
An In-depth Comparison of Experiment Tracking
Tools for Machine Learning Applications

Tim Budras∗, Maximilian Blanck†, Tilman Berger†, and Andreas Schmidt∗‡,
∗ Department of Computer Science and Business Information Systems,

Karlsruhe University of Applied Sciences
Karlsruhe, Germany

Email: {buti1021, andreas.schmidt}@h-ka.de
† inovex GmbH, Karlsruhe, Germany
Email: {mblanck, tberger}@inovex.de

‡ Institute for Automation and Applied Computer Science
Karlsruhe Institute of Technology

Karlsruhe, Germany
Email: andreas.schmidt@kit.edu

Abstract—As the machine learning market is growing strongly
and machine learning is increasingly being used productively,
new challenges for developers and operators arise that haven’t
been existing in traditional software development. One of these
challenges is the versioning and reproducibility of models. To
help solve this challenge experiment tracking tools exist, which
keep track of the experimental development process of machine
learning models. This paper describes the process of bringing
a machine learning model to production and emphasizes its
experimental nature and the challenges arising with it. Following
the definition of a set of requirements for experiment tracking
tools, 20 tools found in a market research are presented. Four
of those tools are analysed in-depth, showing that differences
between tools exist especially for advanced requirements. This
paper also includes the progress the tools have made within the
last year.

Index Terms—Machine Learning; Experiment Tracking; De-
velopment Environment; MLOps

I. INTRODUCTION

This paper is an extended version of a conference paper [1],
published in 2022 at the Fourteenth International Conference
on Advances in Databases, Knowledge, and Data (DBKDA-
2022) conference in Venice/Italy. In this extended paper, we
go into more detail about the various tools that we were able
to consider in the previously mentioned conference paper.
We have also examined the tools in terms of their current
enhancements.

The machine learning market is growing strongly. Accord-
ing to MarketsandMarkets [2], it is ”expected to grow from
USD 1.03 billion in 2016 to USD 8.81 billion by 2022”. As a
result of this growth, tools have been developed in recent years
to help develop machine learning models and put them into
production. However, due to the fact that the use of machine
learning in productive software is relatively new, tools and
conventions are less settled and less commonly applied than
in traditional software development.

Warden [3] uses the term ”machine-learning-
reproducibility-crisis” to describe that the tools to meet

these needs are often not deployed or used in practice. With
regard to tracking data, parameters, models and results,
numerous products with different focuses and strengths have
been developed. Tools that focus on saving information
around the model training and development process are often
referred to as experiment tracking tools. But as stated in
a Kaggle survey [4], in a large amount of scenarios these
relatively new tools remain unused and tracking is either
done manually or not done at all.

But without experiment tracking, the information under
which circumstances an AI model was created is missing. It
is therefore a black box model, which contradicts the High
Level Expert Group on Artificial Intelligence (HLEG AI) [5]
demand for transparency. An important criterion according
to the HLEG demand for transparency is explainability: de-
cisions made by an AI system must be understandable and
comprehensible to humans. This requires information about
the underlying datasets, the algorithms, parameters and data
processing pipelines used, and the results obtained, which then
serve as the basis for selecting specific algorithms/parameter
sets.

The information gathered in this way will further enable
repeatability of the experiments for both the current and future
development teams, and also for other working groups dealing
with the same or similar issues. Experiments by Alahmari
et al. [6] show that the tracking information collected is
sometimes not sufficient for the repeatability of an experiment.
They demonstrated that running the same experiment several
times can lead to different results. Reasons for this are, for
example, a random selection of the training and test data,
different libraries used or also hardware. In [7], for example,
it was shown from Nagarjan et al. that when switching from
CPU to GPU, different but deterministic results were obtained
for the respective processor unit. More information about
reproducibility and traceability to achive trustworthy AI can
be found in [8], [9].

The paper is structured as follows: In Section II we explain



the machine learning lifecycle and what artifacts, i.e., code,
data, environment, parameter settings need to be tracked in
the context of an experiment. Based on these findings we
present in Section III the general architecture for experiment
tracking tools and formulate the most important requirements.
In Section IV four tools are presented and compared in detail.
The paper is finished with a conclusion and outlook to further
research directions in Section V.

II. BACKGROUND

In this section, a set of basic insights required for under-
standing tracking tools in the field of machine learning will
be presented as well as information about research related to
experiment tracking tools.

A. The Machine Learning Lifecycle

The different phases and steps around the productive use of
a machine learning model have been described by different
authors using different terms. One of these terms is the
machine learning lifecycle. Garcia et al. [10] describe the
machine learning lifecycle as a three-phase process as shown
in Figure 1.

The first phase is the pipeline development. During this
iterative phase, the data preprocessing, exploration and vi-
sualization is done, model designs are chosen and models
get trained with different configurations and hyperparameters.
The authors emphasize that the important achievement of
the first phase is not the model, but the pipeline that can
be reused to create a model from a dataset. This pipeline
can be used later in the second phase training (Figure 1,
middle), to train and validate the model used for inference.
The last phase (Figure 1, right) is called inference. Here, the
prediction service (which includes the data preprocessing as
well as the model used for inference) returns a prediction
for a given user input. This service provides information
about the predictions made, which can be used for subsequent
training. The authors mention that the different stages are often
managed by different teams.

Amershi et al. introduce a similar process, the machine
learning workflow [11]. This process is divided into nine
stages and is shown in Figure 2. Those nine stages can be
grouped into four phases. The first phase consists of the
model requirements stage, in which the objective of the
machine learning task is defined. Furthermore, the type(s)
of model that could be used to implement this objective
get selected. The initial planning phase is followed by the
data preprocessing phase, which includes the stages data
collection, data cleaning and data labelling. The next phase
describes the model engineering and includes potential feature
engineering, as well as the model training and evaluation.
If a good performing model is found, the model can be
deployed into production, in the last phase, the deployment
and monitoring stages in Figure 2. Once the model is used in
production, the model needs to be monitored, to measure its
performance and find out at which point a potential retraining
is needed. The authors emphasise that – in contrast to their

illustration (Figure 2) – the machine learning workflow is
generally not linear, as the illustration implies. The workflow
is iterative and contains multiple feedback loops, as indicated
by the arrows.

B. Experiment Tracking

Langley [12] describes machine learning as an experimental
science and compares the process of finding a good model to
the empirical sciences of physics and chemistry. This aligns
with the results from interviews Hill et al. [13] conducted
with various machine learning practitioners in 2016. Seven
out of seven interviewees experienced the need ”to resort to
basic trial and error”. Langley defines an experiment as the
process of examining the effect of varying one or more inde-
pendent variables on some dependent variables [12]. Hence, an
experiment consists of multiple runs. According to Vartak et
al. [14], ”data scientist often built hundreds of models before
arriving at one that met some acceptance criteria”. Each model
built can be seen as the dependent variable of a run. However,
experiment tracking tools can also be used in the pipeline
development phase, introduced by Garcia et al. [10], which
does not produce a model, but a training pipeline. In this
case, the dependent variable would be the training pipeline.
Therefore, the following definition of an experiment is used
in this paper:

Definition (Experiment): A run is a part of an experiment,
it has a specific set of independent variables that produces a
model or a training pipeline. An experiment is a collection of
runs that try to solve the same problem or business task. The
objective of an experiment is to find the set of independent
variables that results in the best dependent variable(s).

It should be noted that usually in practice it is not possible or
at least not economically feasible to find the best independent
variables [15].

Various possibilities exist to assess the quality of a model.
A common approach is to calculate a metric for prediction
quality (such as accuracy) on a dataset not used for training.
However, additional (nonfunctional) quality measures might
exist, e.g., the inference time, the training time or the explain-
ability of a prediction.

Due to the fact that the number of experiment runs might
be enormous, it is very helpful to track the experiment and
its runs. The term experiment tracking describes the process
of saving the information related to the experiment and its
runs, to allow further evaluation. Although typically the verb
to track is used in combination with experiments, some tools
evaluated in this work have functionalities that use the words
log or logger. Thus, both terms are treated as synonyms in
this work.

In its easiest version, tracking can be done manually,
alternatively one of the tools presented in Section IV can be
used. A Kaggle survey conducted in 2020 [4, p. 27] showed
that in most cases tracking is either done manually or not
done at all. In theory, automating the process of tracking
by using one of the tools presented later should have many



Fig. 1. Machine Learning Lifecycle (from [10])

Fig. 2. Machine Learning Workflow based on [11]

advantages. Manual tracking can be error prone, wrong data
may get saved or the tracking may be forgotten. Additionally
tools might provide functionality to facilitate working in teams
or analyzing the tracked data. Automating the process allows
the machine learning practitioner to focus on developing the
best model.

Either way, tracking experiments brings multiple advan-
tages: Keeping track of all the runs makes it easy to find the
best variables. Additionally, it is easy to see, which sets of
independent variables have already been tried out or might
be worth trying out in the future. This is especially helpful
if the work is done in teams, or if the responsible person
changes. With the right tool, tracked experiments can be
easily compared. If a model is used in production, it can
be very helpful to have the information available on how
the model was created. Another advantage – which applies
especially to research – is the fact that results may need
to be reproduced. Furthermore, establishing the use of an
experiment tracking tool in a company or a project provides the
benefit of a structured way to access the data generated during
experimentation, regardless of the individuals responsible for
the experiments.

C. Related Work

Experiment Tracking can be seen as a part of MLOps, which
can be described as a common set of practices that includes
the development of a machine learning application as well as
its operations [16]. 41% of business decision makers named
”versioning and reproducibility of models” as a machine
learning challenge in a survey conducted by Algorithmia in
2020 [17], making it the second most often named challenge
after ”scaling up” with 43%. Experiment tracking should help
to tackle this challenge.

Research has been conducted and lead to the presentation
of individual frameworks such as MLflow [18], [19]. Addi-
tionally, new tools have been developed or proposed based
on evaluations of existing tools by Scotton or by Zárate et
al. [20], [21]. Other work e.g., by Hewage and Meedeniya
focuses on comparing existing experiment tracking tools [16].
The work by Hewage and Meedeniya is different to our work,
as it does not include a comparison about the ease of use
nor the accessibility of tracked data. Also, the selection of
compared tools is different. It does not include DAGsHub or
Neptune but includes other tools instead.

D. Reproducibility Requirements

In a reproducibility challenge, Pineau showed that most
challenge attendees found it at least reasonably difficult to
reproduce the result of a paper of the International Conference
on Learning Representations 2018 [22]. Pineau also published
a machine learning reproducibility checklist [23], which is
supposed to help increase the reproducibility of experiments.
Tatman et al. [24] define three levels of reproducibility for
research: low, medium and high reproducibility. The lowest
level of reproducibility is achieved by publishing the paper.
According to the authors, the medium level is achieved,
when the code is published along with the used data. The
highest level can be reached by additionally providing the
environment.

In the following subsections the requirements for repro-
ducibility introduced by Tatman et al. [24] as well as the terms
hyperparameters and metrics will be explained in detail.

1) Code: Similar to traditional programming, machine
learning highly depends on the source code. There are several
tools to effectively version source code. A developer survey
by StackOverflow in 2018 [25] showed that almost 90 % of



the developers use Git as a version control system. There is
no valid reason to not track the code used in machine learning
projects with Git. However, in a fast developing process,
experiment runs might be executed, without committing the
code beforehand. This would lead to a lack of reproducibility,
as Git needs a commit to restore a state of the code.

2) Data: Besides the code, data plays an essential role in
machine learning, because different data can lead to different
results. As the kind of data depends on the business task, the
data format varies. Common data formats are text, image or
video. Due to the partly large data resources, a suitable tool
for the efficient storage of different variants of a data resource
should be used.

3) Environment: Providing information about the environ-
ment is certainly only necessary for some use cases. However,
it can contain important information of the original run,
such as the used hardware, the used operating system or the
software dependencies. Thus, keeping track of the environment
can be helpful to reproduce a run. Tatman et al. [24] propose
three possibilities to share the environment: Either by using
a hosted service, or by providing a container or virtual
machine, which includes all dependencies. At minimum, the
used libraries and their versions should be tracked.

4) Hyperparameters: According to Bergstra et al. [26],
hyperparameters configure the machine learning algorithm
before training, whereas, in the present paper, any kind of
configuration parameters of the experiment run (not only
the machine learning algorithm) will be considered as hy-
perparameters. As any change in configuration might result
in different results, it is recommended to track as many
hyperparameters as possible. Although hyperparameters are
often tracked implicitly when they are defined in the code
and the code is versioned, hyperparameters should be tracked
explicitly to allow easier comparison.

5) Metrics: A metric is an evaluation measure calculated
to quantify ”the effectiveness of a complete application that
includes machine learning components” [15]. Most of the
times, metrics will be calculated based on a model’s predic-
tions on data that has not been used for training. Different
metrics with varying strengths and weaknesses exist. For
classification tasks for example, accuracy or precision can be
used. Accuracy is defined as the fraction of correct predictions
out of all predictions [15]. Metrics can be used to compare
different runs of an experiment and can be considered as one
of the dependent variables of the experiment. Whatever type
of metric is used is actually not important for experiment
tracking.

III. EXPERIMENT TRACKING TOOLS

The main goal of experiment tracking is to save information
during experimentation in order to be able to access it later.
As a result, most experiment tracking tools consist of at least
three components, as shown in Figure 3. Some kind of client
software – for example a Python library – is required to store
the tracked information during experimenting on a persistent
data storage or send it to a server. The data can often be

retrieved programmatically through the client or be viewed in
a Graphical User Interface (GUI). The exact functionality of
those components differs between the available tools.

A. Requirements

As already discussed in Subsection II-B, tracking of code,
data, the used environment, hyperparameters, and metrics are
elementary requirements for such a tool. Additional require-
ments examined in our research also include the following
aspects:

1) Storing of Models: Training a model can take a long
time. Therefore, the models should be stored and linked to
the hyperparameters and metrics. This avoids time consuming
retraining e.g., if a model should be evaluated on new data.

2) Accessibility of Tracked Information: Tracking is a pre-
requisite however, the tracked data will only provide value,
if the tracked information can be accessed in a simple yet
powerful way. This includes a user interface, which provides
a clear and customizable overview of all runs, as well as the
possibility to compare runs in depth. Filtering the runs with
easy but rich querying options is also part of this requirement.
Besides that, the tool should provide a possibility to create and
show plots. If additional interfaces, e.g., an API, exist, they
will be useful as well.

3) Collaboration: According to Tabladillo et al. [27], bring-
ing data science projects to production requires different tasks.
For this reason, data science projects are often worked on in
teams composed of different roles. Therefore, the tool should
facilitate collaborative work. This includes the possibility of
viewing existing results of different team members and adding
new results by executing new runs. To achieve this, a form of
access management is required.

4) Initial Setup and Infrastructure: Because tracking ma-
chine learning experiments should facilitate the work of teams,
tools will only be taken into consideration if they have low
barriers to entry. Thus, this requirement describes the initial
investment needed to set up and use the tool. The initial setup
is everything that does not need to be repeated if the same
tool is used in another project (given the projects can use the
same infrastructure). As cloud tools might have an advantage
concerning the initial setup, it must be kept in mind that saving
data off-premises might not be a possibility in any case due
to legal or corporate regulations.

5) Ease of Integration: Similar to the previous requirement
this requirement concerns user-friendliness. Yet, unlike the
initial setup and infrastructure, the ease of integration describes
how easy it is to include the tool into a specific project. This
means, for example, project-specific configuration or source
code changes.

IV. EXAMINED TOOLS

In a market research, the following tools with experiment
tracking functionality were identified.

• Aim [28]
• Amazon SageMaker Experiments [29]
• Azure Machine Learning [30]



Fig. 3. General Architecture of an Experiment-Tracking-Tool

• ClearML [31]
• Comet [32]
• DAGsHub [33]
• DominoDataLab [34]
• Guild AI [35]
• H2O MLOps [36]
• Iterative Studio [37]
• MLflow [38]
• Neptune [39]
• Paperspace Gradient [40]
• Polyaxon [41]
• Sacred [41] in combination with Omniboard, Incense or

Sacredboard (GUIs)
• TensorBoard [42]
• Valohai [43]
• Verta [44]
• Vertex AI [45]
• Weights & Biases [46]

The research was conducted online, using search engines,
blogs, forums, as well as the websites of the respective tools.

To allow an in-depth evaluation of the tools in the scope of
this work, the tools listed previously have to be limited to a
reasonable amount. The tools were selected in consultation
with a project team at inovex, actually developing a mul-
tilingual and multidomain Conversational AI. The selection
was influenced by requirements given from the project team.
First, it was required that tracking tool is not running in
a cloud ecosystem only nor creates a platform lock-in, like
Azure Machine Learning, Amazon SageMaker Experiments
or Paperspace Gradient do. Furthermore, the tracking tool
should be independent of runtime and used libraries, which
did exclude Tensorboard. For the sake of brevity four tools
were examined only. The selection was based, in addition to
the stars on github, on the simplicity of integrating the tools
into the project and the familiarity within the project team.
Therefore, Aim and Polyaxon were not considered, but they
are very interesting tools and should be included in future
research.

In this process, MLflow, ClearML, Neptune and DAGsHub
were adopted for a more detailed evaluation. MLflow was
selected because it is one of the most established and widely
used tools. ClearML was assessed because of its wide range
of operating options. It can be used for free (even in small
teams) as a hosted option, operated self-hosted for free, but
also be used with a paid plan. The most important argument
for choosing Neptune was that it promises an effortless setup.
The last option evaluated was DAGsHub, as it makes use of
Data Version Control (DVC) [47] for versioning data, like the

project. In the next subsections each tool will be evaluated
based on the requirements defined in Subsection III-A and an
exemplary integration will be provided.

A. MLflow

The open-source tool MLflow is developed by Databricks
and was introduced by Zahari et al. [48] and launched in June
2018. At the time of writing this paper (October, 2022) the
latest released version was 1.29.0 [49]. The software itself is
shipped as a Python package and can be either hosted on own
server or used as a Software as a Service (SaaS) offering by
Databricks called Managed MLflow. Since Databricks’ main
business is offering managed versions of Apache Spark clus-
ters, Managed MLflow is tightly coupled to these offerings.
By comparing the managed with the open source version the
managed offers mostly features that allow integrations into the
Databricks eco-system. In contrast to the self-hosted version
the managed one offers notebook and workspace integration
to Databricks, as well as a role based user management. In
addition also an integration to the aforementioned clusters is
offered [50].

With the version 1.27.0 MLflow introduced a new experi-
mental feature called MLflow Pipelines. This feature provides
a framework to structure the whole cycle of an machine
learning project. Hereby the user can specify pipelines either
with Python code or by configuration files. The steps of
these pipelines define parts like data preprocessing, splitting
data into parts, evaluating trained models or storing models.
MLflow provides templates that fit for common machine
learning tasks. Since the pipelines are either defined by Python
code or configuration files they can be easily stored in a
repository like Git [51].

As already mentioned the open-source version of MLflow
is shipped as a Python package and can be easily installed by
any Python package manager like pip or conda. MLflow uses
a naming similar to our definition in Subsection II-B where
runs are grouped into experiments. The most basic setup of
MLflow just uses a local file system to store experiment and
run metadata. In order to get a more scalable setup it is advised
to setup a relational database as a backend. Here MLflow is
able to use a varity of databases like mysql, mssql, sqlite and
postgresql. Apart from experiment and run metadata MLflow
uses either a local file system or a cloud object storage (like
AWS S3, Google Cloud Storage or Azure Blob Storage) to
store artifacts like trained models. If not configured explicitly
the metadata as well as the artifact data are stored into the
local file system [52].



1 import mlflow
2 mlflow.set_tracking_uri("postgresql://postgres:

postgres@172.3...")
3 mlflow.set_experiment("MyProject") #group runs
4 with mlflow.start_run() as run:
5 hyperparams = {"lr": 0.01,}
6 mlflow.log_params(hyperparams)
7 #Training placeholder, model stored in var model
8 mlflow.pytorch.log_model(model, "log_r",)
9 mlflow.log_metric("acc", 0.99)

10 mlflow.set_tag("performance", "best")

Listing 1. MLflow example code

To start tracking with MLflow, a run has to be started as
shown in Listing 1. By using a context manager to start the
run, the run will be ended automatically (line 4). MLflow dif-
ferentiates between metrics and params; both can be logged to
MLflow by using the respective function. With the log params
(line 6) function a set of values like hyperparameters describ-
ing the current run can be stored. This function takes all kinds
of values, which can be stringified. In contrast the log metric
(line 9) function, where only numeric values can be passed.
That function is used to keep track for evaluation metrics
(like precision or recall) for one run. Both functions exists as
singular to log one value, or as plural to log multiple values
(here, a dictionary is passed, as the only parameter and the
name and values of the dictionary will be used. In addition
a run can be marked by using the set tag (line 10) function.
That function is intended to mark a run e.g., as the current
best performing. Not shown in the listing is the log artifact
function, which can be used to store a local file attached to
the current to MLflow. Grouping multiple runs together allows
easy viewing and comparison in the GUI. This can be achieved
by setting up an experiment (line 3).

As mentioned before, MLflow uses the local file system by
default to store metadata. By passing an URI pointing to a
database to MLflow these data will be stored there [52].

The MLflow GUI in Figure 4 shows all the hyperparameters
and metrics in a clear table. Runs of the same experiment can
be compared and metrics are automatically plotted. In addition
to the GUI, data tracked with MLflow can be retrieved via
Python, R, Java and REST APIs. MLflow does not provide a
dedicated way to keep track of the data used for training. It
does not automatically log information about the environment
either. However, with MLflow Projects, MLflow wants the
users to manually specify their environment [54]. This can be
achieved by creating a conda yaml file or a docker image and
structuring the project by providing entry points and default
parameters.

MLflow can be used for free in teams, however, this requires
shared data storage, which has to be set up by yourself.

B. Neptune

Neptune is a tool developed by Neptune Labs. It is described
as a ”metadata store for MLOps” [39]. Neptune consists of a
server (closed-source) and a client (Python & R packages,
open-source). The first version of the Python package was
released in March 2019 [55]. At the moment (October 2022),
0.16.9 is the newest version. In the last year, an R client

has also been added [56]. With 0.9.0 (released end of May
2021), the API received a significant update, introducing a new
and slightly different way to use Neptune, while maintaining
backward compatibility.

To get started with Neptune, an account has to be created at
neptune.ai and an API token has to be generated. To track ex-
periments, a project (similar to an experiment in MLflow) has
to be created in the Neptune Web App or via the available man-
agement API. After those setup steps, Neptune is ready for use.

1 import neptune.new as neptune
2 run = neptune.init(project="tbud/MyProject")
3 hyperparams = {"lr": 0.01,}
4 run["data/train"].track_files("./datasets/train")
5 run["hyperparams"] = hyperparams
6 #Trainingloop placeholder
7 run["loss/train"].log(the_current_loss)
8 torch.save(model, "log_r.mdl")
9 run["model"].upload("log_r.mdl")

10 run["acc"] = 0.99
11

12 run["model_pickle"].upload(neptune.types.File.as\
_pickle(model))

Listing 2. Neptune example code

Listing 2 shows the integration of Neptune, after importing
the new Neptune API, we can initialize a run and assign it
to a project (line 2). Neptune does not differentiate between
metrics and hyperparameters. To log values with Neptune,
a notation with square brackets and strings as keys (e.g.,
run["some_key"]) is used, which is similar to adding new
values to a dictionary in Python (line 10). To track series such
as the loss, the log function has to be used (line 7). This
automatically generates a plot in the GUI. To structure values,
a structured namespace can be used by putting a slash in the
key name (e.g., run["namespace/some_key"]). This
concept is then used to group and structure values in the GUI.
The namespace can also be used to easily distinguish between
metrics and hyperparameters. To upload a trained model, it
first has to be saved locally (line 8) and can then be uploaded
to Neptune using the upload method (line 9). Neptune provides
a dedicated model registry that shows all production-ready
models in a centralized way. It further enables the user to track
transitions between different development stages of a model.

Neptune provides basic functionalities to keep track of the
data used in the experiment runs. Neptune can calculate the
hash value of a file or folder and store it with additional
metadata (path, size and the last-modified date), which allows
the user to see if the dataset has changed between experiment
runs. This can be achieved by using the track_files
method as shown in line 4. However, the dataset is not stored
on the Neptune server and its data can not be retrieved. If
a small dataset is used, it might be as well an option to
upload the whole dataset. This will than be handled as an
artifact, which is similar to the handling of a model file. A
dataset can be uploaded by using the upload() function for
single files or the upload_files() function for multiple
files or directories. Arbitrary Python objects can be uploaded
directly as a pickle (a Python-specific serialization format),
without the need to locally store the pickle file first, by



Fig. 4. MLflow GUI (from [53])

using Neptune’s file type with the as_pickle() method, as
shown in line 12. In contrast to ClearML, Neptune does not
automatically keep track of the computational environment.
Thus, software dependencies are not saved when running an
experiment, which makes reproducibility more difficult.

The GUI of Neptune looks similar to the MLflow GUI. It
includes all the basic functionalities that MLflow has, but also
has additional nice-to-have features, such as query completion
for filtering or an option to save customized views. Figure 5
shows the run overview of the GUI. In the table, every run
is represented by one row, the displayed columns represent
metadata of a run and can be easily configured and even be
renamed to a custom name. Neptune provides rich filtering
options and helps the user writing the query by giving fitting
proposals. Besides that, it is possible to group runs together
to make the table clearer. Once a table view is customized
as needed, it can be saved. This allows to quickly switch
between various different views. Comparing multiple runs is
easily done by clicking on the eye symbol for the desired
runs. Neptune can filter for differences between runs and as
well shows a small indicator to quickly see if a value increased
or decreased.

Beside the GUI, the data can also be retrieved through a
Python and R API. As a drawback, in contrast to MLflow and
ClearML, Neptune does not provide a REST API.

Similar to MLflow, Neptune’s focus is tracking models,
metrics and hyperparameters. Neptune has the opportunity to
save all the tracked information on their servers, which is
the most common and easiest way. However, this could raise
data governance issues. Thus, Neptune does now also offer
the possibility to deploy the server code on-premises or in a
private cloud [57]. For single users and in special cases (e.g.,
academia, research) Neptune can be used for free. Paid plans
have fixed prices, regardless of the amount of users. However,

storage and usage limits exist (which can be increased by
additional payments).

Neptune additionally provides the option to integrate Jupyter
notebooks into projects. This can be done by installing the
Neptune notebook extension. After enabling it, snapshots of
notebooks can be created and saved to the Neptune project
with the capability to compare different versions of the same
notebook. This allows saving data exploration work next to
the experiment runs. Furthermore, an external tool exists that
allows the combination between Neptune and MLflow [58].
In this case, MLflow runs can be stored on a Neptune server.
That way MLflow experiments can profit from the organization
and collaboration features of Neptune. At the time of writing
(October 2022), the new client wasn’t yet supported by this
tool. Also, Neptune provides a GitHub Actions template to
make the data tracked in Neptune available in GitHub Pull
Requests.

C. ClearML

ClearML is an open-source tool developed by Allegro AI, it
was formerly known as Allegro Trains. At the time of writing,
the current version of ClearML is 1.7.1. ClearML sends data
to a ClearML server to store the data. This server can either
be the SaaS solution provided by ClearML or a self-managed
setup, which can be relatively easy set up for example with the
Docker images provided by ClearML. While self operating is
completely free, the free SaaS version has some limitations to
it, such as the possible number of project members.

The ClearML client can be easily installed using pip. To use
ClearML app credentials have to be added to the environment
in which the experiment is conducted to connect the client
with the account on the server. The credentials can be created
in the workspace section of a ClearML account in the web
interface.



Fig. 5. Neptune GUI (from [39])

1 from clearml import Task, Logger, Dataset
2 path = Dataset.get(dataset_project="MyProject/data",

dataset_name="ds_1").get_local_copy()
3 task = Task.init(project_name="MyProject",
4 task_name="Task1", reuse_last_task_id=False,
5 output_uri="gs://MyProject")
6 hyperparams = {"lr": 0.01,}
7 task.connect(hyperparams)
8 cur_log = task.get_logger()
9 #Training placeholder, model stored in var model

10 cur_log.report_scalar("train", "loss", 1, ep)
11 torch.save(model, "log_r.mdl")
12 cur_log.report_single_value("accuracy", 0.99)

Listing 3. ClearML example code

An exemplary use of ClearML is shown in Listing 3.
Initializing an object of ClearMLs Task class by calling its
init() method, starts the tracking with ClearML, which is
shown in line 3. Setting reuse_last_task_id to False
(line 4) ensures that this task will not override an old task. The
output_uri (line 5) specifies the location for the artifacts
(e.g., the model) and is in this example set to a Google Cloud
Storage. In ClearML a task is the name for everything that
can be tracked, similar to a run in MLflow. By starting the
tracking, ClearML automatically keeps track of a multitude of
things, such as:

• Information about the Git repository, including the name
of the current branch, the current commit ID and the
output for the git diff command.

• Names and values of command line arguments that have
been passed using standard Python packages, such as
click or argparse.

• Plots created by libraries e.g., matplotlib, plotly or
seaborn.

• Information logged by Tensorboard [42] and Tensor-
boardX [59].

• Installed and used packages.
• Information about the resource usage (CPU, GPU, disk

space, etc.).

Besides the information that is logged automatically, ad-
ditional information can get logged with ClearML. This can
be achieved by connecting an object to the task as shown in
line 7. This object can be a Python dictionary or an object of
a (custom) class.

An object of the ClearML class Logger is required,
to log metrics. The task.get_logger() (line 8) and
Logger.current_logger() (not shown in this Listing)
functions return the logger object, which is is connected to the
current task. To log metrics, the method report_scalar()
of the logger object can be used as shown in line 10. This
method is especially useful for metrics that change over time,
as ClearML automatically creates a plot displaying the change
over time in its GUI. The method requires four parameters:
title, series, value and iteration. The title specifies the name
of the scalar and the plot of the scalar. Multiple series can
be grouped into one plot by providing the same title. Series
describes the name of the series of the plot, value the value
and iteration provides the x-coordinate for the plot line.
For single values there is a report_single_value()
method, which only requires the name and the value and
does not result in the value being displayed in a plot. This
is useful for reporting metrics that only have one value in
an experiment run. ClearML also provides more sophisticated
options such as report_matrix() to log a confusion



matrix or report_histogram() to log a histogram.
Besides its hyperparameter and metric tracking capabilities,

ClearML provides a possibility to efficiently store and manage
large datasets. It works similar to DVC [47]: Before up- or
downloading files, hash sums are calculated and compared to
avoid traffic in case there have been no changes. ClearML
also allows to store additional metadata about the data files,
which can then for example be retrieved through the GUI.
This allows versioning datasets even for binary files. A simple
example of the integration into code is given in Listing 3.
To get the local path to a dataset managed with ClearML,
the dataset has to be queried with the Dataset.get()
function (line 2). The get_local_copy() (line 2) function
ensures that a local copy is available and returns the path,
which can then be used for training. ClearML automatically
tracks and uploads (trained) models if they are saved using
the respective functions of the most common Python ma-
chine learning frameworks (e.g., Tensorflow, Pytorch, scikit-
learn). The destination of the upload is specified during the
initialization of the task (line 3), in this case a Google Cloud
Storage, but other common cloud storages are also supported.
The model can then be accessed in Python by retrieving the
respective task and choosing the desired model.

As mentioned earlier, initializing a ClearML Task automat-
ically tracks the installed and used packages including their
version numbers. This can help to reproduce results at a later
stage.

Figure 6 shows a screenshot of the GUI. Multiple tasks
are collected in a project, ClearML also allows the creation
of sub-projects for projects that require more organization.
While the overview table of the experiments looks similar
to Neptune and MLflow, the detailed view of the task is
very nested and can overwhelm new users. This is in our
opinion the biggest downside of ClearML compared to the
other tools: due to its huge amount of possibilities, it requires
more time to familiarize. However, we think this time is
well invested since ClearML provides a lot of options and
possibilities for the user. Those options include possibilities
to show and hide columns as well as sorting and filtering
or a function to compare runs, in which case the differences
between runs will be highlighted. Besides examining data in
the GUI, the data tracked with ClearML can also be retrieved
trough the Python API or through a REST API. Projects are
organized in workspaces, team members can be added to a
workspace to allow collaborative work. In the free hosted
version, workspaces are limited to three members, no such
limit exists on the self-managed version. ClearML provides
also additional features, such as logging debug samples of
images, audio, video samples, which can help understanding
the data, which was used to conduct experiments. To help
increasing reproducibility, by default ClearML automatically
sets a random seed for Tensorflow, Pytorch, and random.

D. DAGsHub

In contrast to the other presented tools, DAGsHub pursues
a different approach. It makes use of existing open-source

technologies and provides unified storage and a GUI for them
(however, DAGsHub itself is not open-source). The open-
source tools combined by DAGsHub are:

• DVC [47] is used to keep track of the data and models.
• Git keeps track of the code.
• MLflow or the DAGsHub Client can be used to track

hyperparameters and metrics.

The interaction of the different tools is presented in Figure 7.
In order to take full advantage of DAGsHub, Git and DVC

as well as MLflow or the DAGsHub Client should be installed
on the client. In case of using MLflow to log to DAGsHub
the integration into code is almost identical to the one shown
in Listing 1. The only required change is to set the tracking
URI specified in line 2 to the URI provided in the DAGsHub
GUI. The functionality when using DAGsHub concerning the
tracking of hyperparameters and metrics is similar to MLflow.
An advantage of using DAGsHub in comparison to MLflow
is its capability to keep track of the data. This is achieved by
using DVC. Tracking data files with DVC is similar to the use
of Git. Files (or even whole directories) have to be added to
DVC to be tracked by using the CLI. By doing this, the files
are added to the gitignore file and a small .dvc file is created.
The .dvc file contains the size of the added file as well as its
hash sum. Git versions the .dvc file and the data files can be
pushed and pulled to a remote storage, which is better suited
for handling large (amounts of) files that might not be text
files.

While using DVC in combination with MLflow does not
require using DAGsHub, the advantage of using DAGsHub is
the unified GUI it provides.

Besides the datasets, also the created models are supposed
to be tracked with DVC. However, in comparison to other
tools where this can be achieved in the training code, DVC is
a CLI tool and thus using it requires more effort in general.
In order to facilitate using Git and DVC from the CLI, Fast
Data Science (FDS) a wrapper around the two tools has been
created by the DAGsHub team [61]. Using FDS combines
similar commands of Git and DVC and thus accelerates the
usage of both tools.

DAGsHub does not provide any functionality to keep track
of the computational environment. However, the basic func-
tionality of MLflow can also be used when using DAGsHub.

The GUI of DAGsHub shown in Figure 8 is familiar to users
of the most common Git webservices, but additionally includes
a data section, as well as an overview of the experiment runs
as known from MLflow, thus most relevant information are
combined in one place. It is the advantage of using the open-
source tools without DAGsHub. However, most organizations
most likely already use a different Git webservice. Especially
since DAGsHub lacks functionalities, which other Git web-
services provide and, which are often adapted (e.g., CI/CD
functionality), organizations might not be willing to migrate to
DAGsHub. For this case DAGsHub provides the functionality
to mirror another Git repository, which however, contradicts
DAGsHub’s main advantage of having everything in one place.



Fig. 6. ClearML GUI (from [60])

Fig. 7. DAGsHub Architecture

With a free DAGsHub plan, the number of collaborators
and storage is limited. Paid plans exist, which allow working
in bigger teams. DAGsHub probably has the most potential
for teams that already use DVC and/or MLflow and want to
keep using the tools but would benefit from unified storage
and GUI.

Recent advances of DAGsHub are its integration of Label
Studio [62], which can be especially helpful when annotating
data in teams. As well as a commenting feature, DAGsHub
Discussions, or the possibility to use the GUI familiar from
MLflow.

E. Comparison

Table I shows a comparison for most of the defined re-
quirements. As tracking the code is done with Git most of the
times and tracking the hyperparameters and metrics and the
ease of integration are on a similar level for all four tools,
these defined requirements are not included in the table. The
tools have different strengths and weaknesses when it comes

to ease of use, pricing and more advanced requirements, such
as tracking data or computational environment.

MLflow has a well-structured API and can be used for
free however, does not provide functionality to track data
and automatically keep track of the environment. Also, the
effort to set up MLflow in a collaborative environment is
more elaborate compared to other tools. Neptune, on the other
hand, offers a simple setup and highly functional GUI but
requires a paid plan when used as a team and only provides
basic functionality to track data and no functionality to track
the environment. In comparison to the two previous tools,
ClearML handles the tracking of data and the computational
environment, taking care of all requirements. Additionally, it
is open-source and can be self-hosted or used as a free or
paid service. The biggest weakness of ClearML based on our
requirements is that because of its richness of features it might
not be as easy to use as other tools that might provide less
functionality. DAGsHub does not provide functionality to track
the environment. However, with DVC the data can be tracked.
As a result, DAGsHub can be considered as a good choice
for teams already using DVC and MLflow who like to have
unified storage and GUI.

V. CONCLUSION AND FUTURE RESEARCH PERSPECTIVE

This paper provided an in-depth analysis of four tools with
the focus of tracking machine learning experiments. After
describing the process of bringing a machine learning model
to production and emphasizing the experimental character of
training a machine learning model, requirements for machine
learning experiment tools were defined based on the needs
of an industrial data science project as well as the research
conducted in the field of reproducible machine learning. Ad-
ditionally 20 tools with functionalities to track experiments,



TABLE I
COMPARITIVE OVERVIEW OF MLFLOW, NEPTUNE, CLEARML AND DAGSHUB

MLflow Neptune ClearML DAGsHub
Evaluated
version

1.29.0 0.16.9 1.7.1 as of September 2022

Data basic functionality to calculate
the hash values and upload it
alongside metadata, no way to
retrieve the actual data

no dedicated functionality pro-
vided

Data Managing and Versioning
with ClearML Data

Data Managing and Versioning
with DVC

Environment encourages the user to do it
manually (MLflow Projects)

no dedicated functionality pro-
vided

automatically keeps track of the
installed Python packages and
their versions

no dedicated functionality pro-
vided

Storing
models

easily possible model has to be stored locally
first and can then be uploaded

automatically uploaded if saved
locally

possible to store models with
DVC, commit required for ev-
ery upload

GUI basic GUI highly customizable &
advanced GUI

advanced GUI unified GUI for data, code, and
experiments

Collaboration possible, requires a shared data
storage

possible with a paid account possible, user limit depends on
the operation mode, unlimited
for self-hosting

free for public repositories, not
free of charge for private repos-
itories

Initial setup
and infras-
tructure

setting up a database or shared
file storage is required for
collaborative use, alternatively
Managed MLflow can be used

easy setup, as the user does not
have to take care of the infras-
tructure necessarily

hosted as well as self-hosting
options exist, images to make
the setup easier exist

easy setup if DAGsHub is used
as Git and DVC storage

Persistence local file, relational databases,
cloud object storage providers

Neptune server, on-premise
server

ClearML server, self managed
server

DAGsHub Storage, MlFlow
backend, cloud object storage
providers

Programatic
Interfaces

Python, REST-API, R, Java Python, R Python, REST-API Python, REST-API, R, Java (via
MLflow)

Workflow
support

since 1.27.0 support for
pipelines

no native support, but integra-
tion into KubeFlow possible

support for pipelines native support for CI/CD-like
pipelines

Ease of Use intuitive Python API, easy us-
able by context (with-statement)

intuitive Python API, more ex-
plicit method calls necessary,
Jupyter notebook integration

intuitive Python API, logs envi-
ronment automatically

see MLflow

which have been identified in a market research have been
presented. Ultimately, four of these tools have been evaluated
in detail and compared. This comparison showed all analyzed
tools function approximately equally well considering the most
basic requirement of tracking hyperparameters and metrics.
However, differences exist, considering the more advanced
requirements such as keeping track of the data. To conclude,
it can be said that the right choice of an experiment tracking
tool depends on the specific requirements, and that the open
source tool ClearML has been identified as meeting most of
the requirements. It has to be noted that due to the quickly
changing market of experiment tracking tools, new tools might
be released or existing tools might receive new functionality.
As a result, further research, also of tools not evaluated in this
paper, might be of use.

MLflow and Neptune are the tools that have developed
recently the most in regard to our requirements. MLflow
added a new powerful pipeline feature that eases the training
process. Neptune has been adapted to R and now also offers
the possibility to self-host a server. Small improvements, e.g.,
the integration of Label Studio, have been integrated into
DAGsHub. In contrast to the other tools, ClearML, which
already met most of our requirements, had no major additions.
Back then, ClearMl was the favored tool that met our require-
ments the best. However, especially MLflow and Neptune have
caught up.

To better understand why the tools presented in this work
have only seen little application in the past, as shown in Sec-
tions I and II, further researcher could focus on the difficulties
that exist in practice while using such tools. Additionally one
or multiple case studies could be conducted, comparing the
evaluated tools or a different set using well-defined metrics.
Another potential research question could focus on interoper-
ability examining in which cases it makes sense to use multiple
tools jointly.

Further, it would be great if standardized formats would be
developed to easily switch from one tracking tool to another.
This would mitigate platform lock-in effects and improve
model life cycle management in the long run. Especially
upcoming regulations from administrations [63] that require
model documentation and reproducability for longer time
periods, would drive such a development.

ACKNOWLEDGMENT

The work is based on the results of a bachelor thesis [64]
of the first mentioned author at the company inovex GmbH.



Fig. 8. DAGsHub GUI

REFERENCES

[1] T. Budras, M. Blanck, T. Berger, and A. Schmidt, “Comparison of
experiment tracking frameworks in machine learning environments,” in
Proceedings of the Fourteenth International Conference on Advances in
Databases, Knowledge, and Data Applications, 2022, pp. 21–28.

[2] Machine learning market. [Online]. Avail-
able: https://www.marketsandmarkets.com/Market-Reports/
machine-learning-market-263397704.html (Accessed 2022-12-13).

[3] P. Warden. The machine learning reproducibility cri-
sis. [Online]. Available: https://petewarden.com/2018/03/19/
the-machine-learning-reproducibility-crisis/ (Accessed 2022-12-13).

[4] State of data science and machine learning 2020. [Online]. Available:
https://www.kaggle.com/kaggle-survey-2020 (Accessed 2022-12-13).

[5] “Ethics Guidelines For Trustworthy AI,” EU Commisssion, Tech. Rep.,
2019. [Online]. Available: https://ec.europa.eu/newsroom/dae/document.
cfm?doc id=60419 (Accessed 2022-12-13).

[6] S. S. Alahmari, D. B. Goldgof, P. R. Mouton, and L. O. Hall, “Chal-
lenges for the repeatability of deep learning models,” IEEE Access,
vol. 8, pp. 211 860–211 868, 2020.

[7] P. Nagarajan, G. Warnell, and P. Stone, “Deterministic implementations
for reproducibility in deep reinforcement learning,” CoRR, vol.
abs/1809.05676, 2018. [Online]. Available: http://arxiv.org/abs/1809.
05676

[8] O. E. Gundersen, S. Shamsaliei, and R. Isdahl, “Do machine learning
platforms provide out-of-the-box reproducibility?” Future Generation
Computer Systems, vol. 126, 07 2021.

[9] M. Mora-Cantallops, S. Sanchez-Alonso, E. Garcia-Barriocanal, and
M.-A. Sicilia, “Traceability for trustworthy ai: A review of models
and tools,” Big Data and Cognitive Computing, vol. 5, no. 2, 2021.
[Online]. Available: https://www.mdpi.com/2504-2289/5/2/20

[10] R. Garcia, V. Sreekanti, N. Yadwadkar, D. Crankshaw, J. E. Gonzalez,
and J. M. Hellerstein, “Context: The missing piece in the machine
learning lifecycle,” KDD CMI Workshop, vol. 114, pp. 32–38, 2018.

[11] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Na-
gappan, B. Nushi, and T. Zimmermann, “Software engineering for
machine learning: A case study,” in 2019 IEEE/ACM 41st International
Conference on Software Engineering: Software Engineering in Practice
(ICSE-SEIP), 2019, pp. 291–300.

[12] P. Langley, “Machine learning as an experimental science,” Machine
Learning, vol. 3, no. 1, pp. 5–8, 1988. [Online]. Available:
https://doi.org/10.1023/A:1022623814640

[13] C. Hill, R. Bellamy, T. Erickson, and M. Burnett, “Trials and tribulations
of developers of intelligent systems: A field study,” in 2016 IEEE Sym-
posium on Visual Languages and Human-Centric Computing (VL/HCC),
2016, pp. 162–170, ISSN: 1943-6106.

[14] M. Vartak, H. Subramanyam, W.-E. Lee, S. Viswanathan, S. Husnoo,
S. Madden, and M. Zaharia, “ModelDB: a system for machine learning
model management,” in Proceedings of the Workshop on Human-
In-the-Loop Data Analytics - HILDA ’16. ACM Press, 2016, pp.
1–3. [Online]. Available: http://dl.acm.org/citation.cfm?doid=2939502.
2939516 (Accessed 2022-12-13).

[15] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[16] N. Hewage and D. Meedeniya, “Machine learning operations: A survey
on mlops tool support,” CoRR, vol. abs/2202.10169, 2022. [Online].
Available: https://arxiv.org/abs/2202.10169 (Accessed 2022-12-13).

[17] “2020 State of Enterprise Machine Learning,” Algorithmia, Whitepaper,
2020. [Online]. Available: https://info.algorithmia.com/hubfs/2019/
Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia 2020
State of Enterprise ML.pdf (Accessed 15.12.2022).

[18] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwin-
ski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerat-
ing the machine learning lifecycle with mlflow.” IEEE Data Eng. Bull.,
vol. 41, no. 4, pp. 39–45, 2018.

[19] A. Chen, A. Chow, A. Davidson, A. DCunha, A. Ghodsi, S. A. Hong,
A. Konwinski, C. Mewald, S. Murching, T. Nykodym, P. Ogilvie,
M. Parkhe, A. Singh, F. Xie, M. Zaharia, R. Zang, J. Zheng, and
C. Zumar, “Developments in mlflow: A system to accelerate the machine
learning lifecycle,” in Proceedings of the Fourth International Workshop
on Data Management for End-to-End Machine Learning, ser. DEEM’20.
New York, NY, USA: Association for Computing Machinery, 2020.
[Online]. Available: https://doi.org/10.1145/3399579.3399867

[20] L. Scotton, “Engineering framework for scalable machine learning
operations,” Master’s thesis, Aalto University. School of Science, 2021.
[Online]. Available: http://urn.fi/URN:NBN:fi:aalto-202101311796
(Accessed 2022-12-13).

[21] G. Zárate, R. Miñón, J. Dı́az-de Arcaya, and A. I. Torre-Bastida, “K2e:
Building mlops environments for governing data and models catalogues
while tracking versions,” in 2022 IEEE 19th International Conference
on Software Architecture Companion (ICSA-C), 2022, pp. 206–209.

[22] J. Pineau, “Reproducibility, reusability, and robustness in deep
reinforcement learning,” Paper presented at the meeting of ICLR
2018, 2018. [Online]. Available: https://www.youtube.com/watch?v=
Vh4H0gOwdIg (Accessed 2022-12-13).

[23] J. Pineau, “The machine learning reproducibility check-
list,” 2020. [Online]. Available: https://www.cs.mcgill.ca/∼jpineau/
ReproducibilityChecklist.pdf (Accessed 2022-12-13).

[24] R. Tatman, J. VanderPlas, and S. Dane, “A practical taxonomy of
reproducibility for machine learning research,” 2nd Reproducibility in
Machine Learning Workshop at ICML 2018, Stockholm, Sweden., 2018.

[25] Stack Overflow, “Stack overflow developer survey results 2018,”
2018. [Online]. Available: https://insights.stackoverflow.com/survey/
2018/#work- -version-control (Accessed 2022-12-13).

[26] J. Bergstra, D. Yamins, and D. D. Cox, “Hyperopt: A python library
for optimizing the hyperparameters of machine learning algorithms,”
Proceedings of the 12th Python in Science Conference in Science
Conference (SCIPY 2013).

[27] M. Tabladillo, A. Arora, and C. Gronlund, “What is the Team Data
Science Process?” [Online]. Available: https://docs.microsoft.com/en-us/
azure/machine-learning/team-data-science-process/overview (Accessed
2022-12-13).

[28] Aim. [Online]. Available: https://aimstack.io (Accessed 2022-12-13).
[29] Amazon sagemaker. [Online]. Available: https://aws.amazon.com/

sagemaker/features/ (Accessed 2022-12-13).

https://www.marketsandmarkets.com/Market-Reports/machine-learning-market-263397704.html
https://www.marketsandmarkets.com/Market-Reports/machine-learning-market-263397704.html
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
https://petewarden.com/2018/03/19/the-machine-learning-reproducibility-crisis/
https://www.kaggle.com/kaggle-survey-2020
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
https://ec.europa.eu/newsroom/dae/document.cfm?doc_id=60419
http://arxiv.org/abs/1809.05676
http://arxiv.org/abs/1809.05676
https://www.mdpi.com/2504-2289/5/2/20
https://doi.org/10.1023/A:1022623814640
http://dl.acm.org/citation.cfm?doid=2939502.2939516
http://dl.acm.org/citation.cfm?doid=2939502.2939516
http://www.deeplearningbook.org
https://arxiv.org/abs/2202.10169
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://info.algorithmia.com/hubfs/2019/Whitepapers/The-State-of-Enterprise-ML-2020/Algorithmia_2020_State_of_Enterprise_ML.pdf
https://doi.org/10.1145/3399579.3399867
http://urn.fi/URN:NBN:fi:aalto-202101311796
https://www.youtube.com/watch?v=Vh4H0gOwdIg
https://www.youtube.com/watch?v=Vh4H0gOwdIg
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://www.cs.mcgill.ca/~jpineau/ReproducibilityChecklist.pdf
https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://insights.stackoverflow.com/survey/2018/#work-_-version-control
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://docs.microsoft.com/en-us/azure/machine-learning/team-data-science-process/overview
https://aimstack.io
https://aws.amazon.com/sagemaker/features/
https://aws.amazon.com/sagemaker/features/


[30] Azure machine learning. [Online]. Available: https://docs.microsoft.
com/de-de/azure/machine-learning/how-to-track-monitor-analyze-runs?
tabs=python (Accessed 2022-12-13).

[31] Clearml. [Online]. Available: https://clear.ml (Accessed 2022-12-13).
[32] Comet. [Online]. Available: https://www.comet.ml/site/ (Accessed

2022-12-13).
[33] Dagshub. [Online]. Available: https://dagshub.com (Accessed 2022-12-

13).
[34] Dominodatalab. [Online]. Available: https://www.dominodatalab.com

(Accessed 2022-12-13).
[35] Guild ai. [Online]. Available: https://guild.ai (Accessed 2022-12-13).
[36] H2o mlops. [Online]. Available: https://www.h2o.ai/products/

h2o-mlops/ (Accessed 2022-12-13).
[37] Dvc studio. [Online]. Available: https://studio.iterative.ai (Accessed

2022-12-13).
[38] Mlflow. [Online]. Available: https://mlflow.org (Accessed 2022-12-13).
[39] Neptune. [Online]. Available: https://neptune.ai/product (Accessed

2022-13-10).
[40] Paperspace gradient. [Online]. Available: https://gradient.paperspace.

com (Accessed 2022-12-13).
[41] Polyaxon. [Online]. Available: https://polyaxon.com (Accessed 2021-

07-31).
[42] Tensorboard. [Online]. Available: https://www.tensorflow.org/

tensorboard/ (Accessed 2022-12-13).
[43] Valohai. [Online]. Available: https://valohai.com (Accessed 2022-12-

13).
[44] Verta. [Online]. Available: https://www.verta.ai (Accessed 2022-12-13).
[45] Vertex ai. [Online]. Available: https://cloud.google.com/vertex-ai

(Accessed 2022-12-13).
[46] Weights & biases. [Online]. Available: https://wandb.ai/site (Accessed

2022-12-13).
[47] Data version control - documentation. [Online]. Available: https:

//dvc.org/doc (Accessed 2022-12-13).
[48] M. Zaharia, A. Chen, A. Davidson, A. Ghodsi, S. A. Hong, A. Konwin-

ski, S. Murching, T. Nykodym, P. Ogilvie, M. Parkhe et al., “Accelerat-
ing the machine learning lifecycle with mlflow,” IEEE Data Eng. Bull.,
vol. 41, no. 4, pp. 39–45, 2018.

[49] Pypi mlflow history. [Online]. Available: https://pypi.org/project/mlflow/
#history (Accessed 2022-12-13).

[50] Managed mlflow. [Online]. Available: https://www.databricks.com/
product/managed-mlflow (Accessed 2022-12-13).

[51] Mlflow. [Online]. Available: https://www.mlflow.org/docs/1.29.0/
pipelines.html (Accessed 2022-12-13).

[52] Mlflow documentation. [Online]. Available: https://www.mlflow.org/
docs/latest/index.html (Accessed 2022-12-13).

[53] Pycaret logging with mlflow. [Online]. Available: https://pycaret.gitbook.
io/docs/get-started/functions/initialize#experiment-logging (Accessed
2022-12-13).

[54] Mlflow projects. [Online]. Available: https://mlflow.org/docs/latest/
projects.html (Accessed 2022-12-13).

[55] Pypi neptune client history. [Online]. Available: https://pypi.org/project/
neptune-client/#history (Accessed 2022-12-13).

[56] Neptune r client package. [Online]. Available: https://docs.neptune.ai/
integrations/r/ (Accessed 2022-12-13).

[57] Neptune - deploying neptune on your server. [Online]. Available:
https://docs.neptune.ai/about/on-prem intro/ (Accessed 2022-12-15).

[58] Neptune-mlflow integration. [Online]. Available: https://docs-legacy.
neptune.ai/integrations/mlflow.html (Accessed 2022-12-13).

[59] T.-W. Huang. tensorboardx. [Online]. Available: https://github.com/
lanpa/tensorboardX (Accessed 2022-12-13).

[60] Clearml. [Online]. Available: https://clear.ml/docs/latest/docs/webapp/
webapp exp table/ (Accessed 2022-12-13).

[61] Fast data science. [Online]. Available: https://github.com/DAGsHub/fds
(Accessed 2021-07-20).

[62] M. Tkachenko, M. Malyuk, A. Holmanyuk, and N. Liubimov, “Label
Studio: Data labeling software,” 2020-2022, open source software
available from https://github.com/heartexlabs/label-studio. [Online].
Available: https://github.com/heartexlabs/label-studio (Accessed 2022-
12-13).

[63] E. Commission. Europe fit for the Digital Age: Commission proposes
new rules and actions for excellence and trust in Artificial Intelligence.
[Online]. Available: https://ec.europa.eu/commission/presscorner/detail/
en/ip 21 1682 (Accessed 2022-12-13).

[64] T. Budras, “Evaluation of machine learning lifecycle tools in the
context of a specific nlp project,” Bachelor’s Thesis, Department of
Computer Science and Business Information Systems, University of
Applied Sciences Karlsruhe, Germany, 2021. [Online]. Available: https:
//www.smiffy.de/thesis/thesis-buti1021.pdf (Accessed 2022-12-13).

https://docs.microsoft.com/de-de/azure/machine-learning/how-to-track-monitor-analyze-runs?tabs=python
https://docs.microsoft.com/de-de/azure/machine-learning/how-to-track-monitor-analyze-runs?tabs=python
https://docs.microsoft.com/de-de/azure/machine-learning/how-to-track-monitor-analyze-runs?tabs=python
https://clear.ml
https://www.comet.ml/site/
https://dagshub.com
https://www.dominodatalab.com
https://guild.ai
https://www.h2o.ai/products/h2o-mlops/
https://www.h2o.ai/products/h2o-mlops/
https://studio.iterative.ai
https://mlflow.org
https://neptune.ai/product
https://gradient.paperspace.com
https://gradient.paperspace.com
https://polyaxon.com
https://www.tensorflow.org/tensorboard/
https://www.tensorflow.org/tensorboard/
https://valohai.com
https://www.verta.ai
https://cloud.google.com/vertex-ai
https://wandb.ai/site
https://dvc.org/doc
https://dvc.org/doc
https://pypi.org/project/mlflow/#history
https://pypi.org/project/mlflow/#history
https://www.databricks.com/product/managed-mlflow
https://www.databricks.com/product/managed-mlflow
https://www.mlflow.org/docs/1.29.0/pipelines.html
https://www.mlflow.org/docs/1.29.0/pipelines.html
https://www.mlflow.org/docs/latest/index.html
https://www.mlflow.org/docs/latest/index.html
https://pycaret.gitbook.io/docs/get-started/functions/initialize#experiment-logging
https://pycaret.gitbook.io/docs/get-started/functions/initialize#experiment-logging
https://mlflow.org/docs/latest/projects.html
https://mlflow.org/docs/latest/projects.html
https://pypi.org/project/neptune-client/#history
https://pypi.org/project/neptune-client/#history
https://docs.neptune.ai/integrations/r/
https://docs.neptune.ai/integrations/r/
https://docs.neptune.ai/about/on-prem_intro/
https://docs-legacy.neptune.ai/integrations/mlflow.html
https://docs-legacy.neptune.ai/integrations/mlflow.html
https://github.com/lanpa/tensorboardX
https://github.com/lanpa/tensorboardX
https://clear.ml/docs/latest/docs/webapp/webapp_exp_table/
https://clear.ml/docs/latest/docs/webapp/webapp_exp_table/
https://github.com/DAGsHub/fds
https://github.com/heartexlabs/label-studio
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682
https://ec.europa.eu/commission/presscorner/detail/en/ip_21_1682
https://www.smiffy.de/thesis/thesis-buti1021.pdf
https://www.smiffy.de/thesis/thesis-buti1021.pdf

