
A Practical Approach to Distributed Metascheduling

Janko Heilgeist∗‡, Thomas Soddemann∗, and Harald Richter†

∗Fraunhofer SCAI, Sankt Augustin, Germany

Email: {janko.heilgeist, thomas.soddemann}@scai.fraunhofer.de

†Clausthal Technical University, Clausthal-Zellerfeld, Germany

Email: harald.richter@tu-clausthal.de

Abstract—The paper describes a metascheduler for high-
performance computing (HPC) grids that is build upon a
distributed architecture. It is modelled around cooperating
peers represented by the local proxies deployed by each partic-
ipating site. These proxies exchange job descriptions between
themselves with the aim of improving user-, administration-,
and grid-defined metrics. Relevant metrics can include, e.g.,
reduced job runtimes, improved resource utilization, and
increased job turnover. The metascheduler uses peer-to-peer
algorithms to discover under-utilized resources and unserviced
jobs. A selection is made based on a simplified variant of
the Analytic Hierarchy Process that we adapted to the special
requirements imposed by the Grid. It enables geographically
distributed stakeholders to participate in the decision and
supports dynamic evaluation of the necessary utility values.
An exemplary decision making process is presented, where
user and resource provider jointly decide upon the resource
where a job will be computed. Finally, we identify four intrinsic
problems that obstruct the implementation of metaschedulers
in general.

Keywords-Grid computing; metascheduling; resource discov-
ery; decision making

I. INTRODUCTION

The problem of optimally scheduling jobs across loosely

coupled distributed compute resources is still to be solved.

Products such as Gridway [2] or Platform’s LSF [3, 4]

promise to provide out of the box solutions. On closer

examination, most of these solutions still have problems

ingrained in their design. A major drawback from our point

of view is that despite the fact that resources are distributed,

some of them work in a centralized fashion and resemble

a staging queue in a classical batch system. Others are

somewhat distributed, but intrusive as far as the interaction

with a site’s local batch scheduling system is concerned.

Unlike batch schedulers, a metascheduler supports the

exchange of job descriptions across the boundaries of differ-

ent sites. Such a migration can arise either directly from a

‡Present address: QAware GmbH, Aschauer Str. 32, 81549 München,
Germany; Email: janko.heilgeist@qaware.de

Extended version of the paper originally presented at the International
Conference on Advanced Engineering Computing and Applications in
Sciences, 2009 [1].

user’s explicit request for a remote resource or indirectly

from a metascheduler’s attempt to perform a grid-wide

load-balancing. In the latter case, it is the metascheduler’s

responsibility to discover the best destination. Yet, existing

batch schedulers provide no separate point of entry for

metaschedulers. A metascheduler can therefore not control

the underlying hardware but has to use the site’s local batch

schedulers — or, more commonly, a grid middleware. It has

to extract the job description from a queue at the source

site and submit it, customarily assuming the original user’s

identity, into a target queue. However, migration should be

transparent to end users, who should, optimally, never notice

that their computations were performed non-locally.

The architecture of a metascheduler can be designed

to be either centralized or distributed [5]. A centralized

metascheduler is controlled by a dedicated entity that is

installed at a single site and has, typically, all the required

information for a decision on whether, when and where

to migrate a job. That is, it collects data on which sites

participate in the grid, which hardware they provide, what

the speed of their connection to the grid is, which load their

hardware has to bear, and to which degree their queues are

filled, etc.

On the other hand, in a distributed (or decentralized)

architecture the metascheduler is split up into multiple

independent instances that cooperate among each other. Each

instance is separately deployed and represents its site in the

grid, that is, it is responsible for all jobs entering and leaving

its site via the grid. We call such an instance a proxy of the

metascheduler. Naturally, a proxy has only limited informa-

tion to act on compared to the centralized design, as it only

gathers data locally and from its neighbors for performance

reasons. It is therefore necessary to provide a proxy with

sufficient additional input to perform its scheduling. This

input can be obtained, e.g., by inter-proxy communication,

by a shared pool of available jobs, or by overlapping the

local job pools of adjacent sites [5, 6].

While the centralized concept of metascheduling is easier

to design, implement, deploy, and maintain, its drawbacks

nevertheless outweigh its benefits. We see three crucial

280

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

problems that need to be addressed: First, a centralized

metascheduler always represents a single point-of-failure.

Problems with the metascheduler will have an immediate

impact on the grid because access to remote resources

is disrupted. Failures like a broken Internet link separate

parts of a grid from the central scheduler. Furthermore, a

successful attack on the scheduler compromises a grid.

Second, the centralized design suffers from reduced scal-

ability when faced with increasing demand. The metasched-

uler represents a serious bottleneck as it is solely responsible

for the migration of jobs in the grid. As the number of sites,

users, and jobs grows, it will become more and more difficult

to collect all the information that is required to determine the

optimal schedule. The common countermeasure to deploy

multiple backup servers running the metascheduler software

prolongs the decline in performance but leads to additional

costs and complexities.

Finally, the largest problem of the centralized architecture

is of a political nature. Grids span across multiple ad-

ministrative zones, companies and institutions, countries, or

continents. Each site has its own local policies that a central

metascheduler knows nothing about. This can simply be to

prefer local users contending for the limited resources or can

be as strict as national laws to prevent certain user-groups

from accessing HPC resources. Additionally, the willingness

of administrators to relinquish control over their hardware

to an external entity is unpredictable.

All of the above problems do not emerge in a distributed

design. Resilience is increased because a proxy failure

affects mostly its home site. Link failures don’t disable the

grid, as separate sub-grids will continue to function indepen-

dently. The overall performance scales with the size of the

grid as the computation of the schedule is distributed across

the grid nodes. And finally, political issues are mitigated by

each site’s ability to configure its proxy independently.

However, with only limited information to act on, dis-

tributed metaschedulers usually produce sub-optimal sched-

ules. While it would be theoretically possible to achieve

full information at every proxy through a complete data

exchange between all sites, the cost of O(n2) is prohibitive

and makes this idea infeasible. Determining good schedules

is an algorithmic problem that is, as of now, best tackled by

contenting oneself with approximations. Overall, we favor a

distributed approach to metascheduling over the centralized

design.

In the remaining sections of this paper, we will describe a

distributed architecture that is currently being implemented

for the Distributed European Infrastructure for Supercom-

puting Applications (DEISA 2, [7]). There, its decentralized

design will be fully exploited in an international grid envi-

ronment of autonomous sites.

In Section II, we present the architecture of the meta-

scheduler and describe the general interaction between a

proxy and its peers. The P2P algorithms required for this

(C) site batch scheduler

(LL, LSF, PBS, ...)

(GT4, Unicore 6, ...)

(B) site middleware

(A) meta−scheduler proxy

(D) site HPC resources

web services to

other proxies

unication interface to local

grid middleware

OGSA−compliant comm−

b
y

p
ass

unication interface to users

and tools

OGSA−compliant comm−

O
p

en
 G

ri
d

 S
er

v
ic

es
 A

rc
h

it
ec

tu
re

G
lo

b
u

s
T

o
o

lk
it

 4

L
o

ad
L

ev
el

er

L
o

ad
 S

h
ar

in
g

 F
ac

il
it

y

P
o

rt
ab

le
 B

at
ch

 S
ch

ed
u

le
r

O
G
S
A
:

G
T
4
:

L
L
:

L
S
F
:

P
B
S
:

A
cr
o
n
y
m
s:

Figure 1: Architecture of the distributed metascheduler at the

site level. Relevant references are OGSA [8], GT4 [9, 10],

UNICORE 6 [11], LL [12], LSF [3, 4], PBS [13].

communication are portrayed in Section III and the idea

of situation-based selection is introduced. Afterwards, the

implementation of the metascheduler is explained in Sec-

tion IV, where we will also present the details of the decision

making algorithm. A full example of decision making is

shown in Section V, where a decision must be made, which

of a given set of resources is selected to execute a job.

Then, an overview of related work on methods for resource

discovery is given in Section VI. Finally, we finish this paper

in Section VII with a conclusion and an outlook.

II. ARCHITECTURE

The architecture uses cooperating peers rather than a

centralized master. Grid administrators install a local proxy

software, whose block diagram is displayed in Figure 1.

The figure shows the metascheduler proxy (A), the grid

middleware (B), and the local batch scheduler (C). The

proxy will have to interact with users, remote proxies,

grid middleware, and local batch schedulers. Towards the

user, the proxy provides web services that are compatible

with the standards of the Open Grid Services Architecture

(OGSA, [8]). Thereby, users and administrators can continue

to use existing tools and client software to monitor jobs and

hardware, oblivious to the fact that they communicate with

a proxy.

Among themselves, the proxies will communicate using

custom-designed but open web services. However, the com-

munication will be mostly restricted to the search for avail-

able computing resources and the exchange of scheduling

281

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

information. For the actual migration of the job descriptions,

the proxies rely on the grid middleware. The interface

between proxy and middleware is compatible to the OGSA

standard. Thus, the proxy can use any OGSA-supporting

middleware. Popular examples include, e.g., Globus Toolkit

(GT4, [9, 10]) and UNICORE 6 [11].

The actual metascheduling work of the proxies is per-

formed in three stages by 1.) deciding that a job is to

be migrated, 2.) discovering available resources, and 3.)

deciding to which target site the job is to be migrated. In the

first stage, the proxy determines which job to migrate away

from the current site. Jobs may be selected for migration,

e.g., because they require resources not available locally,

access remote data, or reduce utilization of the resource by

fragmenting the schedule. Which criteria are considered is

usually determined by the site operator.

Afterwards, resource discovery is carried out in an active

as well as passive fashion. In the first case, a proxy actively

searches for available resources, while in the second case it

only listens for messages sent by other proxies announcing

underutilized resources. Having received a collection of

offers from its peers, a proxy re-enters the decision making

phase with the goal to select the best offer to accept. Now,

the criteria considered include, e.g., the bandwidth available

at a remote site, the cost incurred by using a resource, or

other potential benefits offered to the user.

The remote side in this scenario influences the sequence of

events twice: first, when it receives a request for computation

time, it opts to either provide an offer itself or to ignore

the request. Second, if it has disseminated an announce-

ment about available resources, it chooses between all the

candidates that took an interest in this offer. The criteria

that control the decision in this case could be selected to,

e.g., prefer jobs that best utilize the vacant resource, are

immediately available for execution, or belong to a site that

should be recompensed for previously accepting jobs itself.

The preceeding paragraphs exhibited the fact that schedul-

ing is based on local pieces of information and policies.

While the examples focused mostly on criteria that resource

providers find profitable, the decision making process can

be easily extended to include measures that benefit users or

the grid community. Currently, we restrict ourselves to the

criteria queue size, average waiting time, and waiting time.

They cover an acceptable range of interests insofar as their

optimization is designed to result in improved utilization of

resources, increased fairness, and greater customer satisfac-

tion. Furthermore, these values can be simply determined

and should be deducible from the information provided by

any existing local batch scheduler. The real accomplishment

will be to find a weighting of the criteria that considers the

advantages of all parties involved in a grid environment.

In addition to the illustrated processes, there are other

details to be accounted for in the migration of a job

description. An offer obtained by a site will usually be

valid only for a limited time. An offering site may 1.)

reserve the offered timeslot until acknowledged or canceled

by the receiving site, 2.) reserve the offered timeslot for

a limited time, or 3.) don’t provide any guarantees on the

period of availability at all. Each of these scenarios requires

a receiving site to react accordingly, by either canceling

unused offers in a timely fashion, acknowledging offers

within their restricted lifetime, or re-issuing a request if

previous offers are withdrawn.

In an unstructured grid of independent peers, all these

scenarios may occur and have to be supported by a meta-

scheduler proxy. For this reason, our decision making al-

gorithm ranks the offers in order of decreasing preference.

It iterates through this list and tries to acknowledge the

offers successively. The first offer that is available will be

accepted and the remaining offers explicitly canceled. Thus,

the algorithm will always return the best possible resource

for the job regardless of the types of offers received.

III. RESOURCE DISCOVERY WITH P2P-ALGORITHMS

Over the last decade, peer-to-peer (P2P) networks have

changed the way a search algorithm’s usability is evaluated.

With sizes of hundreds of thousands of simultaneous peers,

they have rendered most traditional algorithms obsolete.

Instead, a whole new class of distributed hashtable (DHT)

based search algorithms has been created such as CAN [14],

Chord [15], Pastry [16], and Tapestry [17]. The combination

of a particular network overlay structure with an efficient

routing algorithm makes them especially suited to deal with

large distributed networks.

Unfortunately, their approach of hashing a search request

is not particular useful in a grid environment. Here, most

search requests are multi-criteria queries, e.g., “10 nodes

with 32 CPUs each for 5 hours”, and composed of ranged

criteria, e.g., “10–15 nodes”. Hashing such a request results

in loss of valuable information. Recent research tackles this

problem by mapping these extended queries to the routing

layers of, e.g., CAN or Chord. We describe three examples

of such algorithms in Section VI. An excellent overview and

a taxonomy for grid-enabled DHT-based algorithms is given

in [18].

DHT-based algorithms derive their scalability, speed, and

fault-tolerance from the fact that queries are distributed

evenly amongst the participants of a network. This spread

is a direct result of the mathematical properties of the used

cryptographic hashing functions such as SHA-1. However,

in a grid environment the necessary difference between

query values is not always guaranteed. It is typical to

encounter limited types of different hardware, common

software stacks, and restrictions by resource providers on

the requestable numbers of nodes and runtimes of jobs. All

of these constraints reduce the possible values an attribute

can adopt. As a result, the routing of queries focuses on a

few grid nodes and a DHT-based algorithm’s benefits are

282

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

seriously diminished. Considering the cost and complexity

and their fairly insubstantial benefits for grids of the targeted

size, we decided against using DHT-based algorithms.

A. Forwarding-based Algorithms

Instead, we employ traditional forwarding-based search

algorithms. As their name suggests, these algorithms work

by forwarding a request from one peer to another peer.

Starting at an initial site, a request recursively spreads

through the grid until some stop criterion is met. Each

receiving peer tries to satisfy the request locally or, else,

forwards it to its direct neighbors. Resource offers take the

reverse path of a request back to the initial site.

In most instances, different algorithms vary in the way a

request is routed, a stop criterion is chosen, or additional

information is collected to augment the routing. Two ex-

emplary algorithms that are representative of the class of

forwarding-based algorithms are the Breadth-First-Search

(BFS) and k-RandomWalks.

Breadth-First-Search: The BFS is the simplest of the

forwarding-based algorithms without all the bells and whis-

tles other variants attach to it. A request is endowed with an

integral “time-to-live” (TTL) that is chosen by the initial site.

Each peer that receives a request decrements the request’s

TTL by one. If it hasn’t reached zero yet, the peer forwards

a copy of the request to all of its neighbors indifferently.

Afterwards, the peer tries to generate offers matching the

request and returns them to the initial site.

Basic details will usually differ between implementations

of this algorithm. In general, peers will check whether they

have already seen a request before handling and forwarding

it a second time. In this spirit, they will not forward a

request to the neighbor they originally received it from

either. Further, an implementation will usually see to it

that each peer aggregates all offers from its neighbors. By

bundling the replies at each peer, the number of return

messages is kept down. But even with these enhancements,

the number of requests grows exponentially with the depth of

a search. Also, because the requests continue to be forwarded

even if a satisfying offer was discovered, there is no chance

to abort a search early.

Still, the BFS exhaustively examines the grid up to the

search depth. If there is a matching resource on any of the

peers it can reach in TTL hops, then the BFS is guaranteed

to discover it. In an unstructured distributed grid, the BFS is

the only algorithm with this kind of promise. Nevertheless,

the algorithm is too expensive to be employed on its own.

k-RandomWalks: The k-RandomWalks algorithm is a

variant of BFS that reduces the number of messages dis-

seminated in the grid. The initial peer issues its request to a

maximum of k neighbors. Each subsequent peer will forward

the request only to a single random neighbor of its own.

Therefore, the number of messages is bound by k × TTL,

and any of the two parameters can be adjusted independently.

The BFS’ major drawback — its huge cost in terms

of messages — is somewhat reduced by k-RandomWalks.

By modifying the parameters k and TTL the character of

the algorithm can be changed. Increasing or decreasing

TTL directly influences the distance that can lie between a

requesting site and the potential offers it receives. Increasing

or decreasing k controls the thoroughness with which the

grid is searched for results.

However, regardless of the values of the parameters the

algorithm will never yield the quality of results produced

by the BFS. Instead, it will often find no results even

though a matching resource is nearby. For this reason, the

k-RandomWalks is rarely employed by itself, too.

B. Situation-dependent algorithm selection

The balance between proper results and incurred costs

is crucial when employing forwarding-based algorithms.

Naturally, there are more advanced algorithms in this class

than the cited examples BFS and k-RandomWalks. Variants

such as, e.g., Adaptive Probabilistic Search (APS, [19]) and

Distributed Resource Location Protocol (DRLP, [20]) learn

from previously performed searches. They collect data about

which neighbor returned promising results and adjust their

routing correspondingly. Nevertheless, the costs associated

with these variants can not be justified by their results in

general.

Instead of designing yet another forwarding-based algo-

rithm, we chose to examine the existing methods more

closely. It emerged that most algorithms are not to be re-

jected out of hand. Rather, it is the situation that determines

the suitability of a method. No algorithm is always perfectly

applicable. But given the right circumstances and an intel-

ligently selected technique, the results can be acceptable.

Therefore, it is advantageous to investigate the situations in

which a search algorithm is to be invoked.

Coming back to our metascheduler, we discovered two

main cases in which a P2P algorithm is necessary: I.)

resource requests, that is, active inquiries into available re-

sources matching specific requirements, and II.) resource an-

nouncements, that is, the dissemination of vacant resources

that other peers passively listen for. We further identified two

sub cases each: I.a.) necessary and I.b.) optional requests

and, on the other hand, announcements of II.a.) immediate

and II.b.) future resource vacancy. Of these four cases, each

makes other demands on an appropriate search algorithm.

The key difference between the main cases lies in the

way a particular message needs to be distributed. In I.) the

system seeks a resource that matches detailed requirements.

Thus, it is beneficial to employ algorithms that, e.g., learn

from previously performed searches and can route a request

specifically to sites where such a resource is known to

exist. A similar design could theoretically be used with

resource announcements in II.) to find jobs that can take

advantage of a vacant resource. However, jobs are transient

283

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

compared to HPC resources. Although the probability to find

a compatible job is higher on sites with a similar resource,

other sites are not to be neglected.

The difference between a situation’s sub-classes lies in

the urgency, by which a metascheduler requires its results.

In the cases I.a.) and II.a.) a higher priority is placed on

the search than in the corresponding counterparts I.b.) and

II.b.). Due to the higher priority, it is especially important

to find actual results and preferably in a speedy manner.

Extra cost incurred by an expensive search algorithm is

acceptable due to the urgency of the request. For instance, it

is more important to obtain jobs for an immediately available

resource than for a resource available in the future. In the

latter case, a sequence of cheap searches with a reduced

chance of success may still yield a result in time.

Each class of situations requires another type of algorithm.

It will always lead to an inferior performance if a single

technique is chosen. Therefore, we opted to implement

various forwarding-based algorithms and dynamically select

the particular method to apply in a situation. Compared

to DHT-based algorithms, the forwarding-based algorithms

are mostly easy to implement and make no demands on a

specific network overlay structure. With a basic framework

in place, the simplicity of implementing these techniques

allows us to support several methods simultaneously.

Each time a P2P search algorithm is about to be in-

voked, the circumstances are analyzed and the situation is

categorized into one of the four classes I.a, I.b, II.a, and

II.b. Then the appropriate algorithm is determined and the

search initiated. Which algorithm is deemed appropriate can

be configured by an administrator of a site. While it is

necessary that every proxy supports all employed algorithms,

each proxy can be differently configured. However, not every

combination will actually lead to improvements. Due to the

limited amount of space, we refer the interested reader to

[21] for feasible configurations.

IV. SOFTWARE DESIGN

A huge part of the development time of any complex

software system is spent dealing with secondary issues such

as handling threads, writing web service stubs and skeletons,

and managing database access. Therefore, we decided to

build the metascheduler as an enterprise application archive

(EAR) that is deployable in any application server conform-

ing to the JavaEE 5 standard [22]. The environment provided

by a JavaEE application server supports the programmer by

taking over many of the more arduous tasks.

Moreover, an administrator benefits from an easy installa-

tion, configuration, and maintenance of the final application.

Still, minor adjustments are generally required before an

EAR can be deployed in a container since the JavaEE speci-

fication grants compliant implementations some leeway. Our

development team uses the Apache Geronimo [23] appli-

cation server because it offers a free, open, and complete

implementation of the JavaEE 5 standard. In addition, we

plan to actively support Red Hat’s JBoss [24] and SUN’s

Glassfish [25] in the fourth quarter of 2009, too.

The metascheduler is structured into three main modules:

1.) resource discovery, 2.) decision making, and 3.) resource

management. Whereas the first two constitute the core

modules of the scheduler, the latter embodies the interface

to grid middleware or batch scheduler. Additional auxiliary

components provide the glue binding the three main modules

together. They are secondary to the logical modular design

however, and we will neglect them for now.

The resource discovery module is chiefly responsible

for the discovery of remote resources that match certain

specified requirements. This task includes the active search

for resources as well as the dissemination of vacant re-

sources to other sites. The module incorporates the various

forwarding-based P2P algorithms referred to in Section III-A

and exposes them as web services to the remote peers. In

cooperation with the decision making module, it implements

the situation-based selection of one of these algorithms.

In the decision making module, we have concentrated

the logic that steers the metascheduler. A variant of the

Analytic Hierarchy Process (AHP) [26, 27] is used through-

out the system to choose between alternative solutions. Its

hierarchical design allows us to consolidate the opinions

of several parties into an overall decision. The selection

of the target site of a migration can therefore incorporate

different viewpoints such as the interests of job owner,

resource provider, and grid community. In contrast to the

standard AHP, the utilities of an alternative are determined

dynamically and with minimal human interaction.

Finally, the resource management module serves as an

interface between the metascheduler and the lower layers

of a site’s scheduling stack. It provides a set of abstract

methods that allow the reservation and management of

timeslots of the underlying hardware resource. Different grid

middleware will generally require different implementations

of this module. But with an OGSA-compatible default

implementation, the metascheduler is adequately equipped

to handle a majority of the existing installations on a grid.

A. Resource Discovery

The implementation of a P2P algorithm’s web services

follows the “contract first” design approach. First, the ab-

stract web services are unambiguously described in the Web

Service Description Language (WSDL, [28]). Then, JAX-

WS-compliant (Java API for XML Web Services, [29]) tools

are used to generate an interface from this description. The

interface contains the definitions of the web service methods.

Implementing these methods and deploying the code into an

application server results in a usable web service.

Each P2P search algorithm supported by a metascheduler

proxy is made available as a separate web service under its

own URL. Thus, a proxy is characterized by a bundle of

284

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

GenericSearchHandler

search(Request req) : List<Reservations>

announce(Resource res)

BFSSearchService

DRLPSearchService

GUESSSearchService

APSSearchService

KRandomWalksSearchService

A)

OfferEvaluator

rank(List<Offer> offers)

AHPEvaluator

B)

ResourceManager

listOffers(Request req) : List<Offer>

createReservation(Offer offer) : Reservation

cancelReservation(Reservation res)

OGSAResourceManager

C)

Figure 2: Software modules of the distributed metascheduler.

different service URLs. It is therefore reasonable to provide

a specialized “get-to-know-service” that serves as a central

point of entry for remote peers. It can be seen as some

kind of directory that a remote peer can query to identify

the additional services offered by a proxy. We call this

service the gatekeeper service. Note, that this is not a central

directory service but a local web service provided by a proxy

to supply information about itself in agreement with the

distributed nature of the design.

The information supplied by a gatekeeper currently con-

tains a user-friendly name and a list of all locally available

web services. The name is used exclusively as a convenience

for users, while proxies identify themselves by their gate-

keeper URLs instead. It can be specified by an administrator

to label a managed resource, e.g., “IBM Power6 system at

RZG”. In the list of services, each available web service is

identified by its fully-qualified name (FQN) and mapped to

its respective local URL. We established the provided infor-

mation as scarce and restricted to the absolute minimum. It

is easily extendable to include, e.g., a free text description of

a resource, usage policies, service level agreements, detailed

costs, etc.

Search algorithms are defined via a generic abstract

web service displayed in part A) of Figure 2. An actual

algorithm needs to implement only two methods: search

and announce. The search method takes a resource

request as an argument and returns a list of matching

reservations. Where these reservations actually come from,

e.g., multiple reservations from a queried proxy itself or

additional reservations from remote sites, depends on the

particular algorithm considered. Naturally, reservations will

have to contain the appropriate pieces of information that a

querying site requires to positively identify the source of an

offer.

As of now, a resource request incorporates a requirements

definition in the format of the Job Submission Description

Language (JSDL, [30]) plus a data block each for search

algorithm and decision making algorithm. These blocks are

used to map a received request to the appropriate algorithm

implementation and, additionally, used by the particular

algorithms to attach custom data to a request. Regarding

the search algorithms, such a piece of custom data can,

e.g., include timeout or original source of a request, routing

directives, etc.

The announce method takes a structure similar to

the request as an argument but has no return value. An

argument’s JSDL component is used to describe the offered

resource including the address of the offering site. A return

value is not required, because a site that wishes to apply for

the resource, is required to submit its request in a separate

step. Thus, an announcement can be handled as a “fire and

forget” message. By removing the reply message for this

type of search, an announcement’s costs is kept down.

B. Decision Making

The module in charge of decision making is a sim-

plified implementation of the Analytic Hierarchy Process

(AHP) [26, 27, 31] displayed in part B) of Figure 2. It

considers various facets of an item to sort a given set of

similar items in order of preference. The module is applied

in several stages of the metascheduling process to rank

available timeslots, received offers, migration candidates,

etc. By making the algorithm a replaceable module, the

different sites could, in theory, employ different decision

making modules without interfering with each other.

The AHP is a hierarchical multi-criteria decision making

algorithm originally developed for the domain of economics.

Its decision is based on a tree of criteria that have been

chosen as relevant to the decision at hand. Figure 3 shows

an exemplary AHP tree with two levels that combines several

criteria relevant to a migration decision. Inner nodes of a tree

define meta-criteria that are fully described by their child

nodes. Leaf nodes represent criteria where the utility of an

option can be explicitly determined. Each criterion in the tree

has a weight assigned by a human. These weights determine

the importance of a criterion with regard to its corresponding

parent node.

The ranking of alternatives starts at the leaves of a tree.

Here, each alternative item is evaluated and has its utility

computed. In the original AHP, an item’s utility is deter-

mined based on pairwise comparisons provided by a human

285

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

grid

community

resource

provider
user

waiting

time
costs

global

fairness

load

balancing

local

fairness

load policies

0.09 0.74 0.17

goal

0.5 0.50.83 0.17

0.07

0.28 0.65

Figure 3: Exemplary AHP hierarchy with multiple parties.

The weights of each node’s children add up to 1.0.

decision maker. For this purpose, each pair of items has to be

judged and the preference for an item has to be expressed

on a scale of nine values. These values represent notions

from “equally preferred” to “extremely preferred” defined by

Saaty [26]. A pairwise comparison matrix A = (aij)1≤i,j≤n

is the result of this rating process. Finally, the normalized

principal Eigenvector of A is determined and its kth entry

is used as the utility of the kth alternative.

Utilities with regard to inner nodes of a tree are computed

recursively. At every node, the utility of an alternative is

determined as the weighted sum of corresponding values at

the child nodes. That is, for each inner node the utilities at its

immediate child nodes are multiplied by the corresponding

child’s weight. These products are then added and result

in an alternative’s utility with respect to the parent node.

As a by-product of using normalized utilities at the leaves

and using normalized weights, the process also produces

normalized utilities at each inner node. The obtained values

are then used at the root node to rank alternatives from best

to worst.

Usually, consent in an AHP context is reached by personal

interaction: stakeholders come together to debate pairwise

comparisons. In a grid, involved parties are geographically

distributed, yet situations where a decision has to be reached

are abundant. Because debate and direct interaction are

infeasible, we exploit the hierarchical structure of a criteria

tree to account for distinct opinions. Each stakeholder is

allowed to build its own tree from a common set of criteria

and assign its own weights. These separate trees are brought

together under a common root to construct the final tree.

At this point, the persistent normalization protects an

automated decision making process from malicious users. As

utilities at each subtree’s root are normalized, the expressed

opinions are initially of equal strength. In the next step, every

subtree is connected to the root of the final hierarchy with

its own weight. These root weights exclusively control the

share of participation given to a particular stakeholder. In a

grid environment, it is reasonable to assume that resource

providers will reserve the right to define these values to

themselves. As root weights can be defined on a per resource

basis, different providers will not interfere with each other.

Additionally, a provider can encourage participation — and

even advertise the possibility thereof — without loss of

control.

In our metascheduler, three stakeholders participate in

a decision: 1.) the owner of a job, 2.) the provider of a

resource, and 3.) the grid community. The lifetime of a

subtree will vary according to the party that defined it. A

user’s tree is optionally created as part of the job submission

process and permanently attached to a job description. It

exists only as long as a job remains in the grid. A provider’s

tree is specific to a particular resource and part of a proxy’s

configuration. It will generally be constant for extended

periods of time and will be used in every local decision

making process. Finally, a grid community’s tree is defined

at the grid level and assumed to be part of the initial

agreement to found a grid. It is configured at the proxy level,

too, but identical across all participating sites. Typically, this

tree will be the most static of the three subtrees. The root

weights are configured in the same XML document that sets

provider and grid community subtrees.

Furthermore, we extended the original AHP to dynami-

cally compute utilities at the leaves of a tree. Such an ex-

tension is necessary, before AHP can be employed in a grid

environment. Here, alternatives are defined by measurements

or predictions such as waiting time (in minutes), cost (in

dollars), and utilization (in percent). Again, AHP is clearly

focused on human interpretation of the alternatives. Saaty

gives several examples in [27], where a human decision

maker’s preference may differ significantly from the values

suggested by a standard scale. We tried to accommodate

this view and simultaneously make the algorithm feasible

for a grid environment. Hence, we made the computation of

utilities configurable based on an underlying criterion.

We provide two evaluation methods in the stock instal-

lation of a metascheduler: a direct mapping module and a

hyperbolic tangent [32] based module. The direct mapping

module allows a provider to map ranges of input values to

specific utilities. It supports open ranges, ranges bounded

above or below, and exact values. The resulting utility

function is obviously non-continuous. It might be tempting

to use this method for continuous criteria to express, e.g.,

that only waiting times of up to 5 hours are acceptable.

However, this is generally a bad idea, because it leads to

situations where the priorities do not reflect a stakeholder’s

intent. A job with a predicted waiting time of 4:59h is in

most cases only marginally more preferred than a job with

286

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0

0.2

0.4

0.6

0.8

1.0

 0 50000 100000 150000 200000 250000

u
ti
lit

y

physical measure

dominant cluster

h
e
ig

h
t

=
 m

a
x
H

e
ig

h
t
×
 0

.7

control box

outliers

Figure 4: Continuous utility function for minimization cri-

teria based on the hyperbolic tangent. The control box

is determined automatically from the distribution of the

measures.

5:01h waiting time. Thus, this method should only be used

for discretely valued criteria such as user IDs, group IDs,

queue names, etc.

In contrast, the evaluation method based on a hyperbolic

tangent is designed for continuous criteria. It reflects the

idea, that distinct utilities should be computed for the range

of input values where the majority of the alternatives are

located. Above average quality should yield higher utilities

but eventually be bounded. An analogous reasoning is true

for below average quality. We chose the hyperbolic tangent

as the underlying utility function because it converges to 0
(resp. 1) for small (resp. large) input values. The notion of a

control box is used to scale and shift the hyperbolic tangent

with the aim of focusing its transition from 0 to 1 on average

alternatives (see Figure 4).

Upon receiving a set of alternatives, the evaluation module

first starts to determine the dominant cluster with regard

to a given criterion. It iteratively aggregates the closest

input values until a cluster exceeds 51% of all values.

Horizontal position and width of a control box are set

to reflect the position and width of this dominant cluster.

Vertically, the box is centered around the midpoint 0.5 of

the available utilities. The height of a control box is at most

0.8 and scaled with the ratio of elements in the dominant

cluster. Determining a control box is independent of whether

the current criterion is about maximizing or minimizing

measures.

Finally, the hyperbolic tangent is scaled and shifted to

match a control box, i.e., the curve runs through the lower

left and upper right corners of a control box for maximizing

criteria. Accordingly, it runs through the upper left and lower

right corners for minimizing criteria. The resulting function

is used to map input values to raw utility values, which are

then normalized to bring them in a form suitable for use in

AHP.

Direct mapping and hyperbolic tangent based evaluation

represent two methods designed for non-continuous and con-

tinuous criteria, respectively. In Section V, we present a full

example that uses both mapping techniques. However, the

metascheduler is easily extendable with additional evaluation

methods.

C. Resource Manager

The interface between metascheduler and locally installed

grid middleware or batch scheduler is represented by the

resource manager module displayed in part C) of Figure 2.

It provides the means to inquire for a set of offers matching

a request’s JSDL description and, optionally, to fix such

an offer into a reservation. The definitions of offer and

reservation are deliberately kept as broad as possible to

account for different systems, which a metascheduler is

required to interact with.

Conceptually, an offer represents a timeslot on some

resource that is endowed with additional metadata. The

contents of the structure must allow the resource manager

to identify the offered resource and assign a job correctly to

it. The attached pieces of metadata constitute a mapping

of arbitrary criteria to corresponding measures taken or

predicted by a resource manager. An offer satisfies the pre-

conditions put forth by the decision making module. Thus,

a set of offers can be ranked in order of preference if some

weighting of the criteria is supplied externally.

As mentioned previously, the metascheduler currently

supports the criteria queue size, average waiting time, and

waiting time. These points of comparison were selected be-

cause every existing batch scheduler should be able to supply

them easily. However, the metascheduler is not restricted to

any fixed set but can be configured to understand arbitrary

criteria. Thus, the set can be freely extended as long as a

resource manager knows how to obtain the related values.

A reservation is just a wrapper around an offer that

optionally assigns an owner to it. Whether this assignment

is for a limited period of time, until the reservation is

explicitly canceled, or not authoritative at all is up to the

particular resource manager or its site. The main reason

for a separation of offer and reservation was to distinguish

between the mere availability of a timeslot and its dedication

to a particular party.

V. DECISION MAKING — AN EXAMPLE

Two unique features distinguish the described metasched-

uler from existing solutions. First, its concurrent use of mul-

tiple forwarding-based search algorithms that selects the best

algorithm for a given situation. Second, its generic decision

making algorithm that supports multiple stakeholders for

each scheduling decision.

287

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The same basic principles of decision making will even-

tually be used in both search module and generic DM

module. Forwarding-based search algorithms are then plain

implementations of existing techniques that generally require

no customization. For this reason, the following example

will focus on the new concepts in decision making. We

will show a selection process that is common to scheduling:

which resource from a given set of alternatives will be

used to execute a compute job. In the process, we will pay

particular regard to the observance of individual interests in

a joint decision.

A user has used the metascheduler to submit a job

that requires 9,216 CPU-hours to run to completion. It is

assumed, that the job is moldable and will scale perfectly

to any number of CPUs, i.e., it can run in 3 days on 128

CPUs or in 18 hours on 512 CPUs. Such an assumption

is rather naive and more realistic models for the speedup of

parallel programs exist. For instance, Cirne and Berman [33]

presented a generator that models sets of moldable jobs

according to Downey [34]. However, an explanation of these

concepts is beyond the scope of this example.

As part of the submission process, the user selected

three criteria that he wishes the metascheduler to optimize.

His goals are to minimize the cost of computing his job,

to minimize the waiting time until his computation will

start, and to minimize the overall completion time until

the results are returned to him. Then, he used the method

established by AHP to judge the three criteria with regard

to their relative importance on a verbal scale. The user

stated that he preferred lowering the cost strongly over

lowering the waiting time and, moderately over lowering

the completion time. Likewise, he preferred lowering the

completion time moderately over lowering the waiting time.

From these judgments, normalized weights were derived for

cost, waiting time, and completion time as, respectively,

wcost = 0.637, wwait = 0.105, wcomp = 0.258.

Note that weights derived through the AHP will always add

up to 1.0.

The metascheduler issued a search on behalf of the user’s

job to acquire offers for a matching slot on an HPC resource.

Eventually, the search returned five offers from three differ-

ent resources. For the sake of simplicity, we are working

with several assumptions about these resources and offers.

First, the discovered resources were filtered such that they

fulfill all necessary requirements with regard to software,

disk space, memory, etc. Second, the user is authorized to

use any of the three HPC resources. And third, all resources

belong to the same resource provider. This third assumption

is most restrictive, but allows us to keep the number of

parties participating in the decision down to the user and

his provider.
Like the user, the resource provider selected two criteria

that the metascheduler is supposed to optimize. The first

goal is to maximize the average load of the resources, and,

therefore, to favor resources with a low utilization during

scheduling. Then, explicit queue priorities were manually

defined for queues and job classes. On resource A, medium-

sized jobs that used at most 64 CPUs are favored over large

jobs that used up to 512 CPUs in parallel. This decision was

made to increase the number of users served simultaneously

and, therefore, maximize the perceived fairness. Also, guests

on resource C are penalized by a lower priority with

regard to regular users for political reasons. The second

goal is to stay true to these priorities and consider them

in the scheduling process. Finally, both criteria were judged

by an administrator who stated that better utilization was

moderately preferred over adherence to the queue policies.

The resulting normalized weights are

wutil = 0.750, wprio = 0.250

for utilization and queue priorities, respectively.

Furthermore, the root weights that govern the share of

participation were established in cooperation with a user

representative. Instead of using the AHP, the values were

obtained by external means and set to

wuser = 0.16, wprov = 0.84,

for users and provider. In other words, a share of 16% in

the overall decision is granted to users.
Table I shows the relevant characteristics of the three

resources that the metascheduler found. For each resource

the cost in dollars per CPU-hour was chosen consistent with

the values calculated by Walker [35]. All remaining prop-

erties were defined based on on our experience with HPC

resources. Table II lists five offers and their characteristics

with regard to the decision making criteria. An offer’s cost is

determined by multiplying the job size of 9,216 CPU-hours

with the corresponding resource’s cost. Waiting times were

picked randomly to provide some variance in the quality

of each offer. Finally, completion time is derived from the

waiting time and the job’s runtime using the maximum

number of CPUs allowed for each queue. Utilization and

queue priority associated with an offer can be obtained from

Tab. I.
Now, the next step is to evaluate all offers with regard

to all criteria specified by the participating decision makers.

For cost, waiting time, completion time, and utilization, the

style of automatic prioritization illustrated in Section IV-B is

used. Queue priorities, however, already represent priorities

themselves. They are an example for a direct mapping

technique where discrete values — in this case the queue

names — are mapped to static utility values. On resource C,

however, the mapping can be implemented purely numerical

by detecting user or guest status based on the user ID. Still,

the resulting utilities are not normalized yet. Therefore, they

are divided by the sum of all five queue priorities to fit into

the generic hierarchical prioritization scheme.

288

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Resource Cost Utilization Queues Queue Priority Policy

($/CPU/hour)

A 0.07 0.95
jumbo 1.0 max. 512 CPUs

medium 1.2 max. 64 CPUs

B 0.045 0.90 1.0 max. 128 CPUs

C 0.10 0.70
users 1.0 max. 64 CPUs

guests 0.6 max. 64 CPUs

Table I: Characteristics of the available HPC resources.

Offer-ID Resource Queue Cost Waiting time Completion time

($) (hours) (hours)

offer-1 A jumbo 645.12 36 54

offer-2 A medium 645.12 16 160

offer-3 B 414.72 20 92

offer-4 C users 921.60 4 148

offer-5 C guests 921.60 8 152

Table II: Characteristics of the resource offers.

The four utility mappings with automatically derived

hyperbolic tangents are shown in Figure 5. It can be seen,

that the algorithm adjusts itself to distribution and magnitude

of the underlying measures regardless of the actual criterion.

For instance, most of the waiting times lay in the range

between four and 20 hours with a negative outlier at 36

hours. Here, the algorithm maps the average offers to (unnor-

malized) utilities between 0.18 and 0.82, while it singles out

“offer-1” and assigns an utility that marks it as unacceptable.

On the other hand, three out of five completion times fall

between 148 and 160 hours with two positive outliers at

54 and 92 hours. Again, the mapping assigns values in the

middle spectrum of utility to the cluster, but it awards “offer-

1” and “offer-3” with utilities close to the maximum. Also

note, how the algorithm accommodates the height of the

control box to the share of options in the dominant cluster.

Figure 6 shows the normalized utilities for all offers and

criteria in comparison.

In a final aggregation step, the singular utilities are com-

bined for each set of elements in the criterion hierarchy until

the root is reached. To illustrate, let’s consider “offer-1”,

which is characterized by five independent utilities:

u
(1)
cost = 0.198, u

(1)
wait = 0.005, u(1)

comp = 0.279,

u
(1)
util = 0.080, u

(1)
prio = 0.208.

A weighted sum of these values is calculated to determine

the utilities from the point of view of the user and the

resource provider, respectively. The user’s utility for “offer-

1” is, therefore,

u(1)
user = wcostu

(1)
cost + wwaitu

(1)
wait + wcompu

(1)
comp = 0.198

cost

waiting
time

completion
time

utilization

queue
priority

 0 0.1 0.2 0.3 0.4 0.5 0.6

utility

offer-1

offer-2

offer-3

offer-4

offer-5

Figure 6: Utilities of each resource offer with regard to the

leaf criteria.

and the provider’s utility

u(1)
prov = wutilu

(1)
util + wpriou

(1)
prio = 0.112.

Finally, these utilities are combined with the root weights to

obtain the final overall utility of the first offer.

Intermediate utilities, i.e., utilities with regard to user,

provider and the overall goal, are shown in Figure 7. It

is noticeable, that the overall utilities are closely related to

the provider utilities. The reason for this similarity is, of

course, the large share of the root weights granted to the

resource provider. Nevertheless, the user’s strong preference

for the third offer is not ignored. Despite his minor power,

the third option is judged as marginally more preferable

than the fourth option in the final prioritization. Using the

289

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

0.0

0.2

0.4

0.6

0.8

1.0

 0 200 400 600 800 1000 1200

u
ti
lit

y

cost (dollars)

3
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1
 a

nd
 o

ffe
r-2

of
fe

r-3

of
fe

r-4
 a

nd
 o

ffe
r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 5 10 15 20 25 30 35 40

u
ti
lit

y

waiting time (hours)

4
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1

of
fe

r-2

of
fe

r-3

of
fe

r-4

of
fe

r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 50 100 150 200

u
ti
lit

y

completion time (hours)

3
/5

 ×
 m

a
x
H

e
ig

h
t

of
fe

r-1

of
fe

r-2

of
fe

r-3

of
fe

r-4

of
fe

r-5

0.0

0.2

0.4

0.6

0.8

1.0

 0 0.2 0.4 0.6 0.8 1

u
ti
lit

y

utilization (percent)

3
/5

 ×
 m

a
x
H

e
ig

h
t

offer-1
 and offer-2

of
fe

r-3

of
fe

r-4
 a

nd
 o

ffe
r-5

Figure 5: Automatic utility mappings derived for the criteria cost, waiting time, completion time, and utilization.

user

provider

overall

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

utility

offer-1

offer-2

offer-3

offer-4

offer-5

Figure 7: Per-party and overall utilities of each resource

offer.

overall utilities as a guideline, the metascheduler would try

to acknowledge the offers in decreasing order of preference

offer-3 > offer-4 > offer-5 > offer-2 > offer-1.

The first offer that would actually be accepted by both sides

of the bargain is assigned to the job; remaining offers are

subsequently canceled.

VI. RELATED WORK

Current grid scheduling solutions focus on centralized

resource discovery approaches. UNICORE 6 [11] is a grid

middleware that is widely deployed, e.g., in the DEISA 2

grid [7] and in parts of the German D-Grid [36]. It performs

resource discovery via a single registry called Common

Information Provider (CIS). The CIS collects static and

dynamic information on a grid’s resources, which is pro-

vided by CIS Information Providers (CIP) monitoring each

resource. A CIP publishes an Atom-feed that is periodically

polled by the CIS by means of a web service protocol.

The migration of job steps in a workflow is performed

by so-called Service Orchestrators. They employ different

290

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

brokering strategies, which in turn use the information from

the CIS to reach their decisions.

A similar approach is taken by the second major grid

middleware Globus Toolkit 4 [9, 10]. The resource manage-

ment is contained in the Monitoring and Discovery Service

(MDS), which consists of Aggregator Framework, Index, and

Trigger. Index is the counter-part to UNICORE’s CIS. There

are one or more index servers per virtual organization (VO)

that store all the information about a VO’s resources. The

Aggregator Framework is used locally to monitor a resource

by periodically spawning shell scripts. Obtained data is then

pushed into the central index.

Finally, the Trigger component can be configured to

perform actions whenever a predefined event occurs. While

the Aggregator Framework is the primary way of updating

an index, Trigger can also be used to poll information into

the registry. Globus Toolkit 4 has no support for automatic

migration of jobs by itself. It requires the help of additional

software such as Gridway metascheduler [2] to provide this

functionality. The Gridway information manager accesses

the MDS index via its web service interface to discover

remote resources. Based on this data it reaches its schedul-

ing decisions. Another centralized scheduling approach that

resides on top of GT4 is described in [37].

Distributed designs for resource discovery have previously

been produced in theory. Here, the focus has been on the

transfer of grid principles to the domain of P2P networks.

Examples for such algorithms are MAAN [38], Squid [39],

and QuadTree [40]. We sketch these three methods because

they represent interesting and unique approaches to the prob-

lem of mapping ranged criteria and multi-criteria queries

to the underlying DHT-based substrates. Many more grid-

enabled DHT-based algorithms are described in [18].

Multi-Attribute Addressable Network (MAAN) uses two

separate procedures to augment the underlying Chord al-

gorithm. First, multi-criteria requests are resolved by main-

taining distinct hashing functions and querying separately

for each involved attribute. Second, MAAN employs a

locality preserving hashing function, that is, a function that

maintains the order relation between numerical values for

their hashed values. Each query for a ranged criterion is

then represented by the actual sought-after value and the

minimum and maximum allowed values. MAAN forwards a

request from the node responsible for the minimum value via

its successors in the Chord ring to the node corresponding

to the maximum value. Whatever results have been found at

this point are returned to the querying node.

The Squid [39] algorithm is based on a Chord routing

layer, too. It interprets the d criteria or attributes relevant to

a grid-style query as spanning a d-dimensional space. This

space is mapped to a 1-dimensional space by means of space

filling curves (SFC). The resulting scalars are conventionally

hashed and mapped to grid nodes using the Chord routing

layer. Each multi-criteria query corresponds to a point or,

in case of ranged criteria, a sub-region of the d-dimensional

space. It is mapped by the SFC to distinct clusters of scalars.

Each cluster corresponds to individual nodes in the grid,

which have to be queried separately. The results obtained

by several of these traditional DHT-queries are then merged

to receive the final results of a grid-enabled DHT-query.

Another method that gets by with a single Chord DHT-

layer is the QuadTree algorithm [40]. It recursively sub-

divides the d-dimensional attribute space with the help of

quad-trees. Each block is identified by its centroid and

mapped to a Chord node. A ranged multi-criteria query

intersects with one or more blocks. To execute a query, those

relevant blocks are determined and the corresponding grid

nodes are contacted. The combined results of these distinct

queries form the final response. The performance of the

QuadTree algorithm is further improved by a cache. Here,

each node stores the addresses of its immediate children in

the tree to reduce the number of lookups performed.

With regard to decision making, the scheduling heuristic

of Maui Cluster Scheduler [41] bears certain similarity to

the hierarchic approach we propose in this article. However,

Maui’s hierarchy is static and weights are the only mecha-

nism by which an administrator can modify the criteria. A

direct modification of the tree is infeasible, since aggrega-

tion of the individual per-criteria priorities is not generic.

Instead, criteria derive priorities from their child criteria in

unique ways, e.g., applying minima or maxima along the

way. Furthermore, the definition of weights is restricted to

the administration of a resource, and, in contrast to our

design, users can not participate in a scheduling decision.

Maui, though, supports fairshare criteria that favor a fair

distribution of the resource amongst the users. Thus, user

interests are considered in the scheduling at least indirectly.

VII. CONCLUSION AND FUTURE WORK

We have presented our implementation of a hybrid algo-

rithm for a distributed metascheduler that efficiently links

available resources and matching jobs. It supports the ex-

change of jobs between resources and, thereby, achieves

improved resource utilization and shorter turn over times.

The metascheduler is currently being implemented and will

be deployed as part of the DEISA2 grid in fall of 2009.

The design of the metascheduler fully supports the JavaEE

specification’s security framework. Accordingly, the meta-

scheduler can be extended to integrate existing security

infrastructure including virtual organizations, Community

Authorization Service [42], and Shibboleth [43]. Towards

middleware or local batch schedulers it acts transparently,

hence, letting these layers provide their own security ar-

rangements.

Finally, we provided an example for a decision making

process that is common to scheduling. The example showed

how the prioritization algorithm uses clustering to reward or

penalize options of particular merit or demerit, respectively.

291

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Furthermore, it illustrated how the opinion of a job’s owner

can be regarded in a decision without loss of control for the

resource provider.

During the design and implementation of the scheduler,

we gained intense experience with input queues and local

resource management systems (LRMS) of HPC sites. In

cooperation with the authors of [37], we have isolated

four intrinsic problems that have to be solved to make

metascheduling a fully working feature in the future.

First, the grid scheduler generally has only the role of a

“power user” from the perspective of the LMRS and has to

compete with other users, e.g., other grid schedulers in the

same grid. As a consequence, an optimal schedule is not

possible for any individual metascheduler.

Second, grid schedulers have no control over a site’s

policy, and, therefore, over the prioritization of the jobs

waiting in queues. Thus, no control exists over the respective

local resource management system for the metascheduler.

Third, every site uses a custom configuration of queues,

and processors can be shared among queues or dedicated

exclusively. Usually, the information from the LRMS does

neither allow one to reliably determine the number of free

processors nor does it allow one to determine the total num-

ber of processors. The only statistics commonly available are

the number of running and waiting jobs. Some sites do not

even provide this information because of nondisclosure. To

conclude, local schedulers currently do not provide sufficient

information for a good schedule.

Finally, resources are highly utilized and waiting times at

clusters can last up to hours. Therefore, queue waiting time

considerably exceeds the actual execution time for small

jobs. Since small jobs constitute the majority of all jobs,

input queue waiting time is the dominant factor. However,

input queue waiting time and input queue length have shown

to be not continuously differentiable functions over time.

Instead, they can vary within minutes by a factor of thousand

or more. They behave more like fractals than continuous

functions. This makes predictions of future queue waiting

times and queue lengths a delicate task. However, scheduling

always relies on such predictions. Future work will focus on

finding solutions to these obstacles.

REFERENCES

[1] J. Heilgeist, T. Soddemann, and H. Richter, “Design

and implementation of a distributed metascheduler,” in

Advanced Engineering Computing and Applications in

Sciences, 2009. ADVCOMP ’09. Third International

Conference on. IEEE Computer Society, Oct. 2009,

pp. 63–72.

[2] “Gridway,” http://www.gridway.org, The Globus Al-

liance, [accessed: 2010-06-19].

[3] “Platform Computing,” http://www.platform.com, [ac-

cessed: 2010-06-19].

[4] S. Zhou, “LSF: Load sharing in large-scale heteroge-

nous distributed systems,” in Proc. Workshop on Clus-

ter Computing, 1992.

[5] V. Hamscher, U. Schwiegelshohn, A. Streit, and

R. Yahyapour, “Evaluation of job-scheduling strategies

for grid computing,” in GRID ’00: Proc. 1st IEEE/ACM

Intl. Workshop on Grid Computing. Springer-Verlag,

2000, pp. 191–202.

[6] Q. Wang, X. Gui, S. Zheng, and Y. Liu, “De-centralized

job scheduling on computational grids using distributed

backfilling: Research articles,” Concurr. Comput. :

Pract. Exper., vol. 18, no. 14, pp. 1829–1838, 2006.

[7] “Distributed European Infrastructure for Supercom-

puting Applications (DEISA 2),” http://www.deisa.eu,

[accessed: 2010-06-19].

[8] I. Foster, H. Kishimoto, A. Savva, D. Berry, A. Djaoui,

A. Grimshaw et al., “The Open Grid Services Archi-

tecture (OGSA),” http://www.ogf.org/documents/GFD.

80.pdf, Open Grid Forum, July 2006.

[9] I. Foster, “Globus toolkit version 4: Software for

service-oriented systems.” in IFIP Intl. Conf. on Net-

work and Parallel Computing, ser. Lecture Notes in

Computer Science, H. Jin, D. Reed, and W. Jiang, Eds.,

vol. 3779. Springer-Verlag, 2005, pp. 2–13.

[10] “Globus Toolkit,” http://www.globus.org, The Globus

Alliance, [accessed: 2010-06-19].

[11] “UNICORE,” http://www.unicore.eu, Jülich Supercom-

puting Centre, [accessed: 2010-06-19].

[12] IBM Load Leveler: User’s Guide, IBM Corp., Sept.

1993.

[13] R. Henderson and D. Tweten, “Portable Batch Sys-

tem: External reference specification,” NASA Ames

Research Center, Tech. Rep., 1996.

[14] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and

S. Schenker, “A scalable content-addressable network,”

in SIGCOMM ’01: Proc. 2001 Conf. on Applications,

Technologies, Architectures, and Protocols for Com-

puter Communications. ACM Press, 2001, pp. 161–

172.

[15] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and

H. Balakrishnan, “Chord: A scalable peer-to-peer look-

up service for internet applications,” in SIGCOMM ’01:

Proc. 2001 Conf. on Applications, Technologies, Archi-

tectures, and Protocols for Computer Communications.

ACM Press, 2001, pp. 149–160.

[16] A. Rowstron and P. Druschel, “Pastry: Scalable, de-

centralized object location, and routing for large-

scale peer-to-peer systems,” in Middleware ’01: Proc.

IFIP/ACM Intl. Conf. on Distributed Systems Plat-

forms. Springer, 2001, pp. 329–350.

[17] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph,

and J. Kubiatowicz, “Tapestry: A resilient global-scale

overlay for service deployment,” IEEE J. Sel. Area

Comm., vol. 22, no. 1, pp. 41–53, 2004.

292

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[18] R. Ranja, A. Harwood, and R. Buyya, “Peer-to-peer

based resource discovery in global grids: A tutorial,”

IEEE Commun. Surveys Tuts, vol. 10, no. 2, pp. 6–33,

2008.

[19] D. Tsoumakos and N. Roussopoulos, “Adaptive proba-

bilistic search for peer-to-peer networks,” in P2P ’03:

Proc. of the 3rd Intl. Conf. on Peer-to-Peer Computing.

IEEE Computer Society, 2003, p. 102.

[20] D. Menascé and L. Kanchanapalli, “Probabilistic scal-

able P2P resource location services,” SIGMETRICS

Perform. Eval. Rev., vol. 30, no. 2, pp. 48–58, 2002.

[21] J. Heilgeist, T. Soddemann, and H. Richter, “Algo-

rithms for job and resource discovery for the meta-

scheduler of the DEISA grid,” in Advanced Engineer-

ing Computing and Applications in Sciences, 2007.

ADVCOMP 2007. International Conference on. IEEE

Computer Society, Nov. 2007, pp. 60–66.

[22] “Jsr-000244: Java EE 5.0 specification,” http://jcp.

org/en/jsr/detail?id=244, Sun Microsystems, Inc., [ac-

cessed: 2010-06-19].

[23] “Apache Geronimo,” http://geronimo.apache.org, The

Apache Software Foundation, [accessed: 2010-06-19].

[24] “JBoss Enterprise Middleware,” http://www.jboss.org,

Red Hat Middleware, LLC., [accessed: 2010-06-19].

[25] “Sun GlassFish,” https://glassfish.dev.java.net, Sun Mi-

crosystems, Inc., [accessed: 2010-06-19].

[26] T. Saaty, Multicriteria Decison Making: The Analytic

Hierarchy Process, 1988, revised and published by the

author; Original version published by McGraw-Hill,

New York, 1980.

[27] ——, “How to make a decision: The Analytic Hier-

archy Process,” Eur. J. Oper. Res., vol. 48, no. 1, pp.

9–26, 1990.

[28] “Web Service Description Language (WSDL),” http:

//www.w3.org/TR/wsdl, World Wide Web Consortium

(W3C), [accessed: 2010-06-19].

[29] “The Java API for XML-based Web Services (JAX-

WS),” http://jcp.org/en/jsr/detail?id=224, Sun Micro-

systems, Inc., [accessed: 2010-06-19].

[30] A. Anjomshoaa, F. Brisard, M. Drescher, D. Fellows,

A. Ly, S. McGough, D. Pulsipher, and A. Savva,

“Job Submission Description Language (JSDL),” http://

www.ogf.org/documents/GFD.136.pdf, Open Grid Fo-

rum, July 2008.

[31] T. Saaty, Fundamentals of the Analytic Hierarchy Pro-

cess. RWS Publications, 2000.

[32] M. Abramowitz and I. A. Stegun, Eds., Handbook of

Mathematical Functions with Formulas, Graphs, and

Mathematical Tables, 9th printing. Dover, 1972, ch.

4.5 Hyperbolic Functions, pp. 83–86.

[33] W. Cirne and F. Berman, “A model for moldable

supercomputer jobs,” in IPDPS ’01: Proceedings of the

15th International Parallel and Distributed Processing

Symposium. IEEE Computer Society, 2001, p. 10059b.

[34] A. B. Downey, “A model for speedup of parallel

programs,” Computer Science Division, University of

California, Berkeley, Technical Report UCB/CSD-97-

933, Jan. 1997.

[35] E. Walker, “The real cost of a CPU hour,” Computer,

vol. 42, no. 4, pp. 35–41, Apr. 2009.

[36] “D-Grid Initiative,” http://www.d-grid.de, [accessed:

2010-06-19].

[37] D. Sommerfeld and H. Richter, “A two-tier approach

to efficient workflow scheduling in MediGRID,” in

Grid-Technologie in Göttingen - Beiträge zum Grid-

Ressourcen-Zentrum GoeGrid, U. Schwardmann, Ed.

Göttingen, Germany: GWDG, 2009, vol. 74, pp. 39–51.

[Online]. Available: http://www.gwdg.de/forschung/

publikationen/gwdg-berichte/gwdg-bericht-74.pdf

[38] M. Cai, M. Frank, J. Chen, and P. Szekely, “MAAN:

A multi-attribute addressable network for grid informa-

tion services,” 4th Intl. Workshop on Grid Computing,

p. 184, 2003.

[39] C. Schmidt and M. Parashar, “Flexible information dis-

covery in decentralized distributed systems,” in HPDC

’03: Proc. of the 12th IEEE Intl. Symp. on High

Performance Distributed Computing. IEEE Computer

Society, 2003, p. 226.

[40] E. Tanin, A. Harwood, and H. Samet, “Using a dis-

tributed quadtree index in peer-to-peer networks,” The

VLDB Journal, vol. 16, no. 2, pp. 165–178, 2007.

[41] D. B. Jackson, Q. Snell, and M. J. Clement, Job

Scheduling Strategies for Parallel Processing, ser. Lec-

ture Notes in Computer Science. Berlin/Heidelberg,

Germany: Springer, 2001, vol. 2221/2001, ch. Core

algorithms of the Maui scheduler, pp. 87–102.

[42] L. Pearlman, V. Welch, I. Foster, C. Kesselman, and

S. Tuecke, “A community authorization service for

group collaboration,” in Proc. of the 3rd Intl. Workshop

on Policies for Distributed Systems and Networks,

2002, pp. 50–59.

[43] “Shibboleth,” http://shibboleth.internet2.edu, Internet2

Middleware Initiative, [accessed: 2010-06-19].

293

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

