
Equipping Software Engineering Apprentices with a Repertoire of Practices

Vincent Ribaud, Philippe Saliou
Université de Bretagne Occidentale, LISyC - EA 3883

Université Européenne de Bretagne
Brest, France

{Vincent.Ribaud, Philippe.Saliou}@univ-brest.fr

Abstract—Argyris and Schön distinguish espoused theories -
those which people speak about – from theory-in-use - those
which can be inferred from action. In small software teams,
developing reflective thinking about action is a vital necessity
in coping with change. We address these issues in a Masters of
Software Engineering, performed with an alternation between
university and industry. University periods are dedicated to a
long-term project performed in a reflective practicum. It aims
to develop a repertoire of practices which helps young
engineers deal with the ‘messiness’ of situations. Such a
practicum provides students, working in groups, with the
possibility of reflecting on action. We propose using the
Course-of-Action framework to record observable aspects of
the actor’s activity into semantic wikis. Two hypotheses are
discussed (1) self-analysis and self-assessment help to reveal
theories-in-use; (2) the Course-of-Action observatory helps
maintain awareness of the repertoire. A case study of a 6-
apprentice team illustrates the observatory use and the
reconstruction of apprentices’ activity. Primary conclusions
are that self-observation and self-analysis of a software
engineer’s activity help raise awareness of the initial structure
of the repertoire. We are however unable to conclude that it
helps reveal their theory-in-use (what governs an engineer’s
behaviour) - usually tacit structures.

Keywords-component; reflective practitioner, software
engineering processes, Course-of-Action, semantic wiki.

I. INTRODUCTION

This paper is an extended and enhanced version of a
paper presented at the ICCGI 2009 conference [1].

Small organizations – and small software teams
especially – need to constantly adapt their task force to the
products or services to be delivered. The software process
community shares a tacit axiom that improving software
processes automatically improves software products and
contributes to the project success. Many efforts have been
made to extensively define a set of processes and build
assessment methods intended to verify to what extent
defined processes are performed.

Yet D. Schön [2] argued that experienced professionals
deal with the ‘messiness’ of practice not by consulting the
research knowledge base, but by engaging in ‘reflection-in-
action’: experiencing surprise in a new situation and
responding to surprise through a kind of improvisation. To
educate the reflective practitioner, Schön recommended
looking at traditions of education for artistry – in art studios,
or in conservatories of music and dance. Schön qualified

these students as learning by doing in a reflective practicum.
This analogy was used to provide a suitable educational
environment for software design at CMU [3] or at MIT [4].

The notion of repertoire is very important in Schön’s
approach. Practitioners build up a collection of ideas,
examples, situations and actions. “A practitioner’s repertoire
includes the whole of his experience insofar as it is
accessible to him for understanding and action” [5, p.138].

This hypothesis – coupled with the observation that
students (and young engineers) are experiential, tending
toward learning by doing rather than listening – led us to
focus on the goal of providing software engineering
graduates with a non-empty repertoire of practices, together
with an operational knowledge of software processes,
activities and tasks. In 2002, we built an education system
called 'Software Engineering by Immersion' entirely based
on performing complete development cycles of a software
project, and accomplished in three iterations. This 3-
iterations system can be summed up with the sentence: 'A
first turn to learn by doing, a second turn to do autonomously
what has been learned, and a last turn to work effectively in a
business. A Process Reference Model - greatly simplified
from the ISO/IEC 12207:1995 standard and its amendments
[6] - was used as the initial structure of the repertoire. As
realistic working situations were experienced, students were
provided with progressive filling of their repertoires.

In 2007, local employers in Brest requested employees in
‘sandwich’ (or work placement) conditions, and we adapted
the 'Software Engineering by Immersion' programme to run
as a work placement course. In such a programme, some of
the educational objectives and related assessments are
devoted to periods in industry. The second and third
iterations were good candidates to assign to industrial
periods, and first iteration (at the university) and second
iteration (in the industry) were organised into alternating 2-
week periods. We do however face the problems of relating
the university-based and industry-based elements of the
student’s experience and avoiding a situation in which
learners are required to climb two ladders simultaneously.

We decided to redesign the repertoire (including its
construction and 'filling') in order to - as far as possible –
meet the twin challenges of learning and producing within a
small software project. Our current proposition is to use two
theories of action, the former from Argyris and Schön [7]
about theory-in-use and espoused theory and the latter - the
Course-of-Action framework pioneered by Theureau and
Pinsky [8]. The main idea is to provide young engineers and

201

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



small projects with an observatory of their individual and
collective activity (by observable, we mean what is
presentable, accountable and commentable) and to instigate
the reconstruction of a high-level view of the global Course-
of-Action from small and individual units of action.

The nature of collected data is very different and subject
to change, as is the semantic of the relationships between
data. This addresses technical challenges related to content
management. We choose to use semantic wikis as a
lightweight authoring platform. As Maxwell [9, p.199]
outlines “Our experience with and reflection on using wiki as
a platform suggests that there is much to be gained from an
approach which builds up from simple foundations rather
than attempting to customize already-complex architecture”.

Section 2 overviews theories of this introduction, their
application to software engineering and some related work.
In Section 3, we present courses-of-action for software
apprentices. Observing the course of apprentices’ projects is
discussed in Section 4. In Section 5, we present some data
excerpts of a case study. We conclude the paper with a
discussion and perspectives.

II. RESEARCH ISSUES AND RELATED WORK

We will present Argyris and Schön's theories of action as
well as certain elements of the Course-of-Action framework.
We will present two research hypotheses, and related work.

A. Espoused theories and theories-in-use

A starting point of Argyris and Schön's [7] theory (see
Figure 1) is that people design action to achieve intended
consequences, monitoring themselves in order to learn
whether their actions are effective. They made a distinction
between two contrasting theories of action: theories-in-use
and espoused theories. “When someone is asked how he
would behave under certain circumstances, the answer he
usually gives is his espoused theory of action for that
situation. This is the theory of action to which he gives
allegiance, and which, upon request, he communicates to
others. However, the theory that actually governs his actions
is his theory-in-use” [7, pp.6-7].

Our first observation is that, in the software engineering
field, lifecycle processes standards such as the 12207 [10]
and process assessment standards such as 15504 [11] or
CMMI may constitute the espoused theory, since it is what
engineers claim to follow. But what engineers do (and this
action is designed - it does not 'just happen') may reveal a
different theory-in-use. A young engineer is rarely aware of
either their theory-in-use or of any inconsistency - although
an experienced engineer may be.

Theories-in-use can be made explicit by reflecting on
action [7]. According to Schön, reflective thought takes place
in a reflective practicum. Schön advocated traditions of
education for artistry as exemplar through their reflective
practicum. “[…] its main features are these. It’s a situation
in which people learn by doing, […] where they learn by
doing in a practicum which is really a virtual world. A
virtual world in the sense that it represents the world of
practice, but is not the world of practice […] in that world,
students can run experiments cheaply and without great

danger […] in interaction with someone who is in the role of
coach” [12].

A reflective practicum is intended to run experiments and
develop reflection-on-action. In our practicum, we use
organized processes to drive project and competencies
building. Parallel to the engineering activities required by the
project, apprentices are regularly required to self-analyze and
self-assess their engineering practices. Our first hypothesis
(H1) is that self-analysis and self-assessment helps an
apprentice to reveal their theory-in-use.

Previous and related work. The studio is the central
training method in architecture schools and this analogy was
used to provide a suitable educational environment for
software [3] [4]. Our system is very close to Tomayko’s
work, and most of his observations apply to our system: “The
use of a well-established development process, a matrix
organization, and one-to-one mentoring give the highest
return on investment” [3, p.119].

Hazzan and Tomayko present in [13] a course intended to
develop reflective thinking about the education of software
engineers - but theories of action are not evoked.

Halloran [14] investigates the relationship between a
software process assessment and improvement model and
organizational learning. The paper points out the difference
between 'engineer’s espoused theory' and their 'theory in use'
but does not develop this idea, focusing instead on the use of
organizational learning to promote a proactive approach to
continuous improvement and learning procedures.

Models of theory-in-use
Argyris and Schön argued that, even though espoused theories vary

widely, theories-in-use do not. They labelled the most prevalent theory-in-
use Model I and argued that this model inhibits learning. Model II favours it.
This model looks to three elements. Governing variables are values that
actors seek to satisfy [1]. Each governing variable can be thought of as a
continuum with a preferred range (e.g. not too anxious, yet not too
indifferent) that people are trying to keep in these acceptable limits. Actions
strategies are sequences of moves used by actors in particular situations to
satisfy governing variables [1], there are the moves and plans used by people
to keep the governing variables in the preferred range (e.g. to use physical
exercise to eliminate stress). Consequences happen as results of action.
Consequences can be intended – those that the actor believes will result from
the action and will satisfy governing variables (e.g. feeling better after
sporting effort). Consequences can be unintended but they are designed
because they depend on the theories-in-use of recipients as well as those of
actors.

Single and double-loop learning
When the consequences of an action strategy are as the actor wanted,

then the theory-in-use of that person is confirmed. If there is a mismatch
between intention and outcomes, consequences are unintended. Argyris
defines learning as the detection and correction of error. The first response to
error is to search another action strategy (Model I). “Single-loop learning
occurs when errors are corrected without altering the underlying governing
variables” [2, p. 206]. An alternative is to question governing variables
themselves (Model II), to subject them to critical scrutiny (e.g. to emphasize
open inquiry into the anxiety rather than trying to suppress it). “Double-loop
learning occurs when errors are corrected by changing the governing
variables and then the actions” [2, p. 206]. Argyris and Schön argued that
many people espouse double-loop learning, but are unable to produce it, and
are unaware of it.

References
[1] C. Argyris, R. Putnam, and D. McLain Smith, “Action Science,
Concepts, methods, and skills for research and intervention”, San Francisco:
Jossey-Bass, 1985.
[2] C. Argyris, “Double-Loop Learning, Teaching and Research”, Learning
& Education, Vol. 1 (2), Dec. 2002, pp. 206-219.

Figure 1. Theory of Action by Chris Argyris and Donald Schön.

202

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



B. Building their own repertoire

The Course-of-Action theory, pioneered by Theureau and
Pinsky [8], provides a framework for analysis of the
collective organization of the multiple courses of action in a
complex, autonomous and open system. A 'Course of Action'
is: “what, in the observable activity of an agent in a defined
state, actively engaged in a physically and socially defined
environment and belonging to a defined culture, is pre-
reflexive or again significant to this agent, i.e. presentable,
accountable and commentable by them at any time during its
happening to an observer-interlocutor in favourable
conditions” [15, p.7]. The course of action can be described
from two complementary perspectives: from the point of
view of its global dynamics - characterizing the units of the
course of action and the relations of sequencing and
embedding between these units, or from the point of view of
its local dynamics, characterizing the underlying structure of
the elementary units [15]. Given that we seek to establish a
fairly high-level model of actions, we focus on the global
point of view because it emphasizes the articulation of work
situations and their co-ordination, and is better suited to
process-level analysis.

Argyris and Schön suggested that each member of an
organization constructs his or her own representation or
image of the theory-in-use of the whole [16, p.16]. What is
intended is to connect the individual world of the practitioner
up with the collective world of an organization. But, prior to
this discussion, we need to understand how we perceive our
internal structure. The notion of repertoire is a key aspect of
Schön’s reflection in and on action. Practitioners build up a
collection of ideas, examples, situations and actions. “When
a practitioner makes sense of a situation he perceives to be
unique, he [she] sees it as something already present in his
[her] repertoire. […] It is, rather, to see the unfamiliar,
unique situation as both similar to and different from the
familiar one, without at first being able to say similar or
different with respect to what. The familiar situation
functions as a precedent, or a metaphor, or an exemplar for
the unfamiliar one” [5, p.138].

A coach may help both discover the existence of this
repertoire, and fill it, with the assistance of reflective
thought. Coaches often answer questions with questions, in
most cases, simply rephrasing the question. Our proposal is
that small projects should be provided with a device which
will act as a mirror for their observable activity, and that
privileged moments of self-observation in front of the mirror
(without adding too much extra work) should be seamlessly
integrated in the course of the project. Our second hypothesis
(H2) is that the Course-of-Action observatory helps maintain
awareness of the repertoire, facilitating self-assessment and
self-analysis.

Previous and related work. Hazzan debates the
reflective practitioner perspective in software engineering
education and the studio as a teaching method [17], but does
not address the subject of the practitioner’s repertoire.

The 'Course-of-Action' research framework consists of
several empirical and technological research programs [15]
in various domains such as work analysis [18] or traffic

control [19]. We are not aware of any uses of the Course-of-
Action framework in the software field.

III. SOFTWARE APPRENTICES' COURSES-OF-ACTION

We will be monitoring the 'Software Engineering by
Immersion' Masters programme, and we will present the
Course-of-Action observatory and its application to a
software project.

A. The 'Software Engineering by Immersion' Masters
Programme

1) Structural aspects of our programme
Our Masters Programme in Information Technology and

Software Engineering is a 2-year programme, accessible to
Bachelor graduates in Computing or 'back to school'
software practitioners. For students enrolled in the Software
Engineering by Immersion specialization, securing a
'professionalization contract' is a compulsory requirement.
During this 12-month contract, the work placement student is
a full-time employee, although also attending university for
certain periods. Strictly-speaking in France, 'apprenticeship
learning' and 'apprentice' are terms reserved for a longer
work placement system, but the sake of clarity, we use the
term 'apprentice' in this paper.

Competition for this type of contract is performed during
the first 7-month intensive courses. The following 4-months
are dedicated to an internship period. For the last year,
periods at university have to fit into alternating 2-week
periods. The year is divided into two periods, the former
(from September to mid-May) with movement between
university and company, and the latter (from mid-May to
August) with a full-time period at the company.

2) Pedagogical objectives and organization
Of the 43 processes of ISO/IEC 12207:2008 [10], we

concentrate on the 19 that are related to the software
development cycle, which we have reorganized into 3
groups:

- in the Software Project Management Process Group:
6.3.1 Project Planning - 6.3.2 Project Assessment and
Control, 7.2.2 Software Configuration Management, 7.2.3
Software Quality Assurance;

- in the Software Development Engineering Process
Group: 6.4.1 Stakeholder Requirements Definition, 6.4.3
System Architectural Design, 6.4.4 Implementation Process
replaced by 7.1.1 Software Implementation Process (and its
6 sub-processes: Requirement Analysis, Architectural
Design, Detailed Design, Construction, Integration,
Qualification), 7.2.4 and 7.2.5 Software Verification &
Validation;

- in the Software Development Support Process Group:
6.2.1 Life Cycle Model Management, 6.2.2 Infrastructure
Management, 6.4.7 Software Installation – 6.4.8 Software
Acceptance Support, 7.2.1 Software Documentation
Management.

These 19 processes are renamed (and some are also
merged) to give a breakdown of apprenticeships into 3
software engineering process groups subdivided into 13
software engineering processes, together with a set of
apprenticeship scenes (roughly associated with software

203

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



engineering activities) which provide the learning
environment and define tasks. This hierarchical group
process/process/scenes model, adapted from the ISO/IEC
12207, is given in Tables I and III and is used as a reference
framework for the learning objectives.

From the university point of view, this division is the
reference framework, in a diploma-awarding perspective.
Group processes are course categories, processes are courses
and scenes are sessions.

TABLE I. PROCESS BREAKDOWN

Process Group Process
12207:2008

Related Processes

Software
Project
Management

Project management
Quality insurance

Software configuration
management

6.3.1, 6.3.2
7.2.3
7.2.2

Software
Development
Engineering

Requirements capture
Software analysis

Technical architecture
Software design

Software construction
Integration and validation

6.4.1
7.1.2
6.4.3

7.1.3, 7.1.4
7.1.5, 7.1.6

7.1.7, 7.2.4, 7.2.5

Software
Development
Support

Technical support
Methods and tools support

Documentation
Installation and deployment

6.2.2
6.2.1
7.2.1

6.4.7, 6.4.8

The main feature of the university periods is to learn
software engineering by doing, without any computing
course but with a long-term project as the foundation of all
apprenticeships. Alternating employees are attending
university over 9 periods of 2 consecutive weeks, and work
in teams of 6 apprentices to build a complete information
system.

The rhythm is based on the lifecycle of a project,
organized into stages. Each stage was arbitrarily sized to 2
weeks, due to the constraints of alternation. The cycle is:
Stage 0: Warm-up; Stage 1: Project set-up; Stage 2:
Requirement capture; Stage 3: Requirement analysis; Stage
4: Design; Stage 5: Software construction; Stage 6: Software
construction; Stage 7: Integration and Verification; Stage 8:
Qualification and Deployment.

3) Competency Reference Model
While apprentices are currently learning by doing

software processes, process assessment will not measure a
capability level but (in the best case scenario) a learning
capability level. Because apprentices are building
competencies, and because some reflective learning is
required, we choose to promote self-assessment of personal
abilities. In 2006, we set down the abilities (or competencies:
“the ability of a person to act in a pertinent way in a given
situation in order to achieve specific purposes” [20]) that
scenes are intended to develop. We tried to answer the
questions 'What is the student able to do, once the scene is
performed? What are the related knowledge topics?' This
analysis gave us a set of abilities for each process (see
examples in Table II).

So we kept the 2-level breakdown of our reference
framework - the first level being called competency areas
(corresponding to process groups) and the second level

competency families (corresponding to processes), and we
positioned abilities and transversal competencies within
these areas. Table II shows abilities and knowledge related to
certain representative processes for each process group.

TABLE II. EXAMPLES OF COMPETENCY FAMILIES

Abilities and Skills Knowledge Topics

Project Management

 To use an ISO 9001 development
baseline
 To apply a Project Plan, updating
it if necessary
 Planning and project progress

* Software life-cycle model
* Estimation and follow-up of
development of components
* Traceability and conformity
* Project Plan

Software Requirements Capture

To mobilize specification methods
and tools in a real project:
 within an ISO 9001-style

baseline
 in relation to requirements

traceability
 to produce a Software

Requirement Specification

* Software Requirements
Fundamentals: definition,
functional and non-functional,
quantification.
* Requirements capture
techniques: interviews, client
meeting, statement of work,
response to solicitation
* Procedures, methods and tools
for requirements specification.
* Use cases.

Software Design

 To use design methods and tools
(in relation with requirements) to
produce design documents: system
and software architecture and
detailed design
 To implement methods and
modelling tools of various aspects
of a system (architecture and
decomposition software, data
structure)
 To implement J2EE development
and technology of associated
framework
 To implement DBMS concepts,
techniques and tools

* Software Design
Fundamentals: concepts and
principles, design role in a
development cycle, top-level
and detailed design
* Software decomposition
configuration item, software
component, software unit
* Software architecture through
different views: conceptual,
dynamic, physical, data.
* UML diagrams to describe
static and dynamic views
* Object-oriented design

Methods and tools support

 To know Software Engineering
methods and techniques for the
software life cycle
 To install, adapt, integrate and
maintain software tools
 To assist engineers in software
deployment
 To perform a consulting mission,
alone or in a group

* Use case models and formats.
* Analysis: patterns and model
transformation
*Design:architectural prototype,
generic design
*Configuration management:
tools and guides
* CASE tools

The complete breakdown (3 areas, 13 families, 48
abilities and 11 transversal competencies) is called the
competency reference model for our immersion system [21].

B. The Observatory of Apprentices' Courses-of-action

1) The Course-of-Action observatory
A short definition of a Course-of-Action is “the activity

of one (or several) specific actor(s), engaged in a specific
situation, belonging to a specific culture, which is significant
for the latter, in other words, that can be related or
commented by (or them) at any moment” [18, p. 2].

204

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The Course-of-Action analysis is based on an
observatory which includes continuous observations of the
behaviour of action and communication in a work situation
as well as different traces of other elements such as
interpretations, feelings, and judgments [18]. Although the
data produced by these observations only gives access to the
surface of interactions, it suffices for understanding the
structural coupling between an agent and his or her situation.

The Course-of-Action framework proposes data
collection methods which include: observing and recording
actors’ behaviour methods; methods to keep track of
behavioural patterns; and methods of provoked and situated
verbalization from actors.

Self-confrontation is a prominent activity in terms of
documenting the Course-of-Action. This takes the form of
collecting verbal data whilst the activity is actually being
carried out and/or in a self-confrontation situation (e.g. in the
case of driving, the driver watches a film of their journey
(which is systematically recorded) and comments on it to
clarify their own actions and events [15]).

Other kinds of verbalization, made by agents during
activity analysis (called second degree self-confrontation
verbalizations - to emphasize the fact that they are situated in
the continuity of self-confrontation itself) are also
implemented. Here the agents are placed in the position of
observers and analysts, and their verbalizations, whilst not
data, do nonetheless constitute their contributions to the
analysis of their activity [15].

2) Link with field studies
From the 'data collection techniques' point of view,

Lethbridge, Sim, and Singer [22] provide a useful taxonomy.
They classify techniques according to the degree of human
contact required. We use several 'observational first degree
techniques' [22] (with direct access to young engineers),
including diaries, think-aloud protocols, observation, and
participant observation. Because we focus on self-
interpretation by the actors, most recording is done manually
by the actors themselves. From the taxonomy point of view,
it may appear as a 'second degree technique' [22] (with
indirect access to young engineers) because it does not
require direct contact between participant and researcher.

Representative artefacts of the job are the outputs of
software activities and tasks. The analysis of these artefacts
falls in a 'third degree technique' [22] (without access to
young engineers).

3) What can be collected in the course of projects ?
Recall the definition of the Course-of-Action in §III.B.1:

what, in the observable activity of an agent […] is pre-
reflexive or significant to this agent, i.e. (i) presentable, (ii)
accountable and (iii) commentable by them at any time
whilst it is happening […].

We have three types of observation: (i) presentation, (ii)
accounting, (iii) comment. Software workers do not achieve
complex technical gestures, or do not have to progress
through a detailed procedure. So (i) presentations to an
observer are quite difficult to reproduce, and the presentable
artefacts that are most notable and representative of the job
are the outputs of software activities and tasks.

Verbalization is widely used by the coach within the
learning process to scaffold the apprentice’s activity: when
students ask or when tutors consider it to be necessary, a
dialogue between apprentice and tutor about what, why and
how the apprentice is doing helps them to carry out the
activity. Recording this dialogue would be too complicated;
furthermore, it would probably compromise - and possibly
even destroy - this learning process.

We therefore focus on accounting and comments.
Accounting will replace recordings of engineer behaviour.
Products and documentary resources are the main objects of
presentation, since they describe the activity's inputs and
outputs. The 'historical' context of use of (i) resources and
product production must also be recorded. This can be
described in terms of events and processes, involving
occurrences of agents (people) and artefacts (products and
resources) meeting in space (in case of distributed
collaboration) and time. In the first instance, we consider the
individual courses of action of the various participants. At
the next stage, we look at collective action involving parts of
several individual courses of action taking place
synchronically or sequentially. We need to divide individual
Course-of-Actions into smaller units, which we call
Performed Activity. Each event of interest must be (ii)
individually accounted for in an instance of Performed
Activity in relation with the apprentice and artefacts
involved. This provides a kind of project diary or journal,
and is performed in a wiki by each apprentice as the project
goes along.

Provoked verbalizations are replaced with self-
confrontation interviews as a way of documenting the
constraints and effects of the segment of the actor’s activity
that is personally experienced. Even the smallest unit of
collective Course-of-Action is called a Course-of-Action
Unit, which organizes several individual Performed
Activities. At the end of each 2-week university period,
apprentices have to write a short report (individually, but
also collectively if they worked on a group task) about what
happened during the period (this is called a 'work diary' in
the taxonomy of [22]). Apprentices may complete Performed
Activity instances previously created, and must create
Course-of-Action Unit instances for activities involving
several individual Performed Activities.

For the industrial periods, accounting is performed in a
different way. As detailed in Section IV.B.5, young
engineers must perform a complete self-assessment, 4 times
per year, regarding the competency reference model
described in §II.A.3 - which is acting as an ability model for
their job as an engineer. In support of these periodic
assessments, they have to record events of interest in a
portfolio, associating events with significant artefacts they
may have used or produced.

With very few exceptions, we observed that information
about academic and industrial periods are written in a
descriptive style (what they do with linked artefacts, when
and where) but gave little or no indication why and for what
reason they did it. So, we can conclude that these reports are
(ii) accounts and not (iii) comments.

205

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



4) What can be commented ?
We need a second-level of reporting intended to

encourage comments and reflection-on-action. Final reports
with in-class presentation could have been used, but we
chose not do this in order to avoid introducing bias, since
they are assessed with a mark. We found it more useful to
trigger intermediary reports without any assessment. Of
course, students will re-use analysis, writings and oral
presentation in their final reports, as well as for required self-
assessments (and this may provide extra motivation to
perform sound intermediary reports) but we minimize
assessment bias.

Among the self-confrontation methods used in the
Course-of-Action framework, one is the so-called second
level self-confrontation interview. It is performed after the
self-confrontation interview proper. Its procedure is radically
different, because its aim is not to collect empirical data
about the actor’s experience at instant t, but to develop co-
operation in the analysis of the activity between the
researcher and the actor [19]. We borrow this practice for
reporting on industrial and academic periods.

Every two months (corresponding to two industry
periods of 2 weeks each), the academic period begins with a
half-day during which each apprentice (12 in all) presents an
intermediary report of their activities at work. Writing up a
meeting report is assigned to two students, based on the
individual reports provided by each apprentice.

During academic periods where there is no industrial
reporting, apprentices must perform a first-level analysis on
the state of the software processes of their academic project.
Each apprentice has to work on two or three processes (13
are used in all), building an intermediary process element
called Step-of-Action based on historical Course-of-Action
Units related to a given process. This analysis is intended to
produce a reconstruction of the global dynamic in terms of
smaller units and the sequencing and embedding
relationships between these units.

IV. OBSERVING THE COURSE OF APPRENTICES’ PROJECTS

We will survey the models used in the 'Software
Engineering by Immersion' programme. We will present an
enacted project that will be used as a case study.

A. Process models

1) Prescribed work
Leplat [23] has identified a difference between prescribed

task and effective task. The prescribed task is a task that a
designer or an organizer wishes an operator to perform.
What he/she really achieves is the effective task.

It is a hard task to define things to do in a software
projects, hence to provide a structured description of the
prescribed tasks. Several standards were written with this
goal. In our opinion, the process dimension of the ISO/IEC
standard 15504:2004 [11] provides a complete view of the
prescribed work to be done in a software project.

ISO 15504 separates process and capability levels in two
dimensions. In the process dimension, individual processes
are described in terms of Process Title, Process Purpose, and
Process Outcomes as defined in ISO/IEC 12207 (where each

life cycle process is also divided into a set of activities; each
activity is further divided into a set of tasks [10]). In
addition, the process dimension provides: a) a set of base
practices for the process, providing a definition of the tasks
and activities needed to accomplish the process purpose and
fulfil the process outcomes; b) a number of input and output
work products related to one or more of its outcomes; and c)
characteristics associated with each work product [11]. The
capability dimension consists of six capability levels (Level
0 reflects an incomplete process) and the process capability
indicators for nine process attributes for levels 1 to 5. A
process attribute is “a measurable characteristic of process
capability applicable to any process” [11, p. 4]. Figure 2
represents the two dimensions and a performance of process
assessment.

Id : string
Name : string
Charact. : string

Work Product

Id : string
Name : string
Description : string

AchievementId : string
Title : string

Process Group

Id : string
Title : string
Purpose : string

Process

Id : string
Title : string

Activity

Id : string
Form : string

Task

-HasPart*

-Has*

-Has*

Id : string
Title : string
Description : string

Base Practice

Id : string
Description : string

Outcome

-Has*

*

Associates

*

*

Is Generic Of

*
*

Output

*

*

Input

*
*

FullFill*

Id : string
Name : string
Description : string

Capability Level

Id : string
Name : string
Description : string
Outcomes : string

Process Attribute

1

Has0..2

Process Instance

Process
Instance
Rating

1

Instance Of

*

Id : string
Description : string
Process Perf. Char. : string
Resource Char. : string

Management Practice

1

Has*

Process Dimension Capability Dimension

*

Supports *

Figure 2. 12207 and 15504 Reference Models. Performing a process
assessment yields a rating for each process attribute. A rating is a

judgement of the degree of achievment (None, Partially, Largely, Fully) of
the process attribute for the instance of the assessed process.

2) Work scenes
The 15504-5 standard provides software engineers with

an exemplar model of a software project. Unfortunately,
such an exemplar model is necessary but not sufficient for
learning purposes. In our system, we have to organize the
apprentices’ activity into small units of work called an
apprenticeship/production scene.

The apprenticeship/production scene is the reference
context in which a part of the play happens: the scene aims
for a unity of place, time and action; the scene is at once a
situation in which people learn and do; a scenario of actions;
a role distribution, and an area mobilizing resources and
means. The different components of a scene, along with their
articulation are depicted on a card. The card structure is
standardized (see an example in Figure 3).

The main elements of a card are the process group /
process (here development / design) tied up with the work;
the role to play (here, designer or architect) with team-mates'
assignment; the work description (here, the detailed design);
the products (deliverables) to deliver (here, a Software
Design Document, SDD); the supplied pedagogical resources
(here, a writing guide, real SDD samples and an analysis and
design course); workload and lead-time information.

206

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



No. 24 Date: Origin: Roles assignment
Project: SCENE CARD Designer

Architect
Solenn Arnaldi
Aude Genoud

Process group: SW development engineering
Process: Software design

Name:
Detailed design

WORK DESCRIPTION
The goal of the software design activity is to establish a software

design that effectively accommodates the software requirements.
During card No. 20 'Preliminary design', software requirements have
been transformed into software architecture and a top-level design for
the external and internal interfaces. Now, the purpose of the 'Detailed
design' is to:
- Transform the top-level design into a detailed design for each

software component. Components are refined into lower software
units that can be coded, compiled, and tested.

- Establish traceability between the software requirements and the
software designs.
…
The expected result will be materialized with a Software Design

Document (SDD) in accordance with the project baseline. This
document describes the position of each software unit in the software
architecture and the functional, performance, and quality characteristics
which each must address. The sections related to the DBMS will be on
the responsibility of the card No. 25 'Database Server analysis, design
and generation'.

…
Teaching resources can be helpful in writing the SDD:

- Simplified writing guide for the software design document (TEMPO-
IGQ348).

- SDD Examples: Techsas and Techdis.
- Object-Oriented Analysis and Design Using UML - Ch. 10 '

…
Products V. Milestone

Software Design Document (SDD) A 8-3-2009

Start date End date Workload
7-30-2009 8-3-2009 5 5

Figure 3. Example of a scene card.

3) Exemplar scenes
Our fundamental problem is to prescribe the content of

apprenticeship scenes, their objectives and their outcomes
and to link scenes with SE processes (and their outcomes).
Our modest proposition is to build scenes from previous
scenes description, called exemplar scenes. Rather than
being provided with an abstract definition of the prescribed
situation and its prescribed tasks, the tutor has to design
scenes from previous exemplar scenes and his/her own
previous scenes (from past projects). Table III shows the
complete breakdown for some processes.

Although an intermediate level between process and task
may exist (12207 activity), the hypothesis is made that it
complicates the model - and that hypothetical activities are
only presented so as to facilitate the link with the 12207.

4) Competency Assessment Model
Regarding the understanding of software processes that

students are building, we were faced with a crucial issue. In
the previous system (without work placement), students
learned software processes by doing during the first iteration
and reproduced these processes during the second one. Thus,
links were easy to establish and a practical understanding of
software processes occurred. Now, first iteration (focused on
learning activities) and second iteration (focused on
productive activities) are performed on different projects.

The former is an apprenticeship project driven by the
university and the latter is an industrial project driven by the
companies with which students are placed. We need an
assessment framework that is common to both projects and
which allows apprentices to relate and cumulate experiences.

TABLE III. PROCESS BREAKDOWN AND EXEMPLAR SCENES

12207 Process Hypothetical activity Scene

Group Process 'Software Project Management'

6.3.1,
6.3.2

Project
Manage-

ment

 Project tailoring
 Project planning
 Project progress

Response to solicitation
Project plan
Project plan review
Weekly progress meeting
Project monitoring and control

…

Group Process 'Software Development Engineering'

6.4.1
Require-

ments
Capture

 Functional
requirement capture
 Technical
requirement capture
 Document
requirements
 Requirements
review

Retro-capture of requirements
Functional requirements
Technical feasibility study
Document requirements
Non-functional requirements
Architectural feasibility study
Requirements review

7.1.3
7.1.4

Software
design

 Design tailoring
 Architectural
design
 Detailed design
 Database design
 Design review

Maintenance tasks
Retro-engineering
Architectural design
Database analysis and design
Detailed design
Design review

…

Group Process 'Software Development Support'

6.2.1
Methods
and tools
support

 Process
establishment
 Process
improvement
 Tools support

Life cycle process modelling
Project process modelling
Process monitoring
implementation
Tool usage guide

…

Software companies use assessment of software
processes for capability determination and process
improvement [24]. Although we think that process
assessment as defined in ISO/IEC 15504 or CMMI is beyond
the reach of young engineers, we believe that a simplified
Process Reference Model and a personal Process Assessment
Model are required to provide a basis for the practice of
software engineering. Furthermore, we think that these
models may provide an initial structure of the repertoire.

We observed that our apprenticeship scenes and work
placement periods mobilized a similar set of apprentices’
competency. As mentioned in Section §III.A.3, each process
is associated with a family of competencies constituted with
a list of knowledge topics and a set of abilities or skills
required to perform the process. We believe that a first step
in competency assessment should be made by the engineer
him/herself through a self-assessment of abilities at a
maturity level. The assessment scale grows from 0 to 5; - 0 -
Don’ know anything; - 1 - Smog: vague idea; - 2 - Notion:
has notion, a general idea but insufficient to an operational
undertaken; - 3 - User: is able to perform the ability with the

207

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



help of an experienced colleague and has a first experience
of its achievement; - 4 - Autonomous: is able to work
autonomously; - 5 - Expert: is able to act as an expert to
modify, enrich or develop the ability.

Four times a year, each young engineer is required to
auto-assess his/her maturity level for each ability of the 13
competency families (as well as for each transversal
competency). This periodic self-confrontation with the
competency reference model is called a competency
inventory and is performed while auto-analyzing the tasks
performed and his/her achievement level with the abilities
defined in the family.

Periodic competency inventories are stored in a Content
Management System (CMS). The CMS is hierarchically
structured according to the group process / process
decomposition. This structure is also intended to store
artefacts that may be of interest in illustrating the ability
determination. When the apprentice needs to relate a task
performed with a process’s ability, he/she has to write an
entry associated with the process and may link this entry
with artefacts stored. It constitutes a rudimentary portfolio,
but is sufficient for our purposes.

Our system reference models are presented in Figure 4.

Figure 4. A model of Process Reference Model -PRM- (on the left) and
Competency Reference Model (on the right).

Periodic inventories hold abilities self-assessments.

5) Technical issues
As the project moves forward, information is constantly

updated - in content, and in structure too. Moreover,
metadata management is required. In order to support these
purposes, we propose a very simple architecture based on the
use of several inter-linked semantic wikis. Semantic wiki is
the most flexible tool in order to record and shape a
structured content.

The structural elements of these reference models do not
change as projects go along and theirs events are recorded. In
order to facilitate links between the project journal and these
models PRM, information is stored into two semantic wikis
and a Content Management System (CMS):

• http://oysterz.univ-brest.fr/12207, the 12207 wiki is a
hypertext reference of the ISO/IEC 12207:2008.

• http://oysterz.univ-brest.fr/company, the upper-level of
the company wiki contains decompositions Processes group /
Processes / Exemplar Activities and Stages / Scenes.

• a CMS contains the periodic inventories together with
related artefacts used as witness of the maturity level.

B. Process enactment

1) Questioning our hypotheses
A case study, discussed below, will provide observations

and information belonging to the different types discussed in
§III.B (presentations, accounts and comments) and
structured with the models of §IV.A (hierarchical group
process/process/scenes model and competency reference
model) enhanced of events’ modelling of the project-in-
action presented above.

Self-recording of activity is materialized by adding new
items either in the portfolio or in the wiki, which is acting as
a journal. A measurement of each apprentice’s recording
(from low to high) gives an indication that the apprentice is
aware of the structure of his/her repertoire and able to use it
to classify their experiences. It will provide an empirical
verification of hypothesis H2: the Course-of-Action
observatory may help to be aware of his/her repertoire.

Once experiences are self-recorded, apprentices are
periodically performing self-assessment and self-analysis.
Comparing self-assessments of previous cohorts with those
of our Study Team may provide an indication that the use of
an observatory is influencing the maturity level reached by
the team at study.

The self-analysis of the Course-of-Action is providing a
view of the enacted processes as they are reconstructed and
perceived by the apprentices themselves. On the other hand,
the project should follow processes as they are prescribed by
the company’s tutor. A qualitative evaluation of the process
reconstruction gives an indication of the gap between
prescribed and enacted processes. It will provide an
empirical verification of hypothesis H1: self-analysis and
self-assessment helps an apprentice to reveal theory-in-use.

2) An empirical case study
This case study is based on the activity of a team of 6

young software engineering apprentices, the former author as
a participant-to-observe having a direct contact of the team
members, sharing their environment and taking part in the
activities of the team, the latter conducting formal
assessments as they happen. This case study observes the
whole course of the project. As pointed out by Singer and
Vinson [25], apprentices’ consent is required. At the
beginning of the project they were informed on the field
study and its objectives, and they agreed to participate.

The project is a semantic annotation tool. The main goal
of the project is to provide a semantic annotation tool able to
annotate Web resources, search in different modes, browse
hierarchically or with facets, and manage RDF vocabularies.
The project uses Jena (http://jena.sourceforge.net) an open-
source Semantic Web programmers’ toolkit as RDF API.

3) Planning and monitoring the project
The project enactment is based on the process models of

the previous section, a Y-shaped life cycle that separates
resolution of technical issues from resolution of feature
issues [26] and a typical WBS (Work Breakdown Structure:
“a deliverable-oriented hierarchical decomposition of the
work to be executed by the project team to accomplish the
project objectives and create the required deliverables. It
organizes and defines the total scope of the project” [27]).

208

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



The WBS has a structural and a temporal breakdown.
Each process is achieved through scenes defined from
exemplar activities. The WBS is temporally organized in 9
stages of 2 weeks. The planning of each stage orchestrates
several work scenes. Scenes will be performed by team
members, and should produce artefacts.

Information is recorded at mid-level of the company wiki
(http://oysterz.univ-brest.fr/company). This mid-level
structure acts as a simple but realistic model of a project:
breakdown of the project stages into work scenes; allocation
of persons to scenes; expected inputs and outputs. This mid-
level is filled with instances (wiki pages) corresponding to
the project WBS and updated regularly. The structure of this
mid-level is given in the right half of Figure 5.

4) Recording the project progress
We state in §III.B.3 that software artefacts produced by

the team will serve as (i) presentations. As the project
progresses, events of interest are recorded in a journal
associated with significant artefacts they may have used or
produced. As described in III.B.3, each individual Course-
of-Action is accounted for, on a 2-3 days basis, in an
instance of the smaller unit, called a Performed Activity.
Apprentices create a wiki page for each individual activity
performed during the stage, fill this page with a short
description of activities performed, link this page with
related other pages (scene, person, artefact), and upload
artefacts. At the end of each 2-week period apprentices
account for individual and collective work in the finest grain
of collective Course-of-Action, called a Course-of-Action
Unit, which organizes several individual Performed
Activities. This (ii) accounting provides a first-level of self-
confrontation, as required by the Course-of-Action
observatory.

Figure 5. Representation of an enacted project. The lifecycle of a project
is organized into stages, composed of scenes. During a scene, actors

perform an SE activity inspired by an exemplar activity, yet contextual to
the project. Input and output work products (artefacts) are linked to scene,

activity and process. Self-observing the action leads to a rebuilding of
project processes into steps of Course-of-Action units.

Every two months, apprentices perform a first-level
Course-of-Action analysis on the state of the project’s
software processes. Each apprentice works on few processes
and builds intermediary process elements called Steps-of-
Action, based on historical Course-of-Action Units related to
this process.

All information is recorded in the lower-level of the
company wiki (http://oysterz.univ-brest.fr/company). The
structure of this lower-level is shown on the left side of
Figure 5.

5) Self-assessment
An attempt must be made to relate the university and

industrial phases of the student’s experience to one another.
Fortunately, the competency assessment model of our system
(which could be considered to be the learning objectives) is
based on a simplified model of professional activities. So it
may help apprentices to link up their competency building,
thus avoiding their having to ‘climb two ladders
simultaneously’ [28].

As stated at §IV.A.4, each apprentice is asked to self-
analyze the activities they carried out (during both university
and industrial periods) four times in the course of the year, in
line with the immersion system’s competency assessment
model. Students assess their own maturity, on a scale of 0 to
5, for each ability or transverse competency.

In order to prepare the periodic competency assessments,
apprentices use the CMS as a portfolio which hosts
significant work and interesting artefacts. At any moment of
the year, either in industry or at university, the apprentice
may encounter a work situation, or perform a task which
they perceived to be a significant experience. Within the
competency reference model, they must identify one (or
several) skills related to this experience, and then associate a
new entry with a description of the experience, uploading
artefacts that testify to this experience.

6) Building their own repertoire
The process models presented in Section IV.A are used

throughout the year to structure the apprentices learning
process in the reflective practicum at university (and partially
in industry). The process models are also providing structure
for the self-recording of apprentices’ Course-of-Action and
periodic self-assessments of competencies. We believe that
these models provide an initial structure for the repertoire,
acting as knowledge paths towards recording and retrieval
practices within the repertoire.

V. EXCERPTS OF RECORDINGS AND ANALYSIS

We give some quantitative facts about the case study and
empirically question the research hypotheses of Section 2.

A. Wiki accounting

The project is now complete, and Table IV gives the
number of instances (wiki pages) in each category:
 69 work scenes occurred,
 students carried out 118 Performed Activities,
 roughly 100 artefacts were produced.

209

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



For each process, we have the quantity of: Work Scenes
(SCE); Performed Activities (PAY: individual); Course-of-
Action Units (CAU: collective), and Steps (STE: higher-
level construct). The 6th column gives an indication of the
quantity of Software Engineering Activities that may be
envisaged in the process. The 7th and 8th columns report the
12207 breakdown of related processes: number of activities
(Act) in (the) process (es) and number of corresponding tasks
(Tsk). The 9th and final column gives the number of Base
Practices (BP) in the corresponding process from the 15504
standard.

TABLE IV. QUANTITATIVE FACTS FROM THE CASE STUDY.

Process SCE PAY CAU STE
SE
Act.

Act Tsk BP

Project
management

13 22 13 5 5 7 14 15

Quality
insurance

2 2 1 2 2 4 16 8

Configuration
management

2 2 2 3 3 6 6 10

Requirements
capture

10 18 10 3 5 5 12 6

Software
analysis

2 2 2 2 2 1 3 6

Technical
architecture

7 10 5 3 4 2 2 -

Software
design

7 9 5 4 4 2 15 12

Software
construction

8 16 4 3 5 1 5 4

Integration -
validation

8 12 5 4 5 6 20 20

Technical
support

8 16 2 2 2 3 4 6

Methods and
tools support

3 3 3 3 2 - - 6

Documen -
tation

2 4 2 2 2 4 7 8

Installation -
deployment

1 2 2 1 2 2 5 6

Students report on their activity at the end of each 2-
week stage. Where an activity has extended beyond a single
stage (e.g. technical support or coding), students adopt a
simple strategy: creating one single mid-level structure
(Course-of-Action Unit), and linking it to individual low-
level units (Performed Activity) belonging to different
stages.

B. Self-Recording

In order to evaluate the impact of the Course-of-Action
observatory, we measure the use of the portfolio associated
with the competency assessment model. We compare the two
teams of the 2008-2009 cohort: a Control Team – which
does not record its activity in an observatory – and Study
Team. Each team comprises 6 apprentices.

For each process of the Process Reference Model, and for
each apprentice, we measured the number of associated
entries in the portfolio. Table V shows, for each team, the
minimum, maximum and average number of entries.

For the Study Team, the average for each process is
significantly higher than that of the other team. Remember
that each apprentice of the Study Team has to report their
activity in the observatory after each period at the university.
Comparison of Repertoire Use Between a Control Team and
the Study Team .

TABLE V. COMPARISON OF REPERTOIRE USE BETWEEN A CONTROL

TEAM AND THE STUDY TEAM .

08-09 Control Team 08-09 Study Team

Process Min. Max. Avg. Min. Max. Avg.

Project Management 0 4 2.33 1 5 2.5

Quality Insurance 0 2 1 0 3 1.16

Configuration Management 2 3 2.5 2 5 3.5

Requirements Capture 0 7 3.83 2 8 4.66

Software Analysis 1 4 3 1 8 3.83

Technical Architecture 1 5 2.83 1 7 3.83

Software Design 3 6 4.5 3 8 5.83

Software Construction 1 7 4.16 3 8 5.33

Integration - Validation 1 4 2 1 5 3

Technical Support 2 4 2.66 2 10 3.33

Methods and Tools Support 1 4 2.16 2 8 3.83

Documentation 1 6 2.83 1 8 4

Installation - deployment 2 6 3.16 2 7 4

It is plausible to think that this periodic self-confrontation
helps them to be aware of the Process Reference Model that
structures the repertoire and facilitates filling the repertoire.

We may reasonably argue that our hypothesis H2 is well-
grounded: the Course-of-Action observatory helps an
apprentice to be more aware of the repertoire.

C. Self-assessment

A comparison of the different systems can be drawn from
personal competencies follow-up. For the 13 competency
families, Table V presents three self-assessment averages (in
September, February and May) for the 2006-2007 cohort
(previous system: no work placement), the 2007-2008 cohort
(new system: with work placement), and the 2008-2009 case
study team (current system: with work placement and
observatory). Each cohort comprises 2 teams of 6 students.

All families make steady, and roughly equivalent,
progress - with or without work placements (and with or
without observatory). Due to the small number of students in
cohorts, and the paucity of our statistical knowledge, no
statistical comparison was performed. However, there is no
evidence to indicate that the observatory helps understand
software processes and reveal theories-in-use.

Some small differences can be pointed out: the 08-09
team-members assess themselves at a lower level than
previous cohorts, except in terms of Project Management.

210

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



This may indicate that building the observatory, and
reconstructing processes, have enforced this competency.

TABLE VI. TECHNICAL COMPETENCIES: PERSONAL FOLLOW-UP FOR

THE 2006-2007, 2007-2008 COHORTS, AND 2008-2009 STUDY TEAM

06-07 Cohort 07-08 Cohort 08-09 Team

Competency
family

9/6 2/7 5/7 9/7 2/8 5/8 9/8 2/9 S 5/9 S

Project
Management

1.5 2.8 3.4 1.3 2.7 2.9
1.2 2.3 1 3.5 3

Quality
Insurance

1.1 2.4 2.8 1.4 2.3 2.4
1 1.1 2 1.5 2

Configuration
Management

1.2 1.8 2.9 1.6 2.9 3.0
1.2 1.6 2 2.7 3

Requirements
Capture

2.1 3.2 3.6 1.8 2.8 3.0
2 2.3 2 3.2 2

Software
Analysis

3.6 3.7 3.9 2.4 3.0 3.3
2 2.1 2 2.7 3

Technical
Architecture

1.4 2.4 3.0 2.0 2.8 2.9
1.4 2.1 2 2.7 3

Software
Design

2.8 3.2 3.5 2.3 3.1 3.6
1.8 2.1 2 3 4

Software
construction

2.7 2.7 3.1 2.5 2.9 3.4
2.2 2.5 2 3 2

Integration -
Validation

1.2 1.3 2.7 1.3 2.0 3.2
1.2 1.8 2 2.3 3

Technical
support

2.3 3.0 3.4 2.4 3.1 3.5
1.4 1.9 2 2.3 2

Methods and
tools support

1.7 2.6 3.2 2.0 2.5 2.9
1.2 1.8 1 2.5 3

Documen-
tation

2.8 3.3 3.5 3.1 3.3 3.7
2.4 2.5 2 2.8 2

Installation -
Deployment

2.4 3.3 3.5 2.9 3.3 3.7
1.6 2.6 3 3.2 3

Even though we were unable to confirm our hypothesis
H1, we believe that relating the project observatory to the
personal follow-up of competencies may improve
apprentices' overall understanding of processes. A brief
example: the complete Software Requirements Capture
Process was performed in 10 scenes, spread over several
sequences. Looking at the individual progress of an
apprentice regarding this process, we note that her self-
assessment stayed at a low maturity level of 2 - Notions -
despite the fact that she had participated in several
requirements-related scenes and observed her team-mates
performing other related scenes. It is only after her
participation in the Software Specification Requirements
Document update that she assessed herself at level 4 -
Autonomous – and finally perceived that the different
Course-of-Action units related to requirements were related
to the same field.

D. Process reconstruction

We concentrate on reconstruction by the students of
higher-level Course-of-Action from the smaller units.

In Table VI, column S represents the average of the
student carrying out reconstruction for this process (between
February and May) - but there is no evidence that this work
improved their understanding of the reconstructed process.

Analysis should be correlated with the participation (and
commitment) of students into scenes that are tied to the
process. Further work is required.

In Table IV, the number of 12207 tasks (and 15504 Base
Practices as well) give an indication as to the density of the
process. The higher these numbers are, the greater the
complexity - it should therefore lead to a process
reconstruction involving a higher number of Steps-of-Action
related to a roughly equivalent number of Software
Engineering Activities. A difference between the 5th column
(STE) and 6th column (SE Act.) - e.g. Requirements capture
- may indicate that the reconstruction failed.

From the tutor’s point of view, steps creation was
haphazard. Simple processes, such as Design, have been
correctly reconstructed. But, since a large number of BP
(Base Practices) in Table IV indicate a complex process
which may be oversimplified in the practicum (e.g.
Configuration Management or V&V), the reconstruction was
correct regarding the simplified process but it is partly
inaccurate. For complex processes involving many scenes,
reconstruction may fail - probably because apprentices are
unable to perceive an abstract view of the process. This is
what happened during the Software Requirement Process,
where students were not able to create the Steps that would
establish significant links with smaller units, nor inter-wikis
links with the corresponding 12207.

VI. CONCLUSION AND FUTURE WORK

Argyris and Schön make a distinction between the two
contrasting theories of action: theories-in-use and espoused
theories. We proposed to adapt the Course-of-Action
framework to observe software engineering apprentices’
activity in the course of their final year. Two hypotheses are
discussed: (1) that self-analysis and self-assessment help
reveal theories-in-use, and (2) that the Course-of-Action
observatory helps raise awareness of the repertoire. As a case
study, the activity of a team of 6 young software engineers
accompanied with two participants-to-observe is currently
recorded in the observatory.

Observations are presentations (software artefacts),
accounting (events in the project diary or a portfolio) and
comments (steps reconstruction and activity reports). This
self-observation builds a hierarchy of SE processes used as a
structure for young engineers’ repertoires. Four times a year,
apprentices self-confront the work they did, self-assessing
against a personal ability model.

Current progress with this work suggests that the process
models (a personal Process Assessment Model and a
simplified Process Reference Model) may form an initial
structure of the repertoire, and that the observatory helps
apprentices to be aware of their own experiences.

Further work is required to consider how the Course-of-
Action analysis fits in with Reflection-in-Action and how it
impacts the software engineering apprentices’ ability to cope
with innovation and change.

211

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



ACKNOWLEDGMENT

The authors wish to thank François-Xavier Bru, Gaëlle
Frappin, Ludovic Legrand, Estéban Merrer, Sylvain Piteau,
and Guillaume Salou for their participation in this work.

REFERENCES

[1] V. Ribaud, and P.Saliou, “Revealing Software Engineering
Theory-in-Use through the Observation of Software Engineering
Apprentices' Course-of-Action”, in Proceedings of 2009 Fourth
International Multi-Conference on Computing in the Global
Information Technology, New York: IEEE Press, pp. 202-210,
2009.

[2] D. Schön, D., “Educating the Reflective Practioner: Toward a New
Design for Teaching and Learning In the Professions”, San
Fransisco: Jossey-Bass, 1987.

[3] J. E. Tomayko, “Carnegie Mellon's software development studio: a
five year retrospective” in Proceedings of the 9th Conference on
Software Engineering Education, New York: IEEE Computer
Society Press, pp. 119-129, 1996.

[4] S. Kuhn, “The software design studio: an exploration”, IEEE
Software, Volume 15 (2), March-April 1998, pp. 65-71.

[5] D. Schön, “The Reflective Practitioner”, New York: Basic Books,
1983.

[6] ISO/IEC 12207:1995, AMD 1:2002, AMD 2:2004, “Information
technology -- Software life cycle processes”, Geneva: International
Organization for Standardization (ISO), 1995, 2002, 2004.

[7] C. Argyris, and D. Schön, “Theory in practice: Increasing
professional effectiveness”, San Fransisco: Jossey-Bass, 1974.

[8] L. Pinsky, and J. Theureau, “ Activite cognitive et action dans le
travail, Tome 1: les mots, l'ordinateur, l'operatrice”, Collection de
Physiologie du Travail et Ergonomie, vol. 73, Paris: CNAM.,
1982.

[9] J. W. Maxwell, “Using Wiki as a Multi-Mode Publishing
Platform”, in Proceedings of the 25th annual ACM international
conference on Design of communication, New York: ACM,
pp.196-200, 2001

[10] ISO/IEC 12207:2008, “Information technology -- Software life
cycle processes”. Geneva: International Organization for
Standardization (ISO), 2008.

[11] ISO/IEC 15504:2004, “Information technology -- Process
assessment”. Geneva: International Organization for
Standardization (ISO), 2004.

[12] D. Schön, “Educating the Reflective Practitioner” in Meeting of
the American Educational Research Association, 1987.

[13] O. Hazzan, and J.E. Tomayko, “Reflection processes in the
teaching and learning of human aspects of software engineering”,
in Proceedings of 17th Conference on Software Engineering

Education and Training, New York: IEEE Press, pp. 32- 38, 2004,
doi:10.1109/CSEE.2004.1276507

[14] P. Halloran, “Organisational Learning from the Perspective of a
Software Process Assessment & Improvement Program” in: 32nd
Hawaii International Conference on System Sciences. New York:
IEEE Press, 1999.

[15] J. Theureau, “Course-of-Action analysis & Course-of-Action
centered design” in: Hollnagel E. (ed.), Handbook of Cognitive
Task Design, New Haven: Lawrence Erlbaum Ass., 2003

[16] C. Argyris, and D. Schön, “Organizational learning: A theory of
action perspective”, Reading: Addison Wesley, 1978

[17] O. Hazzan, “The reflective practitioner perspective in software
engineering education”, Journal of Systems and Software, Vol. 63
(3), September 2002, pp. 161 – 171, ISSN:0164-1212

[18] J. Theureau, G. Filippi, and I. Gaillard, “From semio-logical
analysis to design: the case of traffic control” in Colloquium
"Work activity in the perspective of organization and design",
Paris: M.S.H., 1992

[19] J. Theureau, and G. Filippi, “Analysing cooperative work in an
urban traffic control room for the design of a coordination support
system, chapter 4” in: Luff, P., Hindmarsh, J., Heath, C. (eds.)
Workplace studies, Cambridge Univ. Press, 2000, pp. 68-91.

[20] P. Meirieu, “Si la compétence n’existait pas, il faudrait l’inventer”
in IUFM de Paris Collège des CPE, 2005, (accessed April 2009)
http://cpe.paris.iufm.fr/spip.php?article1150

[21] V. Ribaud, and P. Saliou, “Towards an ability model for software
engineering apprenticeship”. Italics, Innovation in Teaching And
Learning in Information and Computer Sciences, Vol.6 (3), July
2007, pp. 97-107.

[22] T. C. Lethbridge, S. E. Sim, and J. Singer. “Studying Software
Engineers: Data Collection Techniques for Software Field
Studies”, Empirical Software Engineering , vol. 10 (3), July 2005,
pp. 311 – 341, doi:10.1007/s10664-005-1290-x

[23] J. Leplat, “Regards sur l'activité en situation de travail -
Contribution à la psychologie ergonomique”, Paris: Presses
Universitaires de France, 1997.

[24] Software Process Improvement and Capability dEtermination
(SPICE), Software Process Assessment - Version 1.00,
http://www.sqi.gu.edu.au/spice/docs/baseline, 1995

[25] J. Singer, and N. G. Vinson, “Ethical issues in empirical studies of
software engineering”, IEEE Transactions on Software
Engineering, Vol. 28 (12), Dec 2002, pp. 1171- 1180,
doi:10.1109/TSE.2002.1158289

[26] P. Roques, and F. Vallée, “UML en action”, Paris: Eyrolles, 2002.

[27] ISO/IEC FCD 24765, “Systems and software engineering –
Vocabulary”. Geneva: International Organization for
Standardization (ISO), 2009.

[28] J. Topping, Sandwich courses, Phys. Educ. Vol. 141 (10), 1975,
pp. 141-143, doi:http://iopscience.iop.org/0031-9120/10/3/003

212

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


