
Toward Scalable Collaborative Metaprogramming:
A Case Study to Integrate Two Metaprogramming Environments

Herwig Mannaert

University of Antwerp
Antwerp, Belgium

Email: herwig.mannaert@uantwerp.be

Chris McGroarty

U.S. Army Combat Capabilities Development
Command Soldier Center (CCDC SC)

Orlando, Florida, USA
Email: christopher.j.mcgroarty.civ@mail.mil

Scott Gallant

Effective Applications Corporation
Orlando, Florida, USA

Email: Scott@EffectiveApplications.com

Koen De Cock

NSX BV
Niel, Belgium

Email: koen@nsx.normalizedsystems.org

Jim Gallogly

Cole Engineering Services Inc.
Orlando, Florida, USA

Email: james.gallogly@cesicorp.com

Anup Raval and Keith Snively

Dynamic Animation Systems
Fairfax, Virginia, USA

Email: araval,ksnively@d-a-s.com

Abstract—The automated generation of source code, often
referred to as metaprogramming, has been pursued for decades in
computer programming. Though many such metaprogramming
environments have been proposed and implemented, scalable col-
laboration within and between such environments remains chal-
lenging. It has been argued in previous work that a meta-circular
metaprogramming architecture, where the the metaprogramming
code (re)generates itself, enables a more scalable collaboration
and easier integration. In this contribution, an explorative case
study is performed to integrate this meta-circular architecture
with another metaprogramming environment. Based on a de-
tailed description of the architectures of both metaprogramming
environments, the various technical aspects and issues concerning
this integration are analyzed. Some preliminary results from
applying this approach in practice are presented and discussed.

Index Terms—Evolvability; Normalized Systems; Simulation
Models; Automated programming; Case Study

I. INTRODUCTION

This paper extends a previous paper which was originally
presented at the Fifteenth International Conference on Soft-
ware Engineering Advances (ICSEA) 2020 [1].

The automated generation of source code, often referred
to as automatic programming or metaprogramming, has been
pursued for decades in computer programming. Though the
increase of programming productivity has always been an
important goal of automatic programming, its value is of
course not limited to development productivity. Various dis-
ciplines like systems engineering, modeling, simulation, and
business process design could reap significant benefits from
metaprogramming techniques.

While many implementations of such automatic program-
ming or metaprogramming exist, many people believe that au-
tomatic programming has yet to reach its full potential [2][3].

Moreover, where large-scale collaboration in a single metapro-
gramming environment is not straightforward, realizing such
a scalable collaboration between different metaprogramming
environments is definitely challenging.

In our previous work [4] [5], we have presented a meta-
circular implementation of a metaprogramming environment,
and have argued that this architecture enables a scalable col-
laboration between various metaprogramming projects. In this
contribution, we perform an explorative case study to perform
a first integration with another metaprogramming environment.
To remain generic, the two metaprogramming environments
are aimed at generative programming for completely different
types of software systems, and based on totally different meta-
models. At the same time, they are well suited for this study,
as they both pursue a more horizontal integration architecture.
The case study aims to serve as an architectural pathfinder for
such integrations, and to identify remaining issues that hamper
the scalability of the approach.

The remainder of this paper is structured as follows. In
Section II, we briefly present some aspects and terminology
with regard to metaprogramming, and argue the relevance of
two related concepts: meta-circularity and systems integration.
Based on this concept of systems integration, we argue for
more horizontal integration architectures to enable scalable
collaboration. The next two sections present the architec-
ture and meta-model of both metaprogramming environments
whose integration is explored in this contribution. Section III
discusses the Normalized Systems metaprogramming environ-
ment and refers rather extensively to previous work. Section IV
offers a detailed architectural description of the generative
programming environment for simulation models. Based on
these architectures, Section V elaborates on the integration of
these metaprogramming environments, detailing the various

128

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



technical aspects, the achieved progress, and the remaining
issues. Finally, we present some conclusions in Section VI.

II. METAPROGRAMMING AND SYSTEMS INTEGRATION

In this section, we give an overview of the main concepts
and terminology regarding metaprogramming, and discuss
the related concept of meta-circularity. Based on the basic
charasteristics of metaprogramming, we propose to leverage
the technique of systems integration to pursue collaborative
and scalable metaprogramming. We also argue that the two
selected metaprogramming environments are well suited for a
representative case study.

A. Metaprogramming Concepts and Meta-Circularity

The automatic generation of source code is probably as old
as software programming itself, and is in general referred
to by various names. Automatic programming, stresses the
act of automatically generating source code from a model or
template, and has been called ”a euphemism for programming
in a higher-level language than was then available to the
programmer” by David Parnas [6]. Generative programming,
”to manufacture software components in an automated way”
[7], emphasizes the manufacturing aspect and the similarity to
production and the industrial revolution. Metaprogramming,
sometimes described as a programming technique in which
”computer programs have the ability to treat other programs as
their data” [8], stresses the fact that this is an activity situated
at the meta-level, i.e., writing software programs that write
software programs.

Academic papers on metaprogramming based on interme-
diate representations or Domain Specific Languages (DSLs),
e.g., [9], focus in general on a specific implementation.
Also related to metaprogramming are software development
methodologies such as Model-Driven Engineering (MDE) and
Model-Driven Architecture (MDA), requiring and/or implying
the availability of tools for the automatic generation of source
code. Today, these model-driven code generation tools are
often referred to as Low-Code Development Platforms (LCDP)
or No-Code Development Platforms (NCDP), i.e., software
that enables developers to create application software through
configuration instead of traditional programming. This field is
still evolving and facing criticisms, as some question whether
these platforms are suitable for large-scale and mission-
critical enterprise applications [2], while others even question
whether these platforms actually make development cheaper or
easier [3]. Moreover, defining an intermediate representation
or reusing DSLs is still a subject of research today. We
mention the contributions of Wortmann [10], presenting a
novel conceptual model for the systematic reuse of DSLs, and
Gusarov et al. [11], proposing an intermediate representation
to be used for code generation.

Concepts somewhat related to metaprogramming are ho-
moiconicity and meta-circularity. Both concepts refer to some
kind of circular behavior, and are also aimed at the increase of
the abstraction level, and thereby the productivity of computer

Fig. 1. Representation of the duplication of metaprogramming silos.

programming. Homoiconicity is specifically associated with a
language that can be manipulated as data using that language,
and traces back to the design of the language TRAC [12],
and to similar concepts in an earlier paper from McIlroy
[13]. Meta-circularity, first coined by Reynolds describing his
meta-circular interpreter [14], expresses the fact that there is
a connection or feedback loop between the meta-level, the
internal model of the language, and the actual models or
code expressed in the language. Such circular properties have
the potential to be highly beneficial for metaprogramming
through a reduction of complexity for the metaprogrammers.
Indeed, metaprogrammers are forced to deal on a continuous
basis with both the generative programming code and the
generated code. A unified view on both the metaprogramming
code and the source code being generated could potentially
reduce the cognitive load for the metaprogrammers. Moreover,
advancements in programming techniques could be applied
simultaneously to both the generative and generated code.

B. Systems Integration and Scalable Metaprogramming

Based on a generic engineering concept, systems integration
in information technology refers to the process of linking
together different computing systems and software applica-
tions, to act as a coordinated whole. Systems integration is
becoming a pervasive concern, as more and more systems
are designed to connect to other systems, both within and
between organizations. Due to the many, often disparate,
metaprogramming environments and tools in practice, we
argue that systems integration should be explored and pursued
more at the metaprogramming level. Just as traditional systems
integration often focuses on increasing value to the customer
[15], systems integration at the metaprogramming level could
provide value to their customers, i.e., the software developers.

Something all implementations of automatic programming
or metaprogramming have in common, is that they perform
a transformation from domain models and/or intermediate
models to code generators and programming code. In general,

129

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 2. Instantiating a coding template with model parameters.

metaprogramming or code generation environments also ex-
hibit a rather straightforward internal structure. This structure
is schematically represented for a single metaprogramming
environment at the left side of Figure 1, and consists of:

• model files containing the model parameters.
• reader classes to read the model files.
• model classes to represent the model parameters.
• control classes selecting and invoking the different gen-

erator classes.
• generator classes instantiating the source templates, and

feeding the model parameters to the source templates.
• source templates containing the parameterised code.

Figure 2 provides a schematic representation of a very ele-
mentary code generation. An instance of a model entity, with
name Invoice and belonging to a package net.palver.invoice,
is fed into a coding template for a base class. In this template,
the values of the model entities are represented as parameters.
The generator code will resolve these parameters and replace
them with the actual values of the model entity, resulting in
real source code for that domain entity.

Another metaprogramming environment will have a similar
internal structure, as schematically represented at the right
side of Figure 1. Such similar but duplicated architectures
exhibit a vertical integration architecture. In this architec-
ture, the functional entities are also referred to as silos, and
metaprogramming silos entail several significant drawbacks.
First, it is hard to collaborate between the different metapro-
gramming silos, as both the nature of the models and the
code generators will be different. Second, contributing to the
metaprogramming environment will require programmers to

learn the internal structure of the model and control classes
in the metaprogramming code. As metaprogamming code is
intrinsically abstract, this is in general not a trivial task.
And third, as contributions of individual programmers will
be spread out across the models, readers, control classes, and
actual coding templates, it will be a challenge to maintain a
consistent decoupling between these different concerns.

We have argued in our previous work that in order to achieve
productive and scalable adoption of automatic programming
techniques, some fundamental issues need to be addressed
[16][4]. First, to cope with the increasing complexity due to
changes, we have proposed to combine automatic program-
ming with the evolvability approach of Normalized Systems
Theory (NST) providing (re)generation of the recurring struc-
ture and re-injection of the custom code [16]. Second, to avoid
the growing burden of maintaining the often complex meta-
code and continuously adapting it to new technologies, we
have proposed a meta-circular architecture to regenerate the
metaprogramming code itself as well [4]. We will go into some
more detail on NST and the corresponding metaprogramming
environment in the next section.

As this meta-circular architecture establishes a clear decou-
pling between the models and the code generation templates
[4], it allows for the definition of programming interfaces at
both ends of the transformation. This should remove the need
for contributors to get acquainted with the internal structure
of the metaprogramming environment. It also enables a more
horizontal integration architecture, by allowing developers
to collaborate on both sides of the interface. Modelers and
designers are able to collaborate on models, gradually im-
proving existing model versions and variants, and adding on
a regular basis new functional modules. (Meta)programmers
can collaborate on coding templates, gradually improving
and integrating new insights and coding techniques, adding
and improving implementations of cross-cutting concerns, and
providing support for modified and/or new technologies and
frameworks. Moreover, an horizontal integration architecture
could facilitate collaboration between different metaprogram-
ming environments. Though many trade publications and
academic papers on metaprogramming exist, they focus in
general on specific implementations and not on the integration
of different implementations. Exploring such a collaborative
integration is the purpose of the case study in this paper.

C. An Explorative Case Study as a Proof of Concept

Our goal is to investigate the use of an horizontal integration
architecture for the collaboration between different metapro-
gramming environments through an explorative case study.
To serve as a representative case study and a valid proof of
concept, two metaprograming environments were chosen that
exhibit several key characteristics. First, these environments
themselves are no mere prototypes. They have been developed
for years and have been used in practice by many users in
many different use cases. Second, these environments target
the automatic programming of two totally different types of

130

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



software systems: multi-tier web-based information systems,
and executable (army) models for simulation systems. Con-
sequently, the two metaprogramming environments have a
completely different meta-model. Third, these environments
use different technologies at both sides of the horizontal
integration architecture, i.e., both the front-end technologies
capturing the models, and the target programming languages
—even the code templating engines— are different. At the
same time however, both metaprogramming environments
share a structured decoupling between the definition of models
and the generation of code, providing a starting point for an
horizontal integration effort.

III. NORMALIZED SYSTEMS ELEMENTS
METAPROGRAMMING

In this section, we present the structure of the metapro-
gramming environment for web information systems. Its meta-
circular architecture explicitly aims to facilitate and realize
horizontal integration and scalable collaboration.

Normalized Systems Theory (NST), theoretically founded on
the concept of stability from systems theory, was proposed
to provide an ex-ante proven approach to build evolvable
software [16][17][18]. The theory prescribes a set of theorems
(Separation of Concerns, Action Version Transparency, Data
Version Transparency, and Separation of States) and formally
proves that any violation of any of the preceding theorems will
result in combinatorial effects thereby hampering evolvability.
As the application of the theorems in practice has shown to
result in very fine-grained modular structures, it is in general
difficult to achieve by manual programming. Therefore, the
theory also proposes a set of design patterns to generate the
main building blocks of (web-based) information systems [16],
called the NS elements: data element, action element, workflow
element, connector element, and trigger element.

An information system is defined as a set of instances of
these elements, and the NST metaprogramming environment
instantiates for every element instance the corresponding de-
sign pattern. This generated or so-called expanded boiler plate
code is in general complemented with custom code or craft-
ings to add non-standard functionality, such as user screens
and business logic. This custom code can be automatically
harvested from within the anchors, and re-injected when the
recurring element structures are regenerated.

While the NST metaprogramming environment was origi-
nally implemented in a traditional metaprogramming silo as
represented in Figure 1, it has been evolved recently into a
meta-circular architecture [4][5]. This meta-circular architec-
ture, described in [5] and schematically represented in Fig-
ure 3, enables both the regeneration of the metaprogramming
code itself, and allows for a structural decoupling between the
two sides of the transformation, i.e., the domain models and
the code generating templates.

In the following subsections, we briefly summarize the
different parts of this metaprogramming environment.

Fig. 3. Closing the meta-circle for expanders and meta-application.

A. Systems Modeling

The domain models for the web-based information systems
are specified as sets of instances of the various types of NS
elements. As the NS elements, e.g., data and task elements, are
closely aligned to traditional primitives in information systems
modeling and analysis, their definition and design is similar
as well. To this purpose an NS Modeler was developed [19],
allowing system analysts and designers to enter NS models
graphically, in much the same way as traditional modeling and
design tools do. Data elements can be modeled in a graphical
interface similar to most ERD (Entity Relationship Diagram)
visualizations and data modeling tools, allowing the designer
to define and manipulate data entities, their attributes, and
relationships. Task and flow elements can be identified in a
graphical interface similar to most BPM (Business Process
Modeling) visualizations, with the exception that designers are
only allowed to define flows as state machines operating on a
single target data element [19].

The various NS elements or models can also be designed
and manipulated in a dedicated meta-application, called the
Prime Radiant, using a table-based interface. This meta-
application is a regular NS web application that can be gen-
erated and rejuvenated based on its own model, being the NS
meta-model. Unlike the NS Modeler, the Prime Radiant allows
the designers and developers to specifiy various application
and technology settings [5], and to directly invoke both code
generation and rejuvenation, and building and deployment of
NS web applications.

The domain models of the various NS web applications
are stored in XML files specifying the various NS elements,
e.g., a data element with its attributes, relationships, and finder
queries. The underlying structure of those XML files, i.e., the
NST meta-model, is formally defined in corresponding XSD
(XML Schema Definition Language) schema files. The XML
models can be stored both locally and in central repositories,
and can be exchanged between between different designers and
developers, and between various instances of the NS Modeler

131

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



and Prime Radiant. The actual code generation can be invoked
from the Prime Radiant meta-application, or from a command
line interface accessing the XML files.

B. The NST Meta-Model

As the NS meta-model is just another NS model [4][5], the
various elements of the meta-model can be specified in XML
files, just like any other instance of a data element. Aimed at
the automatic programming of multi-tier web-based informa-
tion systems, the meta-model of the NST metaprogramming
environment is a model for web-based information systems.
The core part of the data model of this metaprogramming
environment is represented in Figure 4 using a screenshot from
the NS Modeler tool. It is, as mentioned above, similar to most
ERD (Entity Relationship Diagram) visualizations, but uses
colors to distinguish between different types of data entities
[19], e.g., light blue for primary data entities and light red for
taxonomy entities.

By looking at the NS meta-model, we can browse through
the structure of a regular NS model. The unit of an NS domain
model is a component, and within such a component model,
we distinguish the various types of NS elements [16], such
as Data elements, Task elements, and Flow elements. These
elements, colored light blue and located in the top row, can
have options, e.g., Task options. Both the entities representing
elements and their corresponding options, are accompanied by
a typing or taxonomy entity, e.g., Task element type or Task
option type, represented in light red. The data elements contain
a number of attributes or Fields, where a field can be either a
data attribute or a relationship link, and provide a number of
Finders. Both fields and finders can have options characterized
by corresponding option types.

Apart from being more elaborate than the representation of
Figure 4, the NS metaprogramming environment also defines a
meta-model for the specification of technology settings, such
as specific frameworks implementing cross-cutting concerns
to be used in the generated code, and build or deployment
parameters. In this way, web applications can be generated
and deployed using different underlying technologies, while at
the same time allowing developers to exchange models with
corresponding technology settings to ensure repeatable code
generation and deployment of application models.

C. Code Generation

As explained in detail in [5], the NST metaprogramming
environment is highly modular and uses a declarative control
mechanism. The code generation environment for web-based
information systems consists of 182 individual code generators
or expanders. Every individual code generator or artifact
expander is declared in an Expander XML file. Such an
expansion control file specifyies for instance the type of
element it belongs to, the application layer it belongs to, the
technology that it uses, and the various properties of the source
artifact that it generates. In this way, the metaprogramming
environment can be extended with alternative variations of

expanders that provide another implementation and/or use
another underlying technology or programming language.

For every declared artifact expander, one needs to provide a
coding Template, based on the StringTemplate (ST) templat-
ing engine library. For the NS metaprogramming environment
for web applications, the various templates contain currently
source code in Java, JavaScript, HTML, XML, and SQL. A
template for an individual expander is in general modularized
or hierarchically structured itself. To avoid duplication and
in accordance with the strategy of of single sourcing [20],
a template for a DTO (Data Transfer Object would use for
instance subtemplates for the variable declarations and the get-
and set-methods. Other basic coding units like logging or error
throwing are also defined in a single template. The templates
also contain so-called anchors, enabling developers to write
additional custom code that can be harvested and re-injected
during consecutive (re)generations.

To access the various attributes and parameters from the
elements in the domain models, an XML expander Mapping
file needs to be defined for every individual expander. Such
a mapping file specifies the various parameters that are made
available to the template in terms of Object-Graph Navigation
Language (OGNL) expressions. These expressions are evalu-
ated on the object instances representing the elements of the
domain model, e.g., dataElement.name [5].

IV. GENERATIVE PROGRAMMING OF SIMULATION
MODELS

In this section, we present the structure of the metapro-
gramming environment for simulation models. This second
metaprogramming environment is concerned with a com-
pletely different application domain, i.e., models for simulation
systems, and is based on a totally different meta-model.
However, by clearly separating the modeling in the front-end
from the generative programming in the back-end, it is also
pursuing a more horizontal integration architecture.

The United States Army has developed and documented
hundreds of approved models for representing behaviors and
systems, often separate from the simulation environments
where they are to be implemented. The manual translation of
these models into actual simulation environments by software
developers, leads to implementation errors and verification dif-
ficulties, and is unable to avoid the workload of incorporating
these models into other simulation environments.

In order to address these potential drawbacks, a generative
programming approach is being pursued, aiming to capture
military-relevant models within an executable systems engi-
neering format, and to facilitate authoritative models to operate
within multiple platforms. The goal of this work is to be able to
capture authoritative conceptual models and then to generate
software to implement those representations/behaviors. This
generated software can be quickly integrated into multiple
simulations regardless of their programming language thereby
saving development cost and improving the consistency across
simulation systems.

132

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 4. A graphical representation of the core part the NS (data) meta-model.

The architecture of this metaprogramming environment,
schematically represented in Figure 5, divides the problem
into two domains, i.e., the front-end and the back-end. In
the front-end, corresponding to the conceptual models at the
left column, the Subject Matter Experts (SME), scientists,
and software model developers are able record the model
definitions and behaviors or algorithms. In the back-end,
represented in the three other columns, those model defini-
tions and algorithms are transformed through templating and
metaprogramming into executable code, targeted at specific
architectures and implementations. To properly decouple these
parts, an Interchange Format (IF) was created that allows one
or more front-ends to be created to record models in a way that
suits the needs of the front-end user community, and to pass
those models to be used for code generation in the back-end.

In the following subsections, we describe the different parts
of this generative programming architecture in more detail.

A. Front-End Visual Programming

The Generative Programming environment allows experts
to create models using a flow-based programming tool. Flow-
based programming [21] has become popular in game engines
as well because it allows level designers, artists, and other
non-programmers to create some complex business logic. The
metaprogramming tool is based on the open-source project
PyFlow [22], but with many improvements that allow modelers
to represent structures and workflows most common within
modeling and simulation. The goal of the project is to have
a visual tool that allows subject matter experts to author their
models without having to know how to develop software

within a certain simulation system. The project was initially
based on Blockly [23], a tool aiming to help non-programmers
create software visually. As the structures used in Blockly
resemble software logic puzzle pieces that fit together in
specific ways, the users are fundamentally creating logic in a
similar form to software, but without having to know syntax.
This mechanism quickly became cumbersome with the more
complex models and meant that the authors had to understand
some basic software constructs. It was therefore decided to
move towards flow-based programming because it was easier
to create models as the visual representation of the business
logic was based on the flow of data rather than using software
constructs. Figure 6 represents a sample node that depicts a
function that takes in two variables and outputs the maximum
value. An inExec pin shows the execution coming into the
node along with two other inputs seen on the left, value1
and value2. The line going outwards from the outExec pin
shows where execution is to go next, while the max line will
go to whichever future function that will use that value.

A major concern was to make sure that the selected tool
was representation complete, i.e., allowed one to represent any
business logic that could be constructed in software, provided
a rigid structure for inputs and outputs, and was easy to
read and write. The selection of PyFlow for the flow-based
programming tool allowed us to start with an open-source tool
that could be improve upon for the simulation domain. Many
additions were made to PyFlow, most notably we have made it
more performant for large-scale graphs, added data querying
capabilities that are most often used in our simulations, and
added the ability for the user to write documentation within

133

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 5. Schematic representation of the generative programming architecture for simulation models.

Fig. 6. A flow-based programming node.

the tool and associate that documentation to the nodes and
data structures. We have also added an automated capability
of exporting a Word document with the documentation and
imagery of the graphs, keeping the models self-documenting.
By keeping the explanation of how the model is supposed
to work within the model development tool (like comments
within software), there is more of a chance that the documen-
tation keeps up to date rather than having documents separate
from software implementations of the model. In addition to
the Word document that gets generated, we also put the
documentation text within comments in the generated software
making it easier for integration software developers to under-
stand what is being implemented. A screenshot impression
of the integrated development environment is represented in
Figure 7, showing a standard development environment around
the central graph representation.

An important capability of the tool is to allow models to
reference data. Datastores are a way to lookup data from a
file, database, or potentially a data service. The goal is to
make testing with the datastore easy for the user developing the
graph, but allow the code generation and developers flexibility
in how that data is queried. We created an editor for Datastore
definitions in the Types editor, which allows the user to specify
what data is available in the data store, what those types are,
and to name and describe them in a typical user interface. The
user can also specify Queries for that data, specify what the
keys are for the lookup, and what values should be returned.
Queries result in nodes that can be used in the graph to get
results from the datastore as seen in Figure 7.

Once the model developers have created their model and
described their data, they can use the visual programming
tool to generate software, execute the software, and see the
results return from a set of defined inputs. This allows the

model developers to ensure that the model is working as
they expect before involving simulation developers. Results
can be graphed in many ways to visualize outputs. The test
results are displayed in the bottom portion of Figure 7. There
is a graph of the results that shows two strange oddities in
the data. The model developer could recognize these oddities
early in the development process and take corrective action
before software developers even get involved. Issues can be
found in the logic or data while developing the model which
results in more accurate models, easier development, and better
maintenance of models as logic changes or new data is used.

Finally, the logic and graphs developed in PyFlow can be
exported to an intermediate format, that can be used to transfer
the model from the front-end to the back-end.

B. STE Canonical Universal Format

The interchange format between the front-end and the back-
end is based on XML documents, whose structure is defined
by an XML Schema or XSD (XML Schema Definition Lan-
guage). This format structure is called the Synthetic Training
Environment (STE) Canonical Universal Format (SCUF).

This meta-model is not intended to support a full program-
ming language, but rather to focus on the domain elements
used within the U.S. Army’s canonical descriptions of the sim-
ulation models. Nevertheless, it represents most concepts of
a traditional procedural programming language. Specifically,
these include the data type declarations, datastores, and various
elements of algorithms, such as conditions, expressions and
iterators. Moreover, the XML nature of the format means that
it is easily extensible over time as long as the code generation
tool is modified accordingly to handle any extended portions.

The logic and graphs developed in PyFlow are represented
in the SCUF interchange format, and will ultimately be used
by the code generation capability to create software. The aim
was to provide an intermediary format between the visual
development tool and the back-end code generation, in order
to separate the two capabilities and to allow other future tools
to output SCUF and still take advantage of the code generation
capability without having to be compatible with PyFlow.

The SCUF meta-model is broken into two parts for ease
of depiction. Figure 8 represents the elements related to

134

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 7. A screenshot representing the PyFlow-based integrated development environment.

TypeDefinition and are static elements such as classes
and types. The elements represented in Figure 9 are dy-
namic elements that describe modeling logic such as inputs,
software structures, variables, and outputs. The structure and
representation of the SCUF data models is similar to most
standard ERD (Entity Relationship Diagram) visualizations.
An example SCUF output is represented in Figure 10, where
you can see the types, including type definitions, enumerations,
classes, and datastores at the top of the file and then the
dynamic logic in the bottom half of the XML document.

C. Back-End Code Generation

The code generation tool, the Model To Code Tool (MTCT)
reads the SCUF model files into Java class representations
in accordance with the meta-model above. Using the Visitor
pattern [24] to process the model classes, it traverses the
ingested model performing functions without impacting the
model classes themselves. Once it is ensured that all depen-
dencies are present and that the model is verified to be correct,
the MTCT then uses a templating system to generate software.
Currently, the Apache Velocity templating engine [25] is used.

Templates have been developed for three different program-
ming languages: C++, C#, and Java. Each meta-model element
corresponds to a template which handles the generation for that
element. For instance, ClassType model elements use the class-
template.vm to generate code. To simplify the implementation
of these templates, the code generated from any contained ele-
ments is referenced in the template using a modular structure.
For instance, zero or more Declare elements can be contained
in a ClassType. The code for Declare is generated using
declare-template.vm and passed into the class-template.vm. In
addition to simplifying the containing element template, this
allows changes to low level elements to be implemented in a

single location and take effect throughout the generated code.
This approach is in accordance with the strategy of of single
sourcing [20], similar to the NST approach, and reduces the
number of templates that need to be implemented to support
new languages or simulation environments. As the output from
one template feeds into the input of another, we refer to this as
a set of cascading templates. Figure 11 illustrates a simplified
example of this process.

Reuse of existing templates allows us to simplify the process
of adding support for new languages. For example, the pro-
cessing of creating expressions with basic operators or making
function calls is the same across multiple languages. MTCT
utilizes a search path for locating the individual template files.
It will look through the directories in the search path and
use the first template it finds with the matching name. Many
low-level templates, such as expression-template.vm can be
reused across languages while specializing those that contain
differences, such as class-template.vm. The search path for
templates also allows users to override certain templates by
pre-pending this path with the location of the customized
version. In this way, a user could customize how enumerations
or even enumerators are generated while reusing all the other
existing templates.

Control files determine how the generated code is placed
into files and a directory structure. The control files, along
with the template search path and cascading templates allow
the user to completely control the code generation to create
Architecture Specific Templates (AST) without modifying the
MTCT core functionality. ASTs reduce the amount of in-
tegration work and code the developer must write to adapt
generated models into a particular simulation system. ASTs
are implemented by using Control Files for users to control
how source code files are generated from the templates. They

135

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 8. A graphical representation of the part of the SCUF meta-model related to type definitions.

Fig. 9. A graphical representation of the part of the SCUF meta-model related to modeling logic.

allow the user to specify what parts of the SCUF model should
be generated and how those parts will be generated. The
Control File itself is distinct from the templates and specified
in JSON format. The file contains a list of sections, each
of which can generate code for specific parts of the SCUF.
These parts are the enumerations, classes, datastores, and the
model. Each section can also use its own template search
path. This allows for multiple passes over the meta-model,
each potentially with its own configuration. For example,
our default implementation for the datastores uses two main

templates: one for an interface for the datastore and one for
the implementation. The control files specify that the datastore
should be passed over twice by the code generator, once with
a template for the interface class and once with a template
for the implementation class. The cascading template sets
simplify this by only requiring the main datastore template to
be overridden in this case. Control files also control whether
the output for of all model classes of a certain type should
be written to a single file or multiple files. A benefit of
this approach is allowing for the differences in programming

136

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Fig. 10. A sample of a SCUF XML file.

Fig. 11. An example of cascading templating.

languages for how data types and classes may or may not be
collocated in the same file. For example, in Java, the classes
are expected to be in their own file with the name of the
file matching that of the class. As opposed to C++ where the
classes can all be included in the same file if the developer
chooses to design it that way.

One of the other capabilities of control files are to include
external files or project files into the code generation process.
These files can be whatever the user needs to include in their
project such as utility classes or build files. The contents of
the file should just be added to a velocity template and then
the template and file name just need to be added to the project
control section of the control files. These templates also get a
default set of information provided by velocity that includes
things like the model’s name, the list of enumerations, the list
of datastores and more. This provides the user with complete
flexibility to do anything that they need to do with the project
files. The control files simplify the creation of custom template

sets for a particular language and simulation environment,
allowing adaptation of models to new platforms. Within a
control file, the user can specify the initial template search
path to be appended to the cascading template search. This
allows the user to choose what template set they want to use
for each pass over the meta-model. Using control files, external
function libraries, and custom template sets, users can write
variation of these files to generate code specific to their own
architecture, in the same way MTCT customizes generated
code for the languages C++, Java, and C#.

Two additional use cases for code generation have been
explored: generating a Unity MonoBehavior [26] as well as
generating behaviors for RIDE, the Unity-based simulation
simulation environment. To do this, a custom template needs
to be written for the main model class, as well as Unity
or RIDE specific configuration files in the project control
section of the control file. A major challenge related to both
architectures is that the models follow a component structure.
This means that the models have an internal state that the
model itself interacts with and updates. The current generated
code supports a more static architecture where all of the inputs
are provided as parameters, and it produces the output from
a static context. A solution is being investigated where the
MTCT would automatically detect which class members in
the model need to be included in the component state. This
can be done by looking at which variables are being passed
into the functions with the Init and Update tags. These tagged
methods represent the methods to initialize a component and
to update a component. Doing this will automatically create
a component with internal state. These class members will
be part of the component and can be handled or used within
the glue code as needed. The state of the model would be
controlled and customized through the custom template sets.

Another challenge posed by the component modeling in
Unity and RIDE are the methods that are meant to handle
specific events within the framework. For example, Unity
has a start method that runs during the initialization of the
component and an update method that runs during each frame.
The MTCT needed a way to be aware of these types of
methods so that they are customizable and so that they can be
handled differently compared to other methods in the model.
We are currently looking into a solution where we introduce
method tagging within the SCUF. This would allow users to
tag certain methods as Update, Start, etc. Doing this would
let the MTCT know what type of method it is, and the
code generator would be able to handle the different cases.
A method having a tag would also let the MTCT know that it
is a component style model which would potentially change
how the code generation is executed.

V. TOWARD INTEGRATING THE
METAPROGRAMMING ENVIRONMENTS

We have argued in Section II-C that both selected metapro-
gramming environments are well suited to be used as part of a
representative case study for the horizontal integration of such

137

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



metaprogramming environments, and that the structured de-
coupling between the definition of models and the generation
of code, a common characteristic of both models, is a good
starting point for this integration. Moreover, the interchange
format of the models in both environments is based on XML
documents, whose structure is defined by an XML schema.

As the creation of a more horizontal integration architec-
ture to facilitate the collaboration between metaprogramming
environments [5] was one of the original goals of the NST
metaprogramming environment, it seems logical to initiate
this integration effort based on the NST environment archi-
tecture. This means that we attempt to map the generative
programming environment for simulation models onto the
collaboration architecture represented in Figure 3. In this
section, we discuss some progress and remaining challenges.

A. Embracing the SCUF Meta-Model

The NST meta-circular metaprogramming environment [5]
allows for the structural generation of all reader, writer, and
model classes of any model —or meta-model— that can be
expressed as a set of NST data elements. The SCUF meta-
model, based on XML and defined by an XML Schema,
satisfies this requirement. Based on the definition of the SCUF
data entities (as represented in the class diagrams of Figures 8
and 9, e.g., TypeDefinition, DatastoreType, ConditionalBlock,
Expression, Declare, Statement, etcetera), NST data elements
can be created. For instance, Input needs to be defined as an
NST data element with a name field which is a string, a type
field that is a link to the TypeDefinition data element, and an
isArray field that is a boolean. These data elements can be
specified in XML, or in the user interface of the NST meta-
application, or even directly generated from the XML Schema.
For every data element, the various classes of the NST stack
in the left part of Figure 3 can be generated. These include:

• Reader and writer classes to enable reading and writing
the XML-based SCUF model files, e.g., InputXmlReader
and InputXmlWriter.

• Model classes to represent and transfer the various SCUF
entities, and to make them available as an object graph,
e.g., InputDetails and InputComposite.

• View and control classes to perform CRUDS (create,
retrieve, update, delete, search) operations in a generated
table-based user interface.

This implies that the various existing SCUF models, represent-
ing instances of the SCUF data entities and therefore instances
of the NST data elements, can be read and made available as
an object graph, allowing to evaluate model parameters using
Object-Graph Navigation Language (OGNL) expressions at
the templating engine. Moreover, a NS web application with
a table-based user interface can be generated to create, view,
manipulate, and write SCUF models.

B. Integrating Modeling and Expansion

The meta-circular architecture of [5] enables the definition
of alternative meta-models such as SCUF, and the development

of new expanders based on the values and parameters of in-
stances of these new models. Such alternative meta-models can
be specified as any regular NS model, both in the NS Modeler
and in the Prime Radiant. Upon defining an alternative meta-
model such as SCUF, we are currently investigating two modes
to provide integrated support for entering actual models based
on the new meta-model and expanding these models.

• Based on the new meta-model, a slightly modified NS
application is generated, dubbed Secondary Radiant, that
allows to import/export the actual models from/to XML,
and to pass them to the Prime Radiant. Importing ex-
panders based on this new meta-model into the Prime Ra-
diant then enables developers to invoke these expanders
from the Prime Radiant.

• A runtime kernel, dubbed Runtime Radiant, is provided
that allows regular NS applications to invoke the tem-
plating engine and to evaluate OGNL expressions for
arbitrary trees of data objects. In this way, a regular NS
application generated based on the new meta-model is
able to perform expansion from its actual model data.

Both types of tooling are currently being tested in β-version,
and will possibly merge into one solution.

Though conceptually agnostic with respect to different
meta-models, a bias toward the web information systems was
discovered in the NST metaprogramming environment. Both
the invocation of expansion and deployment, and the various
technology settings were implicitly linked to the entities
Application and Component. As these enities are specific to
web-based information systems, they have been generalized
to ProgramType and ModuleType in the NST environment.
At the same time, dedicated meta-elements to specicy various
technologies, such as PresentationLogicSettings, have been
generalized to a generic list of TechnologyStackSettings.

C. Streamlining the Control Files

Having defined the SCUF data entities as NST data el-
ements, the NST metaprogramming environment allows to
evaluate SCUF model parameters through OGNL expressions
in SCUF model graphs, and to make them available to
coding templates. In order to simply activate the existing
coding templates of the simulation models, and to use the
NST metaprogramming environment as a piece of evolvable
middleware to pass the SCUF models to the code templates
for the simulation models, two tasks remain to be performed
at the level of the declarative control.

• Every coding template needs to be declared in a separate
XML Expander definition.

• For every coding template, the appropriate OGNL expres-
sions to evaluate the relevant model parameters, need to
be defined in an XML Mapping file.

As the generative programming environment for simulation
models has control files as well, they are a solid starting point
to create these declarative control files. It is probably even
possibe to write software that automates the conversion of

138

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



these JSON control files into the XML control files of the
NST metaprogramming environment.

D. Supporting the Templating Engine

The fact that both metaprogramming environments use
different templating engines causes a final integration issue.
A first option would be to convert the Velocity templates of
the simulation software to the StringTemplate format supported
by the NST environment. In this scenario, the required effort
would be proportional to the template base of the simulation
models, and would need to be repeated for integration ef-
forts with other environments using this templating engine.
Moreover, Velocity templates allow more logic that would
have to be ported to Java helper classes in the StringTemplate
environment.

A second and preferable option is to include support in
the NST metaprogramming environment for the Velocity tem-
plating engine. Considering the limited amount of templating
engines being used by metaprogrammers, this scenario seems
both manageable and worthwhile. Moreover, the effort would
not be proportional to the size of the template base. As there is
virtually no logic in the current NST templates, i.e., all model
parameters are combined and processed in the software that
feeds the templating engine, it is reasonable to say that we
expect no major blocking issues.

Important to note is that both metaprogramming envi-
ronments use modular or so-called cascading templates in
accordance with the strategy of single-sourcing. This means
that the modular structures of the templates could be preserved
identically across the different templating engines.

VI. CONCLUSION

The automated generation of source code, often referred
to as metaprogramming, has been pursued for decades in
computer programming, and is considered to entail significant
benefits for various disciplines, including software develop-
ment, systems engineering, modeling, simulation, and business
process design. However, we have argued that metaprogram-
ming is still facing several issues, including the fact that it
is challenging to realize a scalable collaboration within and
between different metaprogramming environments, largely due
to the often vertical integration architecture.

In our previous work, we have presented a meta-circular
implementation of a metaprogramming environment, and have
argued that this architecture enables a scalable collaboration,
both within this environment and possibly with other metapro-
gramming environments. In this paper, we have explored such
a collaborative integration with another metaprogramming
environment. This second environment for metaprogramming
targets the generation of a different type of software sys-
tems, and is based on a different meta-model, but exhibits a
more horizontal integration architecture as well. This second
metaprogramming architecture has been described in detail.

We have shown in this contribution how both metapro-
gramming environments can be integrated within the pro-
posed meta-circular architecture. We have explained how the
generation of the meta-code, i.e., the code that makes the
actual parameter models available to the coding templates, can
be extended to the second metaprogramming environement,
resulting even in tooling that provides integrated support both
modeling and expansion or code generation. We have also
explained that the only reason that the actual code genera-
tion of this second metaprogramming environment cannot be
seamlessly integrated yet, is the different format of the gen-
eration control files and the use of another templating engine.
However, we have also indicated that it should be relatively
straightforward to support, possibly even in an automated way,
such an alternative control format and/or templating engine.

This paper is believed to make some contributions. First, we
show in a constructive way that it is possible to perform an
horizontal integration of two metaprogramming environments,
and to enable collaboration and re-use between these envi-
ronments. Such integrations could significantly improve the
collaboration and productivity at the metaprogramming level.
Moreover, we show that this integration is possible between
metaprogramming environments that are based on completely
different meta-models, are significant in size, and are being
developed and used by application developers on a continuous
basis. Second, we explain how the horizontal integration of a
second metaprogramming environment with the meta-circular
architecture, could largely remove the burden of maintaining
the internal classes of such a metaprogramming environment.

Next to these contributions, it is clear that this paper is also
subject to a number of limitations. It consists of a single case
of integrating a second metaprogramming environment with
the meta-circular architecture, although the case deals with
two realistic and comprehensive development environments.
Moreover, the presented results are still preliminary, and the
second metaprogramming environment is not yet operational
in the meta-circular architecture, as its control mechanism and
templating engine is not yet fully supported in this architec-
ture. Therefore, neither the complete horizontal integration,
nor the productive collaboration between the two environments
has been completely proven. However, this explorative but
nevertheless representative case study can be regarded as an
architectural pathfinder, and we have identified some remain-
ing issues that hamper the scalability of the approach.

To further enhance the scalability of the approach, it is
imperative to streamline and support the automated exchange
of domain models and the corresponding meta-models. We
are therefore working on enhanced tooling to allow metapro-
grammers to easily define their existing meta-models. Based
on these definitions of meta-models, the tooling should be
able to extend itself, and to include support for the actual
models that are based on these meta-models. The goal is to
enable entering, manipulating and viewing these models, and
to provide the automatic creation of standardized model data
trees and/or control files that can be fed into the various tem-

139

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



plating engines. Besides addressing the issues that currently
hamper the scalability of the approach, we have also initiated
a collaboration with a third metaprogramming environment.

REFERENCES

[1] H. Mannaert, C. McGroarty, K. De Cock, and S. Gallant, “Integrating
two metaprogramming environments: An explorative case study,” in
Proceedings of the Fifteenth International Conference on Software
Engineering Advances (ICSEA) 2020, 2020, pp. 166–172.

[2] J. R. Rymer and C. Richardson, “Low-code platforms deliver customer-
facing apps fast, but will they scale up?” Forrester Research, Tech. Rep.,
08 2015.

[3] B. Reselman, “Why the promise of low-code software platforms is
deceiving,” TechTarget, Tech. Rep., 05 2019.

[4] H. Mannaert, K. De Cock, and P. Uhnak, “On the realization of meta-
circular code generation: The case of the normalized systems expanders,”
in Proceedings of the Fourteenth International Conference on Software
Engineering Advances (ICSEA) 2019, 2019, pp. 171–176.

[5] H. Mannaert, K. De Cock, P. Uhnak, and J. Verelst, “On the realization
of meta-circular code generation and two-sided collaborative metapro-
gramming,” International Journal on Advances in Software, no. 13, 2020,
pp. 149–159.

[6] D. Parnas, “Software aspects of strategic defense systems,” Communi-
cations of the ACM, vol. 28, no. 12, 1985, pp. 1326–1335.

[7] P. Cointe, “Towards generative programming,” Unconventional Program-
ming Paradigms. Lecture Notes in Computer Science, vol. 3566, 2005,
pp. 86–100.

[8] K. Czarnecki and U. W. Eisenecker, Generative programming: methods,
tools, and applications. Reading, MA, USA: Addison-Wesley, 2000.

[9] L. Tratt, “Domain specific language implementation via compile-time
meta-programming,” ACM Transactions on Programming Languages
and Systems, vol. 30, no. 6, 2008, pp. 1–40.

[10] A. Wortmann, “Towards component-based development of textual
domain-specific languages,” in Proceedings of the Fourteenth Interna-
tional Conference on Software Engineering Advances (ICSEA) 2019,
2019, pp. 68–73.

[11] K. Gusarovs and O. Nikiforova, “An intermediate model for the code
generation from the two-hemisphere model,” in Proceedings of the
Fourteenth International Conference on Software Engineering Advances
(ICSEA) 2019, 2019, pp. 74–82.

[12] C. Mooers and L. Deutsch, “Trac, a text-handling language,” in ACM
’65 Proceedings of the 1965 20th National Conference, 1965, pp. 229–
246.

[13] D. McIlroy, “Macro instruction extensions of compiler languages,”
Communications of the ACM, vol. 3, no. 4, 1960, pp. 214–220.

[14] J. Reynolds, “Definitional interpreters for higher-order programming
languages,” Higher-Order and Symbolic Computation, vol. 11, no. 4,
1998, pp. 363–397.

[15] M. Vonderembse, T. Raghunathan, and S. Rao, “A post-industrial
paradigm: To integrate and automate manufacturing.” International Jour-
nal of Production Research, vol. 35, no. 9, 1997, p. 2579–2600.

[16] H. Mannaert, J. Verelst, and P. De Bruyn, Normalized Systems Theory:
From Foundations for Evolvable Software Toward a General Theory for
Evolvable Design. Koppa, 2016.

[17] H. Mannaert, J. Verelst, and K. Ven, “The transformation of require-
ments into software primitives: Studying evolvability based on systems
theoretic stability,” Science of Computer Programming, vol. 76, no. 12,
2011, pp. 1210–1222, special Issue on Software Evolution, Adaptability
and Variability.

[18] ——, “Towards evolvable software architectures based on systems
theoretic stability,” Software: Practice and Experience, vol. 42, no. 1,
2012, pp. 89–116.

[19] P. De Bruyn, H. Mannaert, J. Verelst, and P. Huysmans, “Enabling
normalized systems in practice : exploring a modeling approach,”
Business & information systems engineering, vol. 60, no. 1, 2018, pp.
55–67.

[20] K. Ament, Single Sourcing: Building Modular Documentation. Nor-
wich, NY, USA: William Andrew Publishing, 2003.

[21] J. P. Morrison, Flow-Based Programming: A New Approach to Appli-
cation Development. Van Nostrand Reinhold, 1994.

[22] M. Senthilvel and J. Beetz, “A visual programming approach
for validating linked building data,” URL: https://publications.rwth-
aachen.de/record/795561/files/795561.pdf, 2022, [accessed: 2022-06-
15].

[23] B. Rearick, Blockly. Cherry Lake Publishing, 2017.
[24] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented

Software. Addison-Wesley, 1994.
[25] “The Apache Velocity Project,” URL: https://velocity.apache.org/, 2022,

[accessed: 2022-06-15].
[26] “How to make a video game without any coding experience,” URL:

https://unity.com/how-to/make-games-without-programming, 2022, [ac-
cessed: 2022-06-15].

140

International Journal on Advances in Software, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/software/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


