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Abstract—In software engineering, measuring software func-
tional size via the IFPUG (International Function Point Users
Group) Function Point Analysis using the standard manual
process can be a long and expensive activity, which is possible
only when functional user requirements are known completely
and in detail. To solve this problem, several early estimation
methods have been proposed and have become de facto standard
processes. Among these, a prominent one is High-level Function
Point Analysis. Recently, the Simple Function Point method has
been released by IFPUG; although it is a proper measurement
method, it has a great level of convertibility to traditional Func-
tion Points and may be used as an estimation method. Both High-
level Function Point Analysis and Simple Function Point skip
the activities needed to weight data and transaction functions,
thus enabling lightweight measurement based on coarse-grained
requirements specifications. This makes the process faster and
cheaper, but yields approximate measures. The accuracy of
the mentioned method has been evaluated, also via large-scale
empirical studies, showing that the yielded approximate measures
are sufficiently accurate for practical usage. In this paper, locally
weighted regression is applied to the problem outlined above.
This empirical study shows that estimates obtained via locally
weighted regression are more accurate than those obtained via
High-level Function Point Analysis, but are not substantially
better than those yielded by alternative estimation methods using
linear regression. The Simple Function Point method appears to
yield measures that are well correlated with those obtained via
standard measurement. In conclusion, locally weighted regression
appears to be effective and accurate enough for estimating
software functional size.

Index Terms—Function Point Analysis, Early Size Estimation,
High-level FPA, Simple Function Points, LOcally Estimated
Scatterplot Smoothing (LOESS)

I. INTRODUCTION

This paper extends a previous study that examined a single
functional measure dataset [1].

In the late seventies, Allan Albrecht introduced Function
Points Analysis (FPA) at IBM [2], as a means to measure
the functional size of software, with special reference to the
“functional content” delivered by software providers. Albrecht
aimed at defining a measure that might be correlated to the
value of software from the perspective of a user, and could
also be useful to assess the cost of developing software
applications, based on functional user requirements.

FPA is a Functional Size Measurement Method (FSMM),
compliant with the ISO/IEC 14143 standard, for measuring the
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size of a software application in the early stages of a project,
generally before actual development starts. Accordingly, soft-
ware size measures expressed in Function Points (FP) are often
used for cost estimation.

The International Function Points User Group (IFPUG)
is an association that keeps FPA up to date, publishes the
official FP counting manual [3], and certifies professional
FP counters. Unfortunately, in some conditions, performing
the standard IFPUG measurement process may be too long
and expensive, with respect to management needs, because
standard FP measurement can be performed only when rel-
atively complete and detailed requirements specifications are
available, while functional measures could be needed much
earlier for management purposes.

Many methods were invented and used to provide estimates
of functional size measures, based on fewer or coarser-grained
information than required by standard FPA. These methods are
applied very early in software projects, even before deciding
what process (e.g., agile or waterfall) will be used. One of
these methods is the High-level FPA (HLFPA) method [4],
which was developed by NESMA under the name of “NESMA
estimated” method [5].

In 2010, a new FSMM called Simple Function Point (SiFP)
was developed by Meli [6]. In 2019, IFPUG acquired the
method and in 2021 the IFPUG branded Simple Function Point
(SFP) method was delivered to the market [7].

HLFPA and SiFP have been evaluated by several studies,
which found that the methods are usable in practice to ap-
proximate traditional FPA values, since they yield reasonably
accurate estimates. However, the question if it is possible to
get more accurate estimates from the basic information used
by HLFPA remains open.

In this paper, we evaluate—via an empirical study—the us-
age of LOESS (LOcally Estimated Scatterplot Smoothing)—
also known as LOWESS (LOcally WEighted Scatterplot
Smoothing)—to build models that can be used for early
estimation of functional size.

We also compare the standard IFPUG FPA measures, the
estimates obtained via HLFPA and the estimates obtained
via alternative methods (linear regression models and LOESS
models) with the measures obtained via the Simple Function
Point (SFP) method. SFP is a lightweight method that has



also been adopted by IFPUG as an alternative to full-fledged
FPA. SFP measurement requires even less time and effort than
HLFPA, and it usually yields measures that are very well
correlated with IFPUG standard measures.

The work presented here extends previous work [1] by using
two datasets to evaluate functional size estimation methods.
Specifically, the availability of two datasets allows for cross-
dataset evaluations. That is, one dataset is used as the training
set, and the other one is used as the test set. This is particularly
interesting for practitioners that do not own historical data: our
results show that by using a “foreign” dataset for training, it
is possible to obtain estimates that appear accurate enough for
being used in practice.

In general, the findings reported in this paper contribute to
increase our knowledge of the techniques that are available for
functional size estimation, their applicability conditions, and
the accuracy of the results that can be expected.

The remainder of the paper is organized as follows.
Section II provides an overview of functional size measure-
ment methods, and other background information. Section III
describes the empirical study and its results. In Section IV
the results obtained in the empirical study are discussed, from
the technical and managerial points of view. In Section V,
we discuss the threats to the validity of the study. Section VI
reports about related work. Finally, in Section VII, we draw
some conclusions and outline future work.

Note that FPA defines both unadjusted FP (UFP) and
adjusted FP. The former are a measure of functional require-
ments. The latter are obtained by correcting unadjusted FP in
order to get an indicator that is expected to be better correlated
to development effort. Noticeably, the ISO standardized only
unadjusted FP, recognizing UFP as a proper measure of
functional requirements [8]. Following the ISO, in this paper
we deal only with UFP, even when we speak generically of
Function Points or FP. As a matter of fact, also HLFPA aims
at providing measures that are compatible with UFP, and not
with adjusted FP.

II. BACKGROUND

Function Point Analysis was originally introduced by Al-
brecht to measure the size of data-processing systems from
the point of view of end-users, with the goal of estimating
the value of an application and the development effort [2].
The fortunes of this measure led to the creation of the IFPUG
(International Function Points User Group), which maintains
the method and certifies professional measurers.

The “amount of functionality” released to the user can be
evaluated by taking into account 1) the data used by the appli-
cation to provide the required functions, and 2) the transactions
(i.e., operations that involve data crossing the boundaries of
the application) through which the functionality is delivered to
the user. Both data and transactions are counted on the basis
of Functional User Requirements (FURs) specifications, and
constitute the IFPUG Function Points measure.

FURs are modeled as a set of base functional components
(BFCs), which are the measurable elements of FURs: each of

the identified BFCs is measured, and the size of the application
is obtained as the sum of the sizes of BFCs. IFPUG BFCs
are: data functions (also known as logical files), which are
classified into internal logical files (ILF) and external interface
files (EIF); and elementary processes (EP)—also known as
transaction functions—which are classified into external in-
puts (EI), external outputs (EO), and external inquiries (EQ),
according to the activities carried out within the considered
process and the primary intent.

The complexity of a data function (ILF or EIF) depends on
the Record Element Types (RETs), which indicate how many
types of variations (e.g., sub-classes, in object-oriented terms)
exist per logical data file, and Data Element Types (DETs),
which indicate how many types of elementary information
(e.g., attributes, in object-oriented terms) are contained in the
given logical data file.

The complexity of a transaction depends on the number of
FTRs—i.e., the number of File Types Referenced while per-
forming the required operation—and the number of DETs—
i.e., the number of types of elementary data—that the con-
sidered transaction sends and receives across the boundaries
of the application. Details concerning the determination of
complexity can be found in the official documentation [3].

The core of FPA involves three main activities:

1) Identifying data and transaction functions.

2) Classifying data functions as ILF or EIF and transactions

as EI, EO or EQ.

3) Determining the complexity of each data or transaction

function.

The first two of these activities can be carried out even if
the FURs have not yet been fully detailed. On the contrary,
activity 3 requires that all details are available, so that FP
measurers can determine the number of RET or FTR and DET
involved in every function. Activity 3 is relatively time- and
effort-consuming [9].

HLFPA does not require activity 3, thus allowing for size
estimation when FURs are not fully detailed: it only requires
that the complete sets of data and transaction functions are
identified and classified.

The SFP method [7] does not require activities 2 and 3: it
only requires that the complete sets of data and transaction
functions are identified.

Both the HLFPA and SFP methods let measurers skip the
most time- and effort-consuming activity, which also needs
that requirements are fully specified; thus both methods are
relatively fast and cheap. The SFP method does not even
require classification, making size estimation even faster and
less subjective (since different measurers can sometimes clas-
sify differently the same transaction, based on the subjective
perception of the transaction’s primary intent).

A. The High-level FPA method

NESMA defined two size estimation methods: the ‘NESMA
Indicative’ and the ‘NESMA Estimated’ methods. IFPUG
adopted these methods as early function point analysis meth-
ods, under the names of ‘Indicative FPA’ and ‘High-level FPA,



respectively [4]. The Indicative FPA method proved definitely
less accurate [10], [11]. Hence, in this paper, we consider only
the High-level FPA method.

The High-level FPA method requires the identification and
classification of all data and transaction functions, but does not
require the assessment of the complexity of functions: ILF and
EIF are assumed to be of low complexity, while EI, EQ and
EO are assumed to be of average complexity. Hence, estimated
size is computed as follows:

EstSizeypp = T #ILF + 5 #EIF + 4 #EI+ 5 #EO + 4 #EQ (1)

where #ILF is the number of data functions of type ILF, #EI is
the number of transaction functions of type EI, etc.

B. The Simple Function Point Method

The Simple Function Point measurement method [6] [7]
has been specifically designed to be agile, fast, lightweight,
easy to use, and with minimal impact on software development
processes. It is easy to learn and provides reliable, repeatable,
and objective results. Like IFPUG FPA, it is independent of
the technologies used and technical design principles.

SFP requires only the identification of Elementary Processes
(EP) and Logical Files (LF), based on the following assump-
tions: 1) a user gives value to a BFC as a whole independently
of internal organization and details, and 2) a cost model based
on SFP shows a precision that is comparable to that of a cost
model based on a detailed FPA measure. The latter assumption
has been verified by different studies [12] [13].

SFP assigns a numeric value directly to these BFCs:

SFP =7 #LF + 4.6 #EP )

thus significantly speeding up the functional sizing process,
at the expense of ignoring the domain data model, and the
primary intent of each Elementary Process.

The weights for each BFC were originally given to achieve
the best possible approximation of FPA but as long as the
method has become a measurement method, those weights
became constants, which are not subject to update or change
for approximation reasons and that are crystallized for stability,
repeatability and comparability reasons. We can approximate
the FPA by setting EstSizeyrp = SFP.

III. EMPIRICAL STUDY
A. The Datasets

In the empirical study, we use two datasets. The first is
an ISBSG dataset [14], which was also used previously to
evaluate SFP [12]; this is the dataset we used in our original
work [1].

The second dataset includes data from software projects
developed and used by a Chinese financial enterprise (hence,
sometimes we make reference to this dataset as the “Chinese”
dataset). These data are subject to non-disclosure agreement,
therefore we cannot publish them in a replication package.
Also the Chinese dataset was used previously [15], [16] in
studies concerning the estimation of functional size measures.

Both datasets contain several small project data. As a
matter of fact, estimating the size of small projects is not
very interesting. Therefore, we removed from the dataset the
projects smaller than 200 UFP. The resulting ISBSG dataset
includes data from 110 projects having size in the [207, 4202]
range. Some descriptive statistics for this dataset are given in
Table I (where all values are rounded to integer).

TABLE I
DESCRIPTIVE STATISTICS FOR THE ISBSG DATASET.

UFP HLFPA SFP #EI #EO #EQ #ILF #EIF #LF

Mean 976 888 971 43 46 46 26 24 50 135
StDev 842 739 785 38 71 51 22 23 39 123
Median 639 607 674 29 17 32 20 18 37 82
Min 207 202 223 0 0 0 0 1 12 14
Max 4202 3755 4257 204 442 366 100 172 234 656

While the ISBSG dataset contains data form projects not
greater than 4202 UFP, the Chinese dataset contains data
also from much larger projects (up to a few thousands UFP).
However, to make the results obtained with the two datasets
comparable, we used a subset of the Chinese dataset, so that
the size range covered by the two datasets is the same. Some
descriptive statistics of the resulting dataset (which accounts
for 276 projects) are given in Table II (where all values are
rounded to integer).

TABLE I

DESCRIPTIVE STATISTICS FOR THE CHINESE DATASET.

UFP HLFPA SFP #EI #EO #EQ #ILF #EIF #LF #EP
Mean 1357 1323 1452 34 14 111 44 87 48 242
Sd 1040 1038 1141 39 23 101 60 101 52 200
Median 1041 984 1074 21 4 80 24 52 29 171
Min 200 142 154 0 0 0 0 0 0 2
Max 4079 4689 5349 220 144 524 428 712 276 997

B. Method used

We built models of functional size using LOESS (locally
estimated scatterplot smoothing) [17]. LOESS belongs to the
family of computational methods, based on least squares
regression, for the estimation of functions fitting subsets of
points of a dataset, without the need to yield a global function
as a model. The way it works is capturing the local variability
of neighbour points of the current point analyzed, in order to
build up a function that describes the deterministic part of the
variation in the data, point by point. For this reason, it is said to
combine k-nearest-neighbor-based models into a meta-model.
The regression can be linear and non-linear, i.e., polynomial.
The mechanism of neighbours selection depends on a smooth-
ing parameter, «, which determines the inclusion span of point
neighbours to be included in the fitting polynomial function.
A polynomial function of zero degree turns the LOESS curve
method into a mobile average smoothing curve. A weighted
variant of LOESS is called LOWESS, which stands for “lo-
cally weighted scatterplot smoothing”. In this variant, local
points are weighted for relevance with respect to the analyzed
point, which is proportional to the variance brought by each



point, with the nearest point receiving more importance and
the furthest ones having less importance during models fitting.

C. Procedure

The analysis was carried out using the R programming
language and environment [18]. Specifically, we used the
loess function from the Stats package, which is provided
as part of the system libraries.

Through the span parameter, the 1oess function makes it
possible to control the degree of smoothing. In the empirical
study, we tried different values for the span parameter,
namely 0.5, 0.75 and 0.95.

We aimed at building models using the same five variables
(#EI, #EO, #EQ, #ILF, #EIF) used by HLFPA. However, the
loess function from the Stats package does not allow
more than 4 independent variables. To overcome this problem,
we observe that in the HLFPA method, #EI and #EQ get the
same weight; therefore, it is conceivable to consider Els and
EQs as a single class of transactions (only as far as size
estimation is concerned). Accordingly, for each project we
compute #EIQ = #EI + #EQ. Then we use four independent
variables (#EO, #EIQ, #ILF, #EIF) to build size models via
LOESS. In addition, we built models that use the same two
variables (#LF and #EP) used by SFP. We also built Ordinary
Least Square (OLS) linear regression models.

The evaluation was carried out via 10-time 10-fold cross
validation. For all the estimates obtained from 10-time 10-
fold cross validation, we compute estimation errors and a few
indicators, as follows. The error (alias residual) for the ‘"
estimation is defined as ee; = S; — F;, where S; is the actual
size of the element involved in the i*" estimation (i.e., the size
measured according to the IFPUG standard process) and E;
is the estimated size. The computed indicators are:

¢ MAR is the Mean of Absolute Residuals, i.e., MAR =
L5 o leeil, where n is the number of estimates.

« MR is the MAR divided by the mean size L 37 S;. It
gives an idea of the relative importance or the estimation
errors.

o« MdAR is the median of absolute residuals.

e« MdR is MdAR divided by the median size. It gives an
idea of the relative importance or the estimation errors,
while taking into account that the distribution of sizes is
skewed.

« MMRE is the mean magnitude of relative errors.
MMRE = 377 |re;|, where re; = 5+ is the relative
error. MMRE has been widely criticized as a biased
metric [19]: we report it for completeness. At any rate,
we also report MR, which is not a biased metric, since
the mean size is a characteristic of the given dataset: MR
is a sort of normalization of the MAR.

« MdAMRE is the median magnitude of relative errors.

« Finally, R? (the coefficient of determination) is given,
since it is a quite reliable indicator of the models’
accuracy [20].

To assess the effect size, we use the non-parametric statistic
A by Vargha and Delaney [21], as provided by the R package
effsize [22].

To evaluate if the estimates provided by a method are
significantly better than those provided by another method, we
tested the statistical significance of the differences among ab-
solute errors yielded by the considered methods [19]. Namely,
we compared the absolute residuals via Wilcoxon sign rank
test [23] (using the wilcox.test function from the R
Stats package).

D. Evaluation procedure

Our study was carried out in two steps, the first one dealing
with within-dataset and the second one with cross-dataset
evaluation.

The within-dataset evaluation was carried out using the
ISBSG dataset (as reported [1]) and the Chinese dataset. In
both cases, we carried out 10-times 10-fold cross validation. In
the process, we did not always get usable results. Specifically,
via OLS regression we sometimes obtained invalid models
(e.g., models with not normally distributed residuals); via
LOESS we obtained models that did not support estimation
in extreme cases, i.e., for too large or too small independent
variables. All these cases were not evaluated. They are a strict
minority, hence the reported results represent the most likely
outcome of estimation in practice.

Cross-dataset evaluation was straightforward: we built a
model (for each of the considered types) using the ISBSG
dataset as the training set, and evaluated it using the Chinese
dataset as the test set. This operation was then repeated using
the Chinese dataset for training and the ISBSG dataset for
testing.

E. Results of within-dataset evaluations

This section reports the results obtained for the within-
dataset evaluations obtained using first the ISBSG dataset, and
then the Chinese dataset.

Results obtained with the ISBSG dataset

The accuracy indicators computed over the estimates that
were obtained for the ISBSG dataset are given in Table III.
Models LMuv are built using OLS regression using v inde-
pendent variables; models LWMuv (where LWM stands for
Locally Weighted Model) are built using LOESS, based on
v independent variables. For LWMuv we give in parentheses
the value of the span value.

Table III suggests that OLS linear models provide quite
good estimates. Surprisingly, LM4, i.e., the model based on
#EO, #EIQ, #ILF, #EIF achieves better results than the LM5,
i.e., the model based on #EO, #EI, #EQ, #ILF, #EIF.

We can also observe that estimation accuracy of LWM
models varies with the span; specifically, accuracy improves
with span. However, the improvement is modest for LWM?2
(MAR decreases from 91.4 to 86.6), while it is quite large
for LWM4 (MAR decreases from 93.7 to 55.6). Overall, it
seems that when LOESS is used with two variables it is not



TABLE III
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET: ACCURACY
INDICATORS.
MAR MR MJdAR  MdR MMRE MdJMRE R?
HLFPA 103.8  0.106 58.0 0.091 0.097 0.084 0.966
SFP 87.1 0.089 60.5 0.095 0.105 0.078 0.978
LMS5 62.0  0.064 40.6 0.064 0.074 0.057 0.985
LM4 582 0.060 39.0 0.061 0.071 0.055 0.987
LM2 91.6  0.096 522 0.089 0.096 0.084 0.971
LWM4(0.5) 93.7  0.107 535 0.089 0.109 0.089 0.943
LWM2(0.5) 91.4  0.099 56.5 0.089 0.103 0.082 0.940
LWM4(0.75) 66,5  0.076 39.5 0.066 0.082 0.068 0.972
LWM2(0.75) 88.7  0.096 58.2 0.091 0.101 0.075 0.950
LWM4(0.95) 55.6  0.064 37.4 0.062 0.073 0.064 0.984
LWM2(0.95) 86.6  0.094 53.9 0.085 0.096 0.072 0.958

that the size effect is practically nil, i.e., LM4 is better, but by
a practically irrelevant extent.

Finally, we look into the error distributions yielded by the
estimation methods that we used in the study.

Figure 1 shows the boxplots of estimation errors for each
of the used methods. It can be noticed that LWM2 models
provide exceedingly large errors in a few cases.

able to substantially improve the estimates provided by LM2;
instead, LOESS used with four variables achieves good results,
provided that span is sufficiently large. In fact, the minimum
MAR is achieved by LWM4 with span=0.95.

It can also be observed that SFP measures provide an
approximation that is better than HLFPA’s, and not much
worse than the best estimators’. Considering that SFP uses
fixed weights and does not even require classifying data and
transactions, and that the method is not specifically intended
to approximate IFPUG measures, this is a quite remarkable
result.

The results of the Wilcoxon sign rank test (which are all
statistically significant at the usual o = 0.05 level) are given
in Table IV, where symbol “>" (respectively, “<” and “=")
in the cell at row 4 and column j indicates that the model
in row ¢ has greater (respectively, smaller and equal) absolute
residuals than the model in column j.

TABLE IV
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET:
COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA WILCOXON SIGN
RANK TEST.

HLFPA SFP LM5 LM4 LM2 LWM4 LWM2 LWM4 LWM?2 LWM4 LWM?2

(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)

HLFPA - > > > > > > > > > >
SFP < - > > > = > > > >

LM5 < < - > < < < < < > <
LM4 < < < = < < < < < < <
LM2 < < > > - < < > = > >
LWM4(.5) < = > > > - = > > > >
LWM2(.5) < < > > > = - > > > >
LWM4(.75) < < > > < < < - < > <
LWM2(.75) < < > > = < < > - > >
LWM4(.95) < < < > < < < < < - <
LWM2(.95) < < > > < < < > < > -

To assess the effect size, we use the non-parametric statistic
A by Vargha and Delaney [21], as provided by the R package
effsize [22]. We obtained the results given in Table V,
where each numeric result is accompanied by its interpreta-
tion [22]: ‘n’ and ‘s’ indicate negligible and small effect size,
respectively.

LWM4(0.95) appears to be the best model according to
MAR (Table III). However, According to the Wilcoxon sign
rank test, LM4 is the most accurate model. The disagreement
between this two indications is explained by Vargha and
Delaney’s A, which is 0.51 for LM4 vs. LWM4(0.95), showing

LWM2(0.95) — o - ([ - oo co
LWM4(0.95) — O {[ o=
LWM2(0.75) — oo - ([ - aEmD [}
LWM4(0.75) 4 © ocmme I} g
LWM2(0.5) — oe-I-am © oo
LWM4(0.5) 4 © O - e o O O
LM2 — @ - {[1 - e
LM4 — e I a0
LMS - o ommmmo a0
SFP — o - [IJ- -Gmno
HLFPA — r-O--®o
T T T T
0 1000 2000 3000

Fig. 1. Within-dataset evaluation using the ISBSG dataset: error boxplots.

Figure 2 provides the same information as Figure 1, but
omitting outliers. It can be seen that the various models do not
yield dramatically different accuracy levels, when the outliers
are excluded. However, it is noteworthy that HLFPA tends
to underestimate (as already noted in [16]). The other models
provide more balanced errors, with medians very close to zero.
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Fig. 2. Within-dataset evaluation using the ISBSG dataset: error boxplots (no
outliers).

Figure 3 shows the boxplots of absolute estimation errors
for each of the used methods, excluding outliers. The mean
absolute error (i.e., the MAR) is shown as an orange diamond.
Also according to Figure 3, LM4, LM5 and LWM4(0.95) are
the most accurate models.



TABLE V
WITHIN-DATASET EVALUATION USING THE ISBSG DATASET: EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LMS5 LM4 LM2 LWM4 LWM2 LwWM4 LWM2 LWM4 LwWM2
(0.5) 0.5) (0.75) (0.75) (0.95) (0.95)
HLFPA NA 0.52(n)  0.61(s) 0.62(s)  0.54(n) 0.53(n) 0.53(n) 0.59(s) 0.55(n) 0.61(s) 0.56(n)
SFP 0.48(n) NA 0.60(s) 0.62(s)  0.52(n) 0.51(n) 0.51(n) 0.58(s) 0.53(n) 0.60(s) 0.54(n)
LMS 0.39(s)  0.40(s) NA  052(n) 044(m) 042(s) 042(s) 0.49m) 043m) 0.51n) 0.45(n)
LM4 0.38(s) 0.38(s) 0.48m)  NA 0.42(s) 040(s) 0.40(s) 047(n) 042(s) 0.49(m) 0.43(n)
LM2 0.46(n) 0.48(n) 0.56(n)  0.58(s) NA 0.48(n) 0.49(n) 0.55(n) 0.50(n) 0.57(n) 0.51(n)
LWM4(0.5)  047(n) 0.49m) 0.58(s) 0.60(s) 0.52(m) NA  050m) 0.57(n) 0.52m) 0.59(s) 0.53(n)
LWM2(0.5) 0.47(n)  0.49(n)  0.58(s) 0.60(s)  0.51(m)  0.50(n) NA 0.56(n) 0.51(m) 0.58(s)  0.52(n)
LWM4(0.75) 0.41(s) 0.42(s) 0.51(n) 0.53(n) 0.45(n) 0.43() 0.44(n) NA 0.45(n) 0.52(n) 0.47(n)
LWM2(0.75) 0.45(n) 047(n) 0.57(n) 0.58(s) 0.50(n) 0.48(n) 0.49(n) 0.55(n) NA 0.57(n)  0.51(n)
LWM4(0.95) 0.39(s) 0.40(s) 0.49(n) 0.51(n) 0.43(n) 0.41(s) 0.42(s) 0.48(n) 0.43(n) NA 0.45(n)
LWM2(0.95) 0.44(n) 0.46(n) 0.55(n) 0.57(n) 0.49(n) 047(n) 0.48m) 0.53(n) 0.49(n) 0.55(n) NA
The results of the Wilcoxon sign rank test (which are all
LWM2(0.95) v LI F------------------ “ statistically significant at the usual o« = 0.05 level) are given
LWM4(0.95) o +--CI=d-------- 4 in Table VII.
LWM2(0.75) H - C—XI—=}------------m oo 4
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Fig. 3. Within-dataset evaluation using the ISBSG dataset: absolute error LWM2(095) > < < < < < z < < < —

boxplots (no outliers).

Results obtained with the Chinese dataset

The accuracy indicators computed over the estimates that
were obtained for the Chinese dataset are given in Table VI.

TABLE VI
WITHIN-DATASET EVALUATION USING THE CHINESE DATASET:
ACCURACY INDICATORS.

MAR MR MdAR  MdR MMRE MdJMRE R?
HLFPA 119.0  0.088 69.0 0.066 0.095 0.077 0.970
SFP 1543  0.114 91.9 0.088 0.124 0.108 0.945
LMS5 121.0  0.089 78.1 0.076 0.104 0.087 0.972
LM4 128.3  0.095 75.7 0.074 0.105 0.087 0.964
LM2 131.8  0.097 75.8 0.073 0.108 0.088 0.960
LWM4(0.5) 151.9  0.115 82.3 0.081 0.119 0.098 0.942
LWM2(0.5) 116.6  0.087 69.3 0.068 0.104 0.083 0.970
LWM4(0.75) 1547  0.117 79.9 0.079 0.120 0.104 0.939
LWM2(0.75) 118.7  0.089 74.9 0.073 0.104 0.083 0.970
LWM4(0.95) 123.6  0.094 74.9 0.074 0.106 0.090 0.966
LWM2(0.95) 118.8  0.089 77.8 0.076 0.104 0.082 0.970

Table VI shows that HLFPA provides quite good estimates:
better than those achieved for the ISBSG dataset, according to
MR. OLS linear models provide estimates that are slightly less
accurate than HLFPA’s; as expected, the fewer independent
variables are used, the less accurate the estimates. Surprisingly,
models LM4 (regardless span) perform worse than LMW2,
which achieve the smallest MAR.

According to the Wilcoxon sign rank test, HLFPA provides
smaller absolute errors than all other models, except for
LWM2(0.5). At any rate, Vargha and Delaney’s A, indicates
that all model pairs are likely to provide very similar absolute
residuals. Finally, we look into the error distributions yielded
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Fig. 4. Within-dataset evaluation using the Chinese dataset: error boxplots.

by the estimation methods that we used in the study. Figure 4
shows the boxplots of estimation errors for each of the
used methods. The same boxplots are shown in Figure 5
without outliers, to improve readability. It can be noticed



TABLE VIII
WITHIN-DATASET EVALUATION USING THE CHINESE DATASET: EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA  SFP LM5 LM4  LM2 LWM4 LwWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (05 (075 (075 (095  (0.95)
HLFPA NA  045m) 048m) 048m) 0491n) 046(n) 0.50(n) 046(n) 0.49m) 049m) 0.49(n)
SFP 055m) NA  053m) 053m) 0.53m) 0.51(m) 0.55m) 0.51(n) 0.54(n) 0.53(n)  0.54(n)
LMS5 0.52(n) 047(m) NA  051(m) 0.51(m) 048m) 0.52(n) 048m) 051(n) 051(n) 0.51(n)
LM4 0.52(n) 047(n) 049m) NA  050(n) 047(m) 052(n) 048(m) 0.50m) 0.50() 0.51(n)
LM2 0.51(m) 047(m) 049m) 050m) NA  047m) 0.51(n) 048m) 050(n) 0.50(n)  0.50(n)
LWM4(0.5)  0.54(n) 049(n) 052(n) 053(m) 053m)  NA  0.54m)  0.50(m) 0.53n) 0.53(n)  0.53(n)
LWM2(0.5)  0.50(n) 0.45m) 048n) 0.48m) 0.49m) 046(n) NA  046(n) 049n) 049m)  0.49(n)
LWM4(0.75)  0.54(m) 0.49(n) 052(m) 0.52m) 0.52m) 0.50m) 0.54m) NA  0531n) 053(n) 0.53(n)
LWM2(0.75)  0.51(n)  0.46(n) 049(n) 050(m) 0.50m) 047(m) 0.51(m) 047() NA  050()  0.50(n)
LWM4(0.95) 051(n) 0.47(n) 049(n) 050(m) 0.50m) 047(m) 0.51(m) 047(n) 050() NA  0.50(n)
LWM2(0.95) 0.51(n) 046(n) 049(n) 049m) 050(n) 047(m) 0.51m) 047(n) 0.50m) 0.50(n)  NA
that, as already observed for the ISBSG dataset, HLFPA
tends to underestimate. All the other models either provide LWM2(0.95) — »--C— @ --------ommmmmmoe- 4
estimation errors that are equally distributed between negative ~LWM4(0.95) — +-- O - - - o mooommmm oo !
. : : e e P i s EE TR R R 4
and positive, or (like SiFP, LWM4(0.75) and LWM4(0.95)) LWM2(0.75)
. - - - - e e e A
overestimate. LWMA4(0.75)
. — LWM2(0.5) o +-- === === === === == 4
Figure 6 shows the boxplots of absolute estimation errors | \yyag 5) | v = oo 4
for each of the used methods, excluding outliers. The mean Y e T -
absolute error (i.e., the MAR) is shown as an orange diamond. M4 o e 4
Figure 6 shows that most models provide similar accuracy. M5 - v 4
The only models that yield evidently less accurate estimates SFP - +--- X - 4
are SiFP, LWM4(0.5) and LWM4(0.75). Concerning SiFP, it is HLFPA — +--CCOX—— - --mmm o mm e -
useful reminding that it is not an estimation method, hence it is T T T T T
not correct to talk about estimation errors, in this case; rather, 0 100 200 300 400

we should talk about the distance between SiFP measures and
standard FPA size.

Fig. 6. Within-dataset evaluation using the Chinese dataset: absolute error
boxplots (no outliers).

LWM2(0.95) Fommmmmmmeeees B - - - - === mmmmns ! 1) We built models using the ISBSG dataset as the training
LWM4(0.95) trTrte b ) set and used the obtained model to estimate the size of
::xmi{g;g) 7 Tttt e e ) projects in the Chinese dataset.
LWM{E {‘0 5; | R . 2) We built models using the Chinese dataset as the training
LWM4(0.5) e - - - - - . set .and qsed the obtained model to estimate the size of
M2 b s s RO 4 projects in the ISBSG dataset.
LM4 — b e m— L L PSS 4
LM5 Fommmmm oo — — TS - TABLE IX
SFP o +--m-mmmmmmo - N S S P a CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET
HLFPA - R s e NN . CHINESE): ACCURACY INDICATORS.
| | | | MAR MR MJdAR MdR _MMRE MdIMRE  RZ
R HLFPA 1190 0088 690 0066  0.095 0077 0970
400 200 0 200 SFP 1543 0114 919 0088  0.124 0.108  0.945
LM5 1407 0104 828  0.080  0.112 0.088 0955
. L . : . . LM4 143.1 0106 853 0082  0.113 0.090 0953
Fig. 5. 1.W}th1n—dataset evaluation using the Chinese dataset: error boxplots LWM40.5) 4033 0322 1478 0135 0273 0.188 0,144
(no outliers). LWM2(0.5) 2181 0.148 1445 0114  0.146 0.123  0.859
LWM40.75) 3157 0252 1299 0.119  0.208 0152  0.534
LWM2(0.75) 1802 0.122 1142 0090  0.119 0.107 0920
With both datasets, the lowest MAR is obtained by using a LWM4(0.95) 2414 0.192 1064 0097 0163  0.I15  0.724
LWM2(0.95) 1685 0.114 113.5  0.090  0.113 0.100  0.929

LOESS approach, although with different spans. This confirms
the flexibility of the method and its adaptability to different
datasets after a tuning phase regarding the configuration of the
span based on the peculiarities of each dataset.

FE. Results of cross-dataset evaluations

This activity consisted of two steps:

When considering point 1) the comparison of Table VI
with Table IX shows that prediction accuracy decreases for all
models when “foreign” data are used for training. Of course,
the accuracy obtained by HLFPA and SFP do not change, since
these predictions are not obtained from any dataset.

Noticeably, models obtained via linear regression achieve a
level of accuracy that is quite close to HLFPA’s and slightly
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Fig. 7. Cross-dataset evaluation (training set ISBSG, test set Chinese): error
boxplots.
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Fig. 8. Cross-dataset evaluation (training set ISBSG, test set Chinese): error
boxplots (no outliers).
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Fig. 9. Cross-dataset evaluation (training set ISBSG, test set Chinese):

absolute error boxplots (no outliers).

TABLE X
CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET
CHINESE): COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA
WILCOXON SIGN RANK TEST.

HLFPA SFP LM5 LM4 LWM4 LWM2 LWM4 LWM2 LWM4 LWM?2

0.5) (0.5 (0.75) (0.75) (0.95) (0.95)
HLFPA - < < < < < < < < <
SFP > - > > < < < < <

LMS5 > < - = < < < < < <
LM4 > < = - < < < < < <
LWM4(0.5) > > > > - > > > > >
LWM2(0.5) > > > > < - = > > >
LWM4(0.75) > > > > < = - > > >
LWM2(0.75) > > > > < < < - > >
LWM4(095) > > > > < < < < - =
LWM2095) > > > > < < < < = -

better than SFP’s. However, this applies for models using 4
or 5 variables; no valid model using 2 variables could be
found via linear regression. LOESS models appear definitely
less accurate, although LWM2(0.95) appear only slightly less
accurate than SFP.

The results of the Wilcoxon sign rank test are given in
Table X. The results of the Vargha and Delaney’s A test are
given in Table XI.

According to the Wilcoxon sign rank test, HLFPA is the
most accurate method, although according to A, the difference
in accuracy is negligible when compared to SFP and linear
regression models, and small when compared to LOESS
models.

Figure 7 and Figure 8 show the boxplots of estimation
errors for each of the used methods with and without outliers,
respectively.

From both figures it can be noticed that, as already observed
for the ISBSG and the Chinese dataset, HLFPA tends to
underestimate. All the other models tend to overestimate, in
some cases by fairly large amounts.

Figure 9 shows the boxplots of absolute estimation errors
for each of the used methods, excluding outliers. It can be
noticed that HLFPA, SFP and LM models provide similar and
the better accuracy. All LWM4 models yield evidently less
accurate estimates than LWM?2.

When considering point 2) i.e., the estimation of the ISBSG
dataset via models obtained from the Chinese dataset, the
comparison of Table III with Table XII confirms that prediction
accuracy decreases for all models when “foreign” data are used
for training.

However, both linear regression and LOESS models achieve
better results than HLFPA when using 4 or 5 variables. Among
2-variable models, SFP and linear regression appear more
accurate than HLFPA, while LOESS models achieve slightly
Wworse accuracy.

The results of the Wilcoxon sign rank test are given in
Table XIII. The results of the Vargha and Delaney’s A test
are given in Table XIV.

According to the Wilcoxon sign rank test, LOESS models
using 4 variables are the most accurate. According to A,
LOESS models using 4 variables provide a small advantage



TABLE XI
CROSS-DATASET EVALUATION (TRAINING SET ISBSG, TEST SET CHINESE): EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

HLFPA SFP LM5 LM4 LwWM4 LwM2 LWM4 LWM2 LWM4 LWM2
0.5) 0.5) (0.75) (0.75) (0.95) (0.95)
HLEPA NA 045(m) 047m) 047(m) 0.34(s) 0.36(s) 0.39(s) 040(s) 0.42(s) 0.42(s)
SFP 0.55(n) NA 0.52(n) 0.51(n) 0.38(s) 0.41(s) 0.43(s) 0.44(m) 046(n) 0.46(n)
LMS5 0.53(n)  0.48(n) NA 0.50(n) 0.37(s) 0.39(s) 0.41(s) 0.43(m) 0.45(m) 0.45(n)
LM4 0.53(m) 049m) 0.50(n) NA  037(s) 040(s) 041(s) 043(n) 045mn) 0.45(n)
LWM4(0.5)  0.66(s) 0.62(s) 0.63(s) 0.63(s) NA  054(m) 0.54m) 057(m) 0.58(s) 0.59(s)
LWM2(0.5) 0.64(s)  0.59(s) 0.61(s) 0.60(s)  0.46(n) NA 0.50(n) 0.53(n) 0.54(n) 0.56(n)
LWM4(0.75)  0.61(s)  0.57(s) 0.59(s) 0.59(s) 0.46(n) 0.50(n) NA 0.53(n) 0.54(n) 0.54(n)
LWM2(0.75)  0.60(s)  0.56(n) 0.57(n) 0.57(n) 0.43(n) 0.47(n) 0.47(n) NA 0.51(n)  0.52(n)
LWM4(0.95) 0.58(s)  0.54(n) 0.55(n) 0.55(n) 0.42(s) 0.46(n) 0.46(n) 0.49(n) NA 0.50(n)
LWM2(0.95)  0.58(s) 0.54(n) 0.55(n) 0.55(n) 0.41(s) 0.44(n) 0.46(n) 048m) 0.50)  NA
over HLFPA and SFP, while the advantage is negligible with
respect to linear regression models. LWM2(0.95) — 0 r--AIT---+ oOm® o o
Figure 10 and Figure 11 show the boxplots of estimation ::xm;{gg? 7 o--- M --0 amo © 0
errors for each of the used methods, with and without outliers, LWM4{0‘?5) | 5 oo ;;"_;I__:O'";;J @ © ©
respectively. The boxplots show that most methods tend to LWM{2 {‘0 5; | N i i @@ o o
underestimate. LWM4 models are either well balanced or tend LW {0'5) Jo o ooo--gm--
to overestimate. Similarly, SFP tends to overestimate. LME N O il ---40 @0 0 O
Figure 12 shows the boxplots of absolute estimation errors LM4 —| @O +-{I}---9 @ ©
for each of the used methods, excluding outliers. It can LM5 OF==n= —1----40@ O
be noticed that the better accuracy is provided by LMW4 SFP — @ +---{I}---+0@x0 0 O
methods, while HLFPA, LM2 and all the LMW2 provide HLFPA — Fe---—3----4 0D @

similar and worse accuracy with respect to the other methods.
LM methods are between those extremes.

TABLE XII
CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET
ISBSG): ACCURACY INDICATORS.

MAR MR MJdAR MdR MMRE MdJMRE R2
HLFPA 103.8  0.106 58.0 0.091 0.097 0.084 0.966
SFP 87.1 0.089 60.5 0.095 0.105 0.078 0.978
LMS5 90.3  0.093 51.8 0.081 0.090 0.083 0.976
LM4 81.9  0.084 48.5 0.076 0.086 0.080 0.978
LM2 108.0  0.111 57.8 0.091 0.106 0.100 0.959
LWM4(0.5) 63.6  0.069 35.5 0.057 0.075 0.058 0.980
LWM2(0.5) 115.1  0.118 62.7 0.098 0.107 0.094 0.947
LWM4(0.75)  69.8  0.076 50.8 0.082 0.082 0.063 0.979
LWM2(0.75) 1185  0.121 65.2 0.102 0.108 0.088 0.941
LWM4(0.95) 669  0.073 429 0.069 0.077 0.059 0.978
LWM2(0.95) 113.7 0.117 58.4 0.091 0.102 0.087 0.945
TABLE XIII

CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET
ISBSG): COMPARISON OF MODELS’ ABSOLUTE RESIDUALS VIA
WILCOXON SIGN RANK TEST.

HLFPA SFP LM5 LM4 LWM4 LWM2 LWM4 LWM2 LWM4 LWM2
(0.5) (0.5) (0.75) (0.75) (0.95) (0.95)
= >

HLFPA
SFP
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LM4

LM2
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Fig. 10. Cross-dataset evaluation (training set Chinese, test set ISBSG): error
boxplots.
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Fig. 11. Cross-dataset evaluation (training set Chinese, test set ISBSG): error
boxplots (no outliers).

IV. DISCUSSION

In this section we discuss the obtained results from two
points of view: a technical one (in Section IV-A) and a
managerial one (in Section IV-B).



CROSS-DATASET EVALUATION (TRAINING SET CHINESE, TEST SET ISBSG): EFFECT SIZE ACCORDING TO VARGHA AND DELANEY’S A.

TABLE

XIV

HLFPA  SFP LM5 M4  LM2 LwWM4 LwWM2 LWM4 LwWM2 LWM4 LwWM2
(0.5) 0.5 (075 (075 (095  (0.95)
HLFPA NA  052(m) 052(m) 055m) 0.50m) 0.61(s) 0.51(n) 059(¢) 051(n) 0.60(s) 0.53(n)
SFP 048m)  NA  051(m) 054(n) 048mn) 0.60(s) 0491n) 0.58(s) 0.49m) 0.59G) 0.51(n)
LM5 048m) 049m)  NA  053m) 047(m) 058(s) 048m) 0.56(n) 0491n) 0.58(s)  0.50(n)
LM4 045(m) 046(n) 047(m) NA  045m) 0.56(n) 045mn) 0.53(n) 045(n) 0.55(n) 0.47(n)
LM2 0.50m) 0.52(n) 053(m) 055m) NA  061(s) 0.50(n) 058(s) 051(n) 0.60(s) 0.52(n)
LWM4(0.5)  039(s) 0.40(s) 042(s) 0.44(n) 039s) NA  040(s) 047(n) 041(s) 049m) 0.42(s)
LWM2(0.5)  049(m) 051(n) 052m) 055m) 0.50m) 0.60s)  NA  058s) 0500 0.59%s) 0.51(n)
LWM4(0.75)  0.41(s) 042(s) 0.44(n) 047(n) 042(s) 0.53(m) 042(s) NA  043(s) 0.52(n) 0.44(n)
LWM2(0.75)  049(m) 051(m) 051(m) 0.55m) 049m)  0.59() 0.50(m) 0.57(s)  NA  0.59s)  0.52(n)
LWM4(0.95)  0.40(s) 041(s) 0.42(s) 045m) 040(s) 0.51(m) 041(s) 048n) 041(s) NA  043(n)
LWM2(0.95) 047(n) 049() 050(m) 053(n) 048(m) 0.58s) 049m) 0.56(n) 0.48m) 0.57(n)  NA
of the numbers of EI, EO, EQ, ILF and EIF. In addition,
(R V2 {VR°1) iy Lt me— E— 4 OLS linear regression models also exploit data from
LWM4{0.95) | +-CI—Dk---------- " known projects, since they derive the weights to be
LWM2(0.75) 7 -0~~~ N used in the computation of size from historical data.
LWM4(0.75) - - = --- ===~ ! Accordingly, any organization owing suitable historical
o i S E— s— LT 4 S
LWM2(0.5) data can build its own OLS model.
LWM4=?MSE} o LOESS is a more flexible method with respect to OLS in
e s —— PR 4 . .
LM4 that it builds models based on ML approaches (like near-
- - - - . . R .
M5 - . est neighbours), also keeping the simplicity of regression
SFP d T . models. Using locality principles, it may possibly yield
HLEPA - ro-—r———— v . more accurate estimates than OLS methods.
T T T T | T I The size of the dataset may hinder the performance of the
0 50 100 150 200 250 300 LOESS method. As a counterpart, in cross-dataset validation,
LOESS models showed the best performances of the whole set
Fig. 12. Cross-dataset evaluation (training set Chinese, test set ISBSG):  Of experiments. This may suggest that the generalizability of

absolute error boxplots (no outliers).

A. Technical discussion

The approaches to size estimation presented in the previous
sections correspond to different model building strategies,
which are based on different assumptions and require different
types of knowledge. In fact,

o« HLFPA exploits the knowledge of how FPA works.
According to FPA, the measure of size is obtained as
a weighted sum of the numbers of EI, EO, EQ, ILF and
EIF. HLFPA adopts exactly the same schema. HLFPA
does not rely on any data, i.e., the model is fixed and
does not depend on the characteristics of the known
projects. In other words, HLFPA does not try to learn
from data; instead, it simply adopts fixed weights, namely
low complexity weights for data and medium complexity
weights for transactions.

o SFP works along similar lines. Structurally, it is a simpli-
fied version of FPA. Like HLFPA, it does not learn from
data, i.e., it does not try to adapt to the characteristics of
the known projects. Even though the weights to be used
were originally derived by the observation of data from
real projects, these weights are now fixed and apply to
whatever project has to be measured.

o OLS exploit, like HLFPA, the knowledge of the structure
of FPA sizing, in that they model size as a linear function

this approach should be further analyzed in search of specific
conditions for a better performance of the algorithm.

B. Managerial Discussion

From the managerial standpoint, LOESS has some limi-
tations and potential, depending on its use and application
context.

With respect to HLFPA and SFP, the LOESS-based methods
have the disadvantange that they need to be trained on a
dataset, while the former models are fixed formulae (see
(1) and (2)) that just need measures from the project being
estimated. Therefore, an historical dataset is needed, and using
“foreign” data may not work well, as in the case of the models
trained on the ISBSG dataset and use to estimate projects
from the Chinese dataset. However, using LOESS models
yielded quite accurate estimates in several cases, therefore it
is seems that build LOESS models is worth trying, when data
are available for training. In this respect, the work needed to
build LOESS models is similar to the work needed to build
linear regression models, which is a fairly common activity.

It must also be considered that in some contexts, like public
sectors, for instance, estimates base on LOESS models may
be difficult to accept, depending on the kind of contractors.
An estimation tool like LOESS could seem not transparent
enough to yield reliable estimated to be agreed upon.

However, in general, from the organizational and managerial
perspectives, using the LOESS method could be useful for



the early assessment of the feasibility of a project before
any elicitation phase, as in the case of agile methodologies.
Pursuing the study of functional size estimation via LOESS
may act as a proof of concept mechanism to help identify
project features; to simulate and quantify the average error
and intrinsic residuality of early estimation methods vs post-
hoc measurement; to help compare functional size models
and estimation procedures and their measurement validity and
reliability.

A further opportunity represented by this approach is that
of introducing evolutionary-wise estimation methods, whereby
different outcomes may come from the identification of the
same BFC (and whereby, in this respect, fixed weights meth-
ods would always return the same outcome). In this light,
LOESS may represent a more situated approach, evolving
through time and in line with factors characterizing and
influencing from time to time the productive system.

C. Applicability

In this section, the practical applicability of LOESS for
functional size estimation is briefly discussed.

First of all, to use LOESS, we need historical data. Besides
the usual requirements for data, we need data that represent
the entire size range in which we are interested. Specifically,
LOESS requires fairly large, densely sampled data sets in order
to produce good models. Remember that LOESS performs
local fitting, therefore fairly complete information concerning
BFC configurations have to be available.

Besides data, we just need a reasonable computer environ-
ment. A modern PC running the R environment (the loess
function is available by default).

As we reported above, LOESS works well, but does not
always provide the best estimates. Therefore, we do not
recommend replacing estimation practices based on HLFPA
or linear regression models, for instance, with LOESS right
away. Instead, it can be useful to use LOESS alongside other
estimation methods. In this way, if LOESS results agree
with other methods’ estimates you increase your confidence
in the correctness of estimates. Otherwise, i.e., if LOESS
disagrees with other methods’ estimate, you should regard all
the obtained estimates as subject to some uncertainty.

V. THREATS TO VALIDITY

A typical concern in this kind of studies is the generaliz-
ability of results outside the scope and context of the analyzed
dataset. In our case, the ISBSG dataset is deemed the standard
benchmark among the community, and it includes data from
several application domains. Therefore our results may be
valid in general. However, this dataset resulted too small for
local approaches like LOESS, which showed its effectiveness
and efficiency when applied to a larger dataset as the Chinese
one. This may also suggest a limitation of the approach related
to the specific dataset that each time is used. For this reason,
the problem of generalizability remains crucial.

The usage of MMRE is questionable, since it is has been
shown to be a biased indicator (see for instance [19]). Nonethe-
less, we used MMRE together with other indicators—Iike

MAR, the boxplots of residuals and R?>—to provide a more
complete and balanced picture of the accuracy of our results,
and compared the precision of different models via sound
statistical tests, namely Wilcoxon sign rank test and Vargha
and Delaney’s A measure of effect size. Therefore, the role
of MMRE in the presented evaluations is marginal. Although
the comparison of precision did not always yield significant
differences, it is nonetheless a formal and robust method for
comparing the used techniques.

VI. RELATED WORK

The quest for measures that are available in the early
stages of the software lifecycle dates back to decades
ago [37] [38] [30].

The “Early & Quick Function Point” (EQFP) method [32]
uses analogy (similarities between a new and a classified piece
of software) and analysis (statistical analysis of the estimated
similarity) to get size estimates. It was reported that estimates
are within £10% of the real size in most real cases, while the
savings in time and costs are between 50% and 90%.

“Easy Function Points,” [39], adopt probabilistic approaches
to estimate not only the size, but also the probability that the
actual size is equal to the estimate.

Lavazza et al. built estimation models for UFP based on
BFCs [40] using Least Median Squares robust regression
models. They observed that FP measures could be altogether
replaced by measured based on a smaller set of BFCs.

Several other early estimation methods were proposed:
Table XV list the most popular ones.

Lavazza and Liu [11] used 7 real-time applications and
6 non real-time applications to evaluate the accuracy of the
E&QFP [30] and HLFPA methods with respect to full-fledged
Function Point Analysis. The results showed that the Indicative
FPA method yields the greatest errors. On the contrary, the
HLFPA method yields size estimates that are close to the
actual size. Specifically, the HLFPA method proved fairly good
in estimating both Real-Time and non Real-Time applications.

Lavazza and Liu [16] used a dataset containing data from
479 projects to compare the accuracy of HLFPA method with
Ordinary Least Squares method, with both 5 predictors (LMS)
and only 2 predictors (LM2). Their conclusions were that,
although HLFPA method is sufficiently accurate for practical
usage, it tends to underestimate effort. Since underestimation
may lead to unrealistic development plans and possibly to
project failure, the authors looked for motivations of HLFPA
method underestimation behaviour, finding that it assumes that
data functions are mainly of low complexity and transaction
functions are mainly of medium complexity, while in the
considered dataset it was not so. An alternative strategy they
derived from it is to compute linear regression in order to
derive the most likely weight by analyzing the data from
projects. They found that (1) unlike HLFPA, linear regression
models do not underestimate, (2) linear regression models
yield slightly less accurate estimates, and (3) models based on
only two variables yield marginally less accurate estimates.



TABLE XV
EARLY ESTIMATION METHODS: DEFINITIONS AND EVALUATIONS

Method name Definition Used functions ~ Weight Evaluation

NESMA indicative [24] [25] data fixed [5] [15], [26]-[29] [11]
NESMA estimated [24] [25] all functions fixed [5] [15], [26]-[29] [11]
Early & Quick FP [30] [31] [32] all functions statistics ~ [11] [33]

Tichenor ILF model [34] ILF fixed [11]

simplified FP (sFP) [35] all functions fixed [11]

ISBSG average weights [36] all functions statistics ~ [11]

SiFP [6]

data and trans.

statistics ~ [12] [13]

Also Machine learning (ML) techniques have proved to
provide quite good estimation models, in several different
domains and situations, and are increasingly being used in
software project management activities [41], [42]. A review
of the usage of ML for software project management [42] re-
ported that ML is used for software effort and cost estimation:
the reported accuracy spans from 91% for cost estimation with
K-NN (K-Nearest Neighbours), to 92% for effort prediction
with Decision Trees, and 99% for effort estimation with
Random Forests.

Local regression methods are extensively used for DNA
microarray normalization studies [43], as well as for studying
spatiotemporal trends, and improving image resolution and
forecasts predictions. They have also been used for hand
tracking rapid movements in Human-Computer Interaction
studies [44]. However, regarding software size estimation,
only a few study have focused on the use of LOESS (see
for example [45]), by comparing this method with other ML
approaches. In this paper, we are interested in the estimation
of functional size, which is generally the main input for effort
estimation. Approaches based on local regression have been
rarely adopted in this field. We hope to have contributed in
a constructive way to better introduce this technique for the
analysis and the modelling of software functional size.

VII. CONCLUSION

Measuring software functional size via [IFPUG FPA with the
standard manual process is sometimes a long and expensive
activity, and it is simply impossible when the details of a
functional specification are not available for any reason. To
solve this problem, several early estimation methods have been
proposed. In this paper, we compare the estimates obtained
via a standard estimation methods, namely HLFPA, and a
new functional size measurement method, namely IFPUG SFP,
with the estimates obtained with traditional (namely, linear
regression) models and LOESS models.

To evaluate the accuracy of the functional size estimates pro-
vided by the considered methods, we performed both within-
dataset and cross-dataset studies. Specifically, we performed
two within-datasets analyses, one using an ISBSG dataset
containing data from 110 projects and one using a dataset
containing data from 276 software projects developed and
used by a Chinese financial enterprise. We then performed
two cross-datasets analysis: in the first one the ISBSG dataset
was used for training and the Chinese dataset was used for

testing; in the second one the Chinese dataset was used for
training and the ISBSG dataset was used for testing.

When performing within-dataset evaluation using the IS-
BSG dataset, the LOESS and linear regression models pro-
vided the best MAR. Among models using only two variables
(unclassified data and transaction functions) the LOESS and
SFP models provided the best MAR.

When performing within-dataset evaluation using the Chi-
nese dataset, HLFPA provided the best MAR, with the linear
regression and LOESS models providing very similar perfor-
mance. Among models using only two variables the LOESS
model provided the best results, even better than HLFPAs.

When using the ISBSG dataset to train models and the Chi-
nese dataset for testing, HLFPA was definitely most accurate
than other models. However, when using the Chinese dataset
to train models and the ISBSG dataset for testing, the LOESS
model provided definitely the best results. SFP proved also
quite good.

We assessed the effect size via the non-parametric statistic
A by Vargha and Delaney; we also compared the absolute
residuals via Wilcoxon sign rank test to evaluate if the esti-
mates provided by a method are significantly better than those
provided by another method. In general, the obtained results
show that no methods appears consistently better than others,
and the differences are small or even negligible.

In conclusion, even though there is no clear winner, the
LOESS method provided generally quite good results; there-
fore, practitioners needing to estimate software functional size
in the early stages of projects are advised to try also LOESS
models.

Among future work, we envision the following activities:

o Comparing LOESS estimates with those produced by
machine learning techniques [46].

o Study LOESS estimates with confidence intervals.

o Evaluating size estimates obtained via LOESS models,
when used for effort estimation.

ACKNOWLEDGMENT

The work reported here was partly supported by Fondo per
la Ricerca di Ateneo, Universita degli Studi dell’Insubria.

REFERENCES

[1] L. Lavazza, A. Locoro, and R. Meli, “Using Locally Weighted Re-
gression to Estimate the Functional Size of Software: a Preliminary
Study,” in Proceedings of IARIA Congress 2022: The 2022 IARIA
Annual Congress on Frontiers in Science, Technology, Services, and
Applications, 2022, pp. 20-24.



[2]

[3]
[4]
[5]

[6]

[7]
[8]

[9]

[10]

(11]

(12]

[13]

[14]
[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]
[23]

[24]

[25]

[26]

[27]

A. J. Albrecht, “Measuring application development productivity,” in
Proceedings of the joint SHARE/GUIDE/IBM application development
symposium, vol. 10, 1979, pp. 83-92.

International Function Point Users Group (IFPUG), “Function point
counting practices manual, release 4.3.1,” 2010.

A. Timp, “uTip — Early Function Point Analysis and Consistent Cost
Estimating,” 2015, uTip # 03 — (version # 1.0 2015/07/01).

H. van Heeringen, E. van Gorp, and T. Prins, “Functional size
measurement-accuracy versus costs—is it really worth it?” in Software
Measurement European Forum (SMEF), 2009.

R. Meli, “Simple function point: a new functional size measurement
method fully compliant with IFPUG 4.x,” in Software Measurement
European Forum, 2011.

IFPUG, “Simple Function Point (SFP) Counting Practices Manual
Release 2.1,” 2021.

International Standardization Organization (ISO), “ISO/IEC 20926:
2003, Software engineering — IFPUG 4.1 Unadjusted functional size
measurement method — Counting Practices Manual,” 2003.

L. Lavazza, “On the effort required by function point measurement
phases,” International Journal on Advances in Software, vol. 10, no.
1 & 2, 2017.

nesma, “Early Function Point Analysis,” https://nesma.org/themes/
sizing/function-point-analysis/early-function-point-counting/ last access
6/6/22.

L. Lavazza and G. Liu, “An empirical evaluation of simplified function
point measurement processes,” Journal on Advances in Software, vol. 6,
no. 1& 2, 2013.

L. Lavazza and R. Meli, “An evaluation of simple function point as
a replacement of IFPUG function point,” in INSM-MENSURA 2014.
IEEE, 2014, pp. 196-206.

F. Ferrucci, C. Gravino, and L. Lavazza, “Simple function points for ef-
fort estimation: a further assessment,” in 31st Annual ACM Symposium
on Applied Computing. ACM, 2016, pp. 1428-1433.

International Software Benchmarking Standards Group, ““Worldwide
Software Development: The Benchmark, release 11,” ISBSG, 2009.

L. Lavazza and G. Liu, “An Empirical Evaluation of the Accuracy of
NESMA Function Points Estimates,” in ICSEA, 2019, pp. 24-29.

G. Liu and L. Lavazza, “Early and quick function points analysis:
Evaluations and proposals,” Journal of Systems and Software, vol. 174,
2021, p. 110888.

W. S. Cleveland, “Robust locally weighted regression and smoothing
scatterplots,” Journal of the American statistical association, vol. 74, no.
368, 1979, pp. 829-836.

R core team, “R: a language and environment for statistical computing,”
2015.

B. Kitchenham, L. Pickard, S. MacDonell, and M. Shepperd, “What
accuracy statistics really measure [software estimation],” in Software,
IEE Proceedings-, vol. 148, no. 3. IET, 2001, pp. 81-85.

D. Chicco, M. J. Warrens, and G. Jurman, “The coefficient of determi-
nation R-squared is more informative than SMAPE, MAE, MAPE, MSE
and RMSE in regression analysis evaluation,” Peer] Computer Science,
vol. 7, 2021, p. e623.

A. Vargha and H. D. Delaney, “A critique and improvement of the cl
common language effect size statistics of mcgraw and wong,” Journal of
Educational and Behavioral Statistics, vol. 25, no. 2, 2000, pp. 101-132.
M. Torchiano et al., “effsize: Efficient effect size computation,” R
package version 0.7, vol. 1, 2017.

J. Cohen, “Statistical power analysis for the behavioral sciences
Lawrence Earlbaum Associates,” Hillsdale, NJ, 1988, pp. 20-26.
NESMA-the Netherlands Software Metrics Association, “Definitions
and counting guidelines for the application of function point analysis.
NESMA Functional Size Measurement method compliant to ISO/IEC
24570 version 2.1,” 2004.

International Standards Organisation, “ISO/IEC 24570:2005 — Software
Engineering — NESMA functional size measurement method version
2.1 — definitions and counting guidelines for the application of Function
Point Analysis,” 2005.

F. G. Wilkie, I. R. McChesney, P. Morrow, C. Tuxworth, and N. Lester,
“The value of software sizing,” Information and Software Technology,
vol. 53, no. 11, 2011, pp. 1236-1249.

J. Popovié¢ and D. Boji¢, “A comparative evaluation of effort estimation
methods in the software life cycle,” Computer Science and Information
Systems, vol. 9, no. 1, 2012, pp. 455-484.

(28]

[29]

[30]

[31]

[32]

[33]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

P. Morrow, F. G. Wilkie, and I. McChesney, “Function point analysis
using nesma: simplifying the sizing without simplifying the size,”
Software Quality Journal, vol. 22, no. 4, 2014, pp. 611-660.

S. Di Martino, F. Ferrucci, C. Gravino, and F. Sarro, “Assessing the
effectiveness of approximate functional sizing approaches for effort
estimation,” Information and Software Technology, vol. 123, July 2020.
L. Santillo, M. Conte, and R. Meli, “Early & Quick Function Point:
sizing more with less,” in 11th IEEE International Software Metrics
Symposium (METRICS’05). IEEE, 2005, pp. 41-41.

T. ITorio, R. Meli, and F. Perna, “Early&quick function points® v3. 0:
enhancements for a publicly available method,” in SMEF, 2007, pp.
179-198.

DPO, “Early & Quick Function Points Reference Manual - IFPUG
version,” DPO, Roma, Italy, Tech. Rep. EQ&FP-IFPUG-31-RM-11-EN-
P, April 2012.

R. Meli, “Early & quick function point method-an empirical validation
experiment,” in Int. Conf. on Advances and Trends in Software Engi-
neering, Barcelona, Spain, 2015.

C. Tichenor, “The IRS development and application of the internal
logical file model to estimate function point counts,” in IFPUG Fall
Conf., 1997.

L. Bernstein and C. M. Yuhas, Trustworthy systems through quantitative
software engineering. John Wiley & Sons, 2005, vol. 1.

R. Meli and L. Santillo, “Function point estimation methods: A com-
parative overview,” in FESMA, vol. 99. Citeseer, 1999, pp. 6-8.

D. B. Bock and R. Klepper, “FP-S: a simplified function point counting
method,” Journal of Systems and Software, vol. 18, no. 3, 1992, pp.
245-254.

G. Horgan, S. Khaddaj, and P. Forte, “Construction of an FPA-type met-
ric for early lifecycle estimation,” Information and Software Technology,
vol. 40, no. 8, 1998, pp. 409-415.

L. Santillo, “Easy Function Points — ‘Smart’ Approximation Technique
for the IFPUG and COSMIC Methods,” in INSM-MENSURA, 2012.
L. Lavazza, S. Morasca, and G. Robiolo, “Towards a simplified definition
of function points,” Information and Software Technology, vol. 55,
no. 10, 2013, pp. 1796-1809.

P. Pospieszny, B. Czarnacka-Chrobot, and A. Kobylinski, “An effective
approach for software project effort and duration estimation with ma-
chine learning algorithms,” Journal of Systems and Software, vol. 137,
2018, pp. 184-196.

M. N. Mahdi, M. H. Mohamed Zabil, A. R. Ahmad, R. Ismail, Y. Yusoff,
L. K. Cheng, M. S. B. M. Azmi, H. Natiq, and H. Happala Naidu,
“Software project management using machine learning technique—a
review,” Applied Sciences, vol. 11, no. 11, 2021, p. 5183.

X. Liu, N. Li, S. Liu, J. Wang, N. Zhang, X. Zheng, K.-S. Leung, and
L. Cheng, “Normalization methods for the analysis of unbalanced tran-
scriptome data: a review,” Frontiers in bioengineering and biotechnology,
vol. 7, 2019, p. 358.

T. Kuronen, T. Eerola, L. Lensu, J. Takatalo, J. Hikkinen, and
H. Kilvidinen, “High-speed hand tracking for studying human-computer
interaction,” in Scandinavian Conference on Image Analysis. Springer,
2015, pp. 130-141.

L. Q. Leal, R. A. Fagundes, R. M. de Souza, H. P. Moura, and C. M.
Gusmao, “Nearest-neighborhood linear regression in an application with
software effort estimation,” in 2009 IEEE International Conference on
Systems, Man and Cybernetics. IEEE, 2009, pp. 5030-5034.

L. Lavazza, A. Locoro, G. Liu, and R. Meli, “Estimating software
functional size via machine learning,” ACM Transaction on Software
Engineering and Methodology, vol. to appear, no. ?, 20237, p. ?



