application model
versions, the number of expander versions, the number of
infrastructural option combinations, and the number of crafting
sets respectively, the total set of possible versions V of a
particular NST application becomes equal to:

V = M × E × I × C (2)

Whereas the specific values of M and C are different for
every single application, the values of E and I are dependent
on the current state of the expanders. Remark that the number
of infrastructural option combinations (I) is equally a product:

I = G× P ×B × T (3)
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Fig. 3. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

In this case, G represents the number of available global option
settings, P the number of available presentation settings, B the
number of available business logic settings, and T the number
of available technical infrastructure settings. This general idea
in terms of combinatorics corresponds to the overall goal of
NST: enabling evolvability and variability by leveraging the
law of exponential variation gains by means of the thorough
decoupling of the various concerns, and the facilitation of their
recombination potential [12].

IV. META-CIRCULAR EXPANSION SOFTWARE

In this section, we present the meta-circular architecture of
the NST expansion software, i.e., the automatic programming
code that is also able to regenerate itself as well. Both the
sequential phases toward achieving this meta-circular code
(re)generation architecture, and the declarative control struc-
ture of the expansion software, are described.

A. Toward Meta-Circular Expansion

1) Phase 1: Standard Code Generation: The original ar-
chitecture of the Normalized Systems expansion or code
generation software is schematically represented in Figure 4.
On the right side of the figure, the generated source code
is represented in blue, corresponding to a traditional multi-
tier web application. Based on a Java Enterprise Edition
(JEE) stack [17] [19], the generated source code classes are
divided over so-called layers, such as the logic, the control,
and the view layer. On the left side, we distinguish the
internal structure of the expanders or the code generators,
represented in red. This corresponds to a very straightforward
implementation of code generators, consisting of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.

• control classes selecting and invoking the different ex-
pander classes based on the parameters.

• expander classes instantiating the source templates, using
the String Template (ST) library, and feeding the model
parameters to the source templates.

• source templates containing the parametrized code.

Fig. 4. Representation of a basic code generator structure.

2) Phase 2: Generating a Meta-Application: Essentially,
code generation models or meta-models — and even all col-
lections of configuration parameters — consist of various data
entities with attributes and relationships. As the Normalized
Systems element definitions are quite straightforward [17]
[19], the same is valid for its meta-models. Moreover, one
of the Normalized Systems elements, i.e., the data element,
is basically a data entity with attributes. This means that the
NS meta-models, being data entities with attributes, can be
expressed as regular models. For instance, in the same way
’Invoice’ and ’Order’ can be specified as NS data elements
with attributes and relationships in an information system
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model, the NS ’data element’ and ’task element’ of the NS
meta-model can be defined as NS data elements with attributes
and relationships, just like any other NS model.

Fig. 5. Expansion of a meta-application to define meta-models.

As the NS models can be considered a higher-level language
according to Parnas [3], the single structure of its model data
and meta-model language means that the NS model language
is in fact homoiconic in the sense of [14]. This also enables us
to expand or generate a meta-application, represented on the
left side of Figure 5 in dark red. This NS meta-application,
called the Prime Radiant, is a multi-tier web application,
providing the functionality to enter, view, modify, and retrieve
the various NS models. As the underlying meta-model is
just another NS model, the Prime Radiant also provides the
possibility to view and manipulate its own internal model.
Therefore, by analogy with the meta-circular evaluator of
Reynolds [15], the Prime Radiant can be considered to be
a meta-circular application.

For obvious reasons, the generated reader and model classes
(part of the Prime Radiant on the left side of Figure 5)
slightly differ from the reader and model classes that were
originally created during the conception of the expansion or
code generation software (on the right side of Figure 5). This
means that in order to trigger and control the actual expansion
classes to generate the source code, an integration software
module needed to be developed, represented in the middle
of Figure 5 as nsx-prime. Though the Prime Radiant meta-
application is auto-generated, and can therefore be regenerated
or rejuvenated as any NS application, this nsx-prime integra-
tion module needed to be maintained manually.

3) Phase 3: Closing the Expander Meta-Circle: Though
the original reader and model classes of the expander software
differed from the generated reader and writer classes, there is
no reason that they should remain separate. It was therefore
decided to perform a rewrite of the control and expander
classes of the expander software (on the right side of Figure 5),
to allow for an easier integration with the auto-generated
reader and model classes (on the left side of Figure 5).
Enabling such a near-seamless integration would not only

eliminate the need for the reader and model classes of the
expander software, it would also reduce the complexity of the
nsx-prime integration component to a significant extent.

Fig. 6. Closing the meta-circle for expanders and meta-application.

Originally, the refactoring was only aimed at the elimination
of the reader and control classes of the expander software.
During the refactoring however, it became clear that the control
and expander classes of the expander software implemen-
tation could be eliminated as well. Indeed, by adopting a
declarative structure to define the expander templates and
to specify the relevant model parameters, both the control
classes (selecting and invoking the expander classes) and the
expander classes (instantiating and feeding the parameters to
the source templates) were no longer necessary. Moreover,
as schematically represented in Figure 6, the refactoring also
eliminated the need for the nsx-prime integration module. As
extensions to the meta-model no longer require additional
coding in the various expander software classes (e.g., reader,
model, control, and expander classes), nor to the nsx-prime
integration module, one can say that the expander development
meta-circle has been closed. This is symbolically visualized
in Figure 6. Indeed, expander templates can be introduced by
simply defining them, and extensions to the NS meta-model
become automatically available after re-running the expansion
or code generation on this meta-model.

B. Declarative Expansion Control

The expansion process of an NS element is schematically
represented in Figure 7. The internal structure of an NS
element (data, task, flow, connector, and trigger element) is
based on a detailed design pattern [16] [17] [12], implemented
through a set of source code templates. We call this set of
coding templates the Element Template, represented in dashed
lines on the left side of Figure 7. During the actual expansion
or code generation, for every instance of an NS element, e.g.,
a data element ’Invoice’, the set of source code templates
is instantiated, steered by the parameters of the model. This
results in the actual element, e.g., Invoice Element, which is
represented in solid lines and corresponds to Figure 2.
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Fig. 7. Expansion of an Invoice element, zooming in on a single artifact.

1) Declarative Representation of Expanders: On the right
side of Figure 7, we zoom in on the expansion of an individual
source code template into a source code artifact, e.g., a class,
applying and inserting the parameters of the model. We refer
to this unit of code generation as an individual expander, and
mention that the NS code generation environment for web-
based information systems currently consists of 182 individual
expanders. Every individual expander is declared in an XML
document. An example of such an expander declaration,
defining various properties, is shown below.
<expander name="DataExpander"
xmlns="http://normalizedsystems.org/expander">
<packageName>expander.jpa.dataElement</packageName>
<layerType name="DATA_LAYER"/>
<technology name="JPA"/>
<sourceType name="SRC"/>
<elementTypeName>DataElement</elementTypeName>
<artifact>$dataElement.name$Data.java</artifact>
<artifactPath>$componentRoot$/$artifactSubFolders$/
$dataElement.packageName</artifactPath>

<isApplicable>true</isApplicable>
<active value="true"/>
<anchors/>

</expander>

In this declaration, we find the following information.
• The identification of the expander, name and package

name, which also identifies in an unambiguous way the
source code template.

• Some technical information, including the tier or layer
of the target artifact in the application, the technology it
depends on, and the source type.

• The name and the complete path in the source tree of
the artifact that will be generated, and the type of NS
element that it belongs to.

• Some control information, stating the model-based con-
dition to decide whether the expander gets invoked.

• Some information on the anchors delineating sections of
custom code that can be harvested and re-injected.

2) Declarative Mapping of Parameters: The instantiation
of an individual source code template for an individual in-
stance of an NS element, is schematically represented on the
right side of Figure 7. It can be considered as a transformation
that combines the parameters of the model with the source
code template, and results in a source code artifact. We
therefore distinguish three types of documents or artifacts.

• The model parameters, represented at the top of Figure 7,
consist of the attributes of the element specification, e.g.,
the data element ’Invoice’ with its fields or attributes, and
the options and technology settings. All these parameters
are available through the auto-generated model classes,
e.g., InvoiceDetails, and may either originate from the
Prime Radiant database, or from XML files.

• An individual source code template, having a unique
name that corresponds to the one of the expander def-
inition as presented above. Such a template, represented
in the middle of Figure 7, contains various insertions of
parameter values, and parameter-based conditions on the
value and/or presence of specific parts of the source code.

• An instantiated source file or artifact, represented at the
bottom of Figure 7, where the various values and condi-
tions in the source code template have been resolved.

An important design feature is related to the mapping of
the parameters from the model to the parameters that appear
in the source code templates, that are directly guiding the
code instantiation. In order to provide loose coupling between
these two levels of parameters, and to ensure a simple and
straightforward relationship, it was decided to implement this
mapping in a declarative ExpanderMapping XML file. As
the entire NS model is made available as a graph of model
classes, the parameters in the templates can be evaluated
from the NS model using Object-Graph Navigation Language
(OGNL) expressions. These expressions, e.g., Invoice.number,
are declared in the XML mapping file of the expander.
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V. TWO-SIDED SCALABLE COLLABORATION

In this section, we explain how the meta-circular architec-
ture of the metaprogramming software enables an open and
scalable collaboration based on its two-sided interfaces.

A. The Need for Meta-Level Interfaces

The main purpose of an Application Programming Interface
(API) is to enable widespread and scalable collaboration in
software development. It allows for a structured collaboration
between developers implementing the interface on one side,
and developers using or invoking the programming interface
on the other side. The collaboration is possible both within
companies and across companies, and in open source commu-
nities. The use of such an API has contributed significantly to
the rich application offering that we have, including desktop
applications and mobile apps, and to the abundant hardware
support that we enjoy, providing drivers for a multitude of
peripheral devices on a variety of operating systems.

In order to enable scalable collaboration in metaprogram-
ming, we should define meta-level programming interfaces.
However, defining meta-level interfaces is still a subject of
research today. We have mentioned for instance research
papers of Wortmann [7], presenting a novel approach for the
systematic reuse of Domain Specific Languages (DSLs), and
Gusarov et al. [8], proposing an intermediate representation
to be used for code generation. We believe that the complex
architectures of metaprogramming environments, exhibiting
high degrees of coupling as represented on the left side of
Figure 8 (which is similar to the representation in Figure 4),
make it nearly impossible to define clear meta-level interfaces.

Fig. 8. Representation of various metaprogramming silos.

What all implementations of automatic programming or
metaprogramming have in common, is that they perform a
transformation from domain models and/or intermediate mod-
els to code generators and programming code. This implies
that (programming) interfaces need to be defined at both ends
of the transformation, allowing at the same time to define

or extend domain models, and to implement or replace code
generators or templates. We argue that the presented meta-
circular architecture enables the definition of the interfaces at
both ends of the transformation, as it allows to integrate —or
at least accommodate— ever more extensions and alternatives
at the two sides of the interface, without entailing the non-
scalable burden of adapting the metaprogramming code.

B. Separating Model and Code Interfaces

Similar to the representation in Figure 4, the left hand side
of Figure 8 represents a basic code generator or metaprogram-
ming architecture. However, if we consider another metapro-
gramming environment (for instance on the right side of
Figure 8), we will almost certainly encounter a duplication
of such an architecture. This will in general result in what
we could describe as metaprogramming silos, entailing several
significant drawbacks. First, it is hard to collaborate between
the different metaprogramming silos, as both the nature of
the models and the code generators will be different. Second,
contributing to the metaprogramming environment will require
programmers to learn the internal structure of the model and
control classes in the metaprogramming code. As metaprogam-
ming code is intrinsically abstract, this is in general not a trivial
task. And third, as contributions of individual programmers
will be spread out across the models, readers, control classes,
and actual coding templates, it will be a challenge to maintain
a consistent decoupling between these different concerns.

The meta-circular environment presented in Section IV-A
and Section IV-B addresses these drawbacks. The architecture
establishes a clear decoupling between the models and the
code generation templates, and removes the need for con-
tributors to get acquainted with the internal structure of the
metaprogramming environment. It could allow developers to
collaborate in a scalable way at both sides of the metapro-
gramming interfaces. And, as schematically represented in
Figure 9, the clear decoupling of this horizontal integration
architecture could bring the same kind of variability gains as
described in Equations (2) and (3). Indeed, in such a decoupled
environment, it should be possible to combine every version
or variant of the model with every version or variant of the
coding templates to generate a codebase. This implies:

N models +M templates =⇒ N ×M codebases (4)

The use of a metaprogramming environment with a clear
decoupling between models and code (templates) could also
entail significant productivity gains for regular software de-
velopment projects. Consider for instance Figure 10, rep-
resenting in a schematic way several collaborative projects,
e.g., open source projects, for Enterprise Resource Planning
(ERP) software. These application software projects consist of
models, configuration data, and source code, and are in general
organized as silos as well. Thus making it very difficult to col-
laborate between different projects. Using a metaprogramming
environment that decouples models and coding templates in
the way we have presented, could open up new possibilities.

156

International Journal on Advances in Software, vol 13 no 3 & 4, year 2020, http://www.iariajournals.org/software/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 9. A graphical representation of four variability dimensions within a Normalized Systems application codebase.

Fig. 10. Representation of various ERP software silos.

Modelers and designers would be able to collaborate on do-
main models, gradually improving existing model versions and
variants, and adding on a regular basis new functional busi-
ness modules, without having to bother about technicalities.
(Meta)programmers would collaborate on coding templates,
gradually improving and integrating new insights and coding
techniques, adding and improving implementations of cross-
cutting concerns, and providing support for modified and/or
new technologies and frameworks. Application software sys-
tems would be generated to a large extent for a selected
set of versions of domain models, using a specified set of
coding templates, being targeted at a specific set of technology
platforms. This would realize the above mentioned variation
gains as described in Equations (2), (3), and (4).

C. Enabling Alternative Meta-Models

The current meta-model of our metaprogramming environ-
ment, consists of data, action, workflow, trigger, and connector

elements, and is to a large extent specific for (web-based) in-
formation systems. It is not only conceivable to modify and/or
extend this meta-model, but one could also imagine to define
completely different meta-models for other purposes. Such
meta-models could for instance be created to model traditional
computing functions based on sequencing-selection-iteration,
or to represent microservices or scripting units running parts
of data mining algorithms in the cloud.

The meta-circular architecture presented in Figure 6 sup-
ports not only the definition of other models, but enables the
definition of other meta-models as well. Indeed, the reader,
model, control, and view classes could be generated for
such an alternative meta-model, allowing the specification of
models based on this new meta-model, both in XML or in
a newly generated meta-application. These model parameters
could then be propagated to new sets of coding templates.
This could allow the presented meta-circular architecture to
generate all types of source code or configuration data for all
kinds of applications and languages.

VI. SOME RESULTS AND DISCUSSION

In this section, we present and discuss some empirical re-
sults regarding the use of the meta-circular expansion software.
It is based on qualitative research that has been performed
within the company, i.e., NSX bv, that develops the expansion
software, and relies on nonnumerical data obtained from first-
hand observation and interviews.

A. Refactoring of Existing Expanders

The Normalized Systems expander software has been in
development since late 2011. Over the years, it was used
by several organizations to generate, and re-generate on a
regular basis, tens of information systems [18] [19]. During
these years, and often on request of these organizations, many
additional features and options were built into the source code
templates. The overall refactoring was triggered by a concern
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over the growing size — and therefore complexity — of the
model and control classes. It was also motivated by a desire to
leverage the implicit homoiconicity of the NS (meta-)model
to increase the productivity of improving and extending the
expander software.

The complete refactoring was started in the last quarter
of 2018, and performed in six months by two developers.
Afterwards, the 182 expanders, each expanding or generating
a specific source code artifact, were cleanly separated, and
the software developers considered the expander codebase to
be much better maintainable. Moreover, the learning curve
for developers to take part in expander development was
previously considered to be very steep, mainly due to the
size and complexity of the model and control classes. After
the refactoring, nearly all of the approximately 20 application
developers of the company, have stated that the learning curve
is considerably less steep, and that they feel comfortable to add
features and options to the expander software themselves. One
year later, most of them have indeed made such a contribution.
The lead time of performing fixes and modifications to the
expander coding templates, and to deliver it to the application
project teams, has decreased from weeks to days.

B. Creating Additional Expander Bundles

Besides contributing to the original set of 182 expanders,
application developers —even junior developers— are able
to create additional expander bundles implementing a set of
expanders for a specific functionality. Immediately after the
refactoring, a junior developer has created in two months
such a bundle of 20 expanders, targeted mainly at the imple-
mentation of REST services using Swagger. One year later,
this bundle has been used successfully in numerous projects,
and has grown significantly. Other —often junior— develop-
ers have created in the meantime various expander bundles
providing valuable functionality. These include a bundle to
generate mobile apps connecting to the expanded web-based
information systems, a bundle to define more advanced search
queries and reporting, and a bundle supporting various types
of authentication. Recently, a newly hired graduate developed
a small bundle of expanders to implement row-level security,
only a couple of weeks after joining the company.

Currently, two different customers are developing expander
bundles as well. As our goal is to establish a scalable
collaboration in metaprogramming across a wide range of
organizations and developers, we are setting up an exchange
marketplace for expander bundles at exchange.stars-end.net.

C. Supporting Alternative Meta-Models

We have explained that the meta-circular metaprogram-
ming architecture also provides the possibility to create and
adopt other meta-models. Currently, a first implementation is
available allowing to define other meta-models and providing
coding templates, while all the code in between (readers,
model, and control classes) of this new metaprogramming
environment is automatically generated. A collaboration has

been established with another group working on a metapro-
gramming environment, to perform a horizontal integration
between the two metaprogramming environments. The first
promising results of this integration have been reported [20].

One could argue that there is an implicit meta-meta-model
underlying the various possible meta-models, and that this
meta-meta-model could create a silo-effect hampering the
integration of various metaprogramming efforts. However, the
implicit meta-meta-model is based on the data elements of the
NS meta-model, containing only data fields or attributes, and
link fields or relationships. This is very similar, if not identical,
to both the data entities of Entity Relationship Diagrams
(ERD) with their data attributes and relationship links, and
the entities or classes of the Web Ontology Language (OWL)
with their datatype properties and object properties. Having
for instance demonstrated the bi-directional transformation
between our models and domain ontologies [21], we are
confident that the dependency on the underlying meta-meta-
model will not impede scalable collaborations.

VII. CONCLUSION

The increase of productivity and the improvement of evolv-
ability are goals that have been pursued for a long time in
computer programming. While more research has traditionally
been performed on techniques to enhance productivity, our
research on Normalized Systems Theory has been focusing on
the evolvability of information systems. This paper presents a
strategy to combine both lines of research.

While the technique of automated programming or source
code generation was already part of our previous work on
Normalized Systems, we have explored in this paper the incor-
poration of homoiconicity and meta-circularity to increase the
productivity of our metaprogramming environment. A method
was presented to turn the metaprogramming environment into
a meta-circular architecture, using an homoiconic representa-
tion of the code generation models, and resulting in a consid-
erable simplification of the expanders, i.e., the code generation
software. We have argued that such a reduction of complexity
could lead to a significant increase in productivity at the level
of the development of the code generation software, and that
the two-sided interfaces could enable a scalable collaboration
on metaprogramming across organizations and developers. We
have presented some preliminary results, indicating that the
increase in metaprogramming productivity is indeed being
realized, and have established a first collaborative integration
effort with another metaprogramming environment.

This paper is believed to make some contributions. First,
we show that it is possible to not only adopt code generation
techniques to improve productivity, but to incorporate meta-
circularity as well to improve both productivity and main-
tainability at the metaprogramming level. Moreover, this is
demonstrated in a framework primarily targeted at evolvability.
Second, we have presented a case-based strategy to make
a code generation representation homoiconic, and the cor-
responding application architecture meta-circular. Finally, we
have argued that the simplified structure of the code generation
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framework improves the possibilities for collaboration at the
level of metaprogramming software.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. It consists of a single case
of making a code generation or metaprogramming environ-
ment meta-circular. Moreover, the presented results are both
qualitative and preliminary, and the achieved collaboration on
metaprogramming software is limited to a small amount of
organizations. However, we are currently working to set up
a collaboration of developers on a much wider scale at the
level of metaprogramming, and to prove that this architecture
can lead to new and much higher levels of productivity and
collaboration in the field of automatic programming.
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