
Relying on Testability Concepts to ease Validation and Verification activities of
AIRBUS Systems

Fassely Doumbia, Odile Laurent
Systems Design
AIRBUS France

Toulouse, France
{Fassely.Doumbia, Odile.Laurent}@airbus.com

Chantal Robach, Michel Delaunay
Systems Design & Test

LCIS – Grenoble Institute of Technology
Valence, France

Chantal.Robach@esisar.grenoble-inp.fr

Abstract—The experiments, carried on AIRBUS systems, show
that testability analysis can ease system formal detailed
specifications validation activities. Indeed, testability
information can highlight testing efforts, guide functional tests
definition, facilitate detailed specification coverage analysis
against system requirements, and support tests coverage
analysis against formal detailed specification. This paper
highlights the assessment result of testability concepts on
AIRBUS systems.

Keywords- requirement; data-flow design; testability flows;
testability measures; testing strategy; test; coverage analysis

I. INTRODUCTION

Development of avionics systems must comply with the
DO-178B standard [17]. The Validation and Verification
(V&V) process is very demanding and contributes to high
development costs. Therefore, innovative methods and tools
that can alleviate and efficiently support V&V activities are
of great interest for aeronautics domain. Functional testing is
the most commonly used technique for systems requirements
V&V. But, testing methods present some limits: exhaustive
test data generation is most often unselected because of the
size and the complexity of the systems. In this way,
controlling testing effort is major, but systems quality
demands are so big. Indeed, testing effort characterizes much
as test scenarios and test data definition as error
identification after fault detection during the diagnosis.

In this context, the testability analysis methodology
proposed in this paper can offer useful methods to support
the validation of systems formal detailed specification. Our
testability approach deals with detailed specification relying
on data-flow languages like SCADE [5]. The testability
analysis proposed is based on SATAN [3, 7] (System’s
Automatic Testability ANalysis) technology. This approach
determines testability flows and metrics that can be helpful
information for system designers and system design
validation engineers.

A significant number of research projects have dealt with
software testability and a set of complexity metrics have
been proposed. Each of these metrics address to either black-
box or white-box testing technique. The black-box testing
consists in considering the system under test as a box of
which we know only the specification. Test data are
generated from this specification which is most often

formalized. The black box testing does not consider the
internal structure of the system and defined test data are
independent of the implementation. Freedman [6] and Voas
and Miller [11] defined some testability approaches related
to the black box testing technique. Freedman introduced the
domain testability of software components based on
controllability and observability. A component becomes
observable when it produces distinct outputs from different
inputs. A component is controllable when its specified output
field corresponds to its produced output. Voas and Miller
proposed the DRR (Domain / Range Ratio) metric, which
exhibits fault-hiding tendencies of software subcomponents
considering the input and the output field cardinality. This
technique can be used to predict a subcomponent’s ability to
cause program failure if it contains a fault.

The white box testing technique is based on the internal
structure of the system under test to define test data and
coverage criteria. This technique assumes the program under
test is available as well as the system specification. McCabe
[8], Nejmeh [9] and Do, Le Traon and Robach [2, 3, 7]
proposed some approaches based on the internal structure of
a program. McCabe defined the Cyclomatic number which
measures the number of linearly independent paths through
the control graph built by using a program source code.
Nejmeh introduced the Npath metric which computes the
number of possible execution paths through a function. Do,
Le Traon and Robach proposed a testability measurement
applicable to data-flow designs. The study presented in this
paper is based on the same approach.

This paper proceeds as follows: Section II introduces
SATAN technology and the associated testability analysis
concepts. Section III describes the AIRBUS flight control
systems validation process. Section IV proposes some
adaptation techniques for Airbus systems analysis. The
defined methodology which aims at enhancing systems
validation process is presented in Section V. Experiments
results are depicted in Section VI. Finally, conclusion and
perspectives are given in section VII.

II. TESTABILITY ANALYSIS

Fig. 1 gives a simple view of testability analysis,
proposed by SATAN technology. This approach has been
initially applied to hardware systems [3]. Further studies [2,
7] demonstrated that this approach could be used for
analyzing the testability of data-flow designs. This method

41

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

provides metrics that allow the identification of critical parts
(which can be hard to test). It also identifies testability flows
which are a set of operators involved in the computation of
one output from relevant inputs. They can be used to guide
tests definition in the system design validation cycle.

The SATAN approach is based on a testability model that
represents the transfer of information into the system. This
model is called ITM “Information Transfer Model” (Section
A). Testability flows are identified from this ITM (Section
B). Measures quantified the testability of system components
are calculated from these testability flows (Section C). Test
strategies (Section D) can be applied to select relevant
testability flows to help the tests generation process.

Data-flow design

Automatic
translators

Data-flow
description

SATAN and
associated tools

Result
(Flows & measures)

Figure 1. Testability analysis process.

A. Information Transfer Model

The testability model is a graph defined by a set of
places, transitions and arrows. Places represent inputs,
constants, functional modules, outputs and test injection
points specified in the system. Transitions express
information transfer modes between places. Arrows
connecting places and transitions represent information
media throughout the system.

Three different information transfer modes Fig. 2 are
used in an ITM:

 Junction mode: the destination place needs
information from all source places;

 Attribution mode: the destination place needs
information from one of several source places;

 Selection mode: the same information is sent from
the source place to some destination places.

Junction Attribution Selection

Figure 2. Information transfer modes.

A data-flow description of a system is hierarchically
composed of operators. Each operator has an elementary
ITM. This model corresponds to the data-flow representation
of the operator. According to the level of testability analysis,
this elementary model can be more (or less) detailed. The

basic representation of an operator associates a functional
module to each output. Graphic representations Fig. 3
illustrate the notion of elementary ITM.

AND

E1 E2

S1

SWITCH

E1 E2

S1

CMD

then.sw

E1 E2

S1

CMD

else.sw

AND logic Basic model of SWITCH Detailed model of SWITCH

Functional
module

Figure 3. Elementary ITM of AND logic and SWITCH operators.

In this representation, inputs and outputs are depicted by
semicircles, modules by circles, and transitions by bars.

The system ITM is obtained by concatenating the
elementary ITMs.

B. Testability flows

SATAN technology identifies flows from a system ITM.
A testability flow is an information path that carries
information from one or several inputs, through modules and
transitions, to one output. Several testability flows can be
associated to an output.

The system specification represented in Fig. 4 contains
sixteen testability flows. Two testability flows (F1 and F5)
are depicted using bold lines. These flows are described
below by a set of modules and output.
F1 = {NOT_2, then.SWITCH_2, OR_2 | O2}
F2 = {NOT_2, then.SWITCH_2, OR_2, then.SWITCH_4,

OR_3, else.SWITCH_5 | O1}

Figure 4. Graphical representation of a testability flow

C. Testability measures

Two different measures are defined to characterize the
testability of a component using SATAN approach: the
controllability and the observability. The controllability
expresses how ease the input values of an internal
component can be controlled through the input values of the
system. The observability expresses how ease the results of
an internal component can be observed at the outputs of the
system. Fig.5 illustrates these measures.

42

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Controllability and observability of a component

These measures can be calculated for each defined
testability flow. SATAN associates these measures to all the
system ITM modules. Therefore, the testability measures of
a component are deduced from modules which represent it in
the ITM. Testability measures computation is based on
information theory. Let F be a testability flow and M a
module activated by ,F we can define the following

variables:

FI represents the sources of F ;

FO is the output of F ;

MI represents the input of M ;

MO is the output of .M

The controllability of a module M is computed as
follows: if M is isolated, all the possible combinations of its
input values can be produced. We denote MIC the input

capacity of M corresponding to the maximum information
quantity on its inputs when it is isolated. If M belong to the
testability flow ,F the maximum information quantity that

can be brought to its inputs is denoted .; MF IIT The

controllability of M is expressed as follows:

 M

MF
F

IC

IIT
MCont

;

In the same way, the observability of a module M is
computed as follows: the maximum information quantity
produced by M is MOC when it is isolated. The

maximum information quantity which can be delivered to the
output of F from

MO is denoted .; FM OOT The

following equation defines the observability of M :

 M

FM
F

OC

OOT
MObs

;

To determine the information quantities MF IIT ; and

 FM OOT ; , the approach uses the Information transfer Net

(ITN) to simulate the transfer of information in the system.
The ITN is a weighted ITM, whose elements are associated
with their information capacities. These capacities quantify
the information carried by the ITM elements using bits as
information unit.

 The information capacity of the ITM sources are
determined from their data types. The capacity is
equal to 1 for Boolean, 8 for Integer (when we

reduce the domain to 82 elements), etc.
 The capacity of a module corresponds to the

information quantity of its output. Indeed, we
suppose that the output takes its value in a finite set.
A probability is associated with the occurrence of

each element of this set at the output. In this context,
the capacity is equal to the entropy of the module
output variable. The Information Loss Coefficient
(ILC) of a module is determined from its capacity. It
expresses the intrinsic loss of information of each
ITM module. The ILC corresponds to the ratio
between the effective capacity and the maximum
capacity of the module [12, 13].

 The capacity of an arrow leaving from a place is
equal to the capacity of that place.

 The capacity of an arrow arriving to a place is equal
to the capacity of this place.

 In the junction information transfer mode, the
capacity of the arrow that leaves the transition is the
sum of capacities of all arrows arriving at the
transition.

 In the selection mode, the capacity of each arrow
leaving from the source place corresponds to the
capacity of this source place.

 In the attribution mode, the capacity of the
destination place is equal to the maximum value of
capacities associated with arrows arriving at this
place.

As to build the ITM, the ITN is obtained from elementary
ITNs of system operators. “Fig 6” presents the ITM (a) and
the ITN (b) of the AND operator.

AND

E1 E2

S1

(a) ITM

AND

E1 E2

S1

(b) ITN

1 1

2

0,81

1

1

Figure 6. ITM and ITN of the operator AND logic

As previously mentioned, testability measures can be
calculated for each testability flow. The approach described
in this paper considers only selected flows after the
application of a test strategy in order to alleviate the
testability analysis process.

D. Test strategies

A test strategy defines the way to conduct test activities
and to analyze test results. Test strategies allow us to select a
set of relevant testability flows for testing purpose. Flows are
chosen according to the following criterion: every place in
the graph must be activated at least once in order to ensure
the coverage of all operators. SATAN supports three
strategies: Start-Small (progressive structural strategy) [10]
suitable for the progressive detection of faults during system
validation, Multiple-Clue (cross-checking strategy) [10]
suitable for diagnosis during maintenance and All-paths [10]
which chooses all flows contained in the ITM. We will focus
on the Start-Small strategy in this paper.

43

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The Start-Small strategy gradually covers the modules by
choosing flows with an increasing number of covered
modules. The main idea of this strategy is to minimize test
and diagnosis efforts. The first testability flow to be tested
contains the minimal number of modules. The next one
contains a minimal number of modules that are not activated
yet. In this strategy, a new flow is tested only if all faults
detected in previous flows are corrected, as depicted in Fig.
5. Tests are defined for each selected flow.

Start

T1

T2

Tn

End
System correct

Fail

Success

Success

Fail

Diagnosis and
fault repair

Diagnosis and
fault repair

T1

T2

Tn

...

System
Under Test

Figure 7. Start-Small strategy illustration

Start-Small strategy selects eight relevant testability
flows instead of the sixteen determined for the system
specification depicted in “Fig 4”.

Choosing a relevant testing strategy depends on industrial
practices and system development stage. In the next section,
we present the AIRBUS system validation and verification
process in order to point out the detailed specification
validation activities.

III. AIRBUS VALIDATION AND VERIFICATION (V&V)
PROCESS

In this section, we focus on AIRBUS flight control and
Auto flight systems V&V activities. Flight control systems
allow the pilot to control the aircraft in flight. Auto flight
systems allow maintaining the flight path defined by the
crew. They also control the aircraft and the engines. The
V&V cycle of these reactive systems relies on a generic V-
cycle process for which validation activities are added due to
the modelling process at system level Fig. 6.

Three main levels can be identified in this V&V process.
 The “Aircraft level” is composed of aircraft level

requirements definition, aircraft simulation, ground
and flight tests activities.

 The “System level” represents the system
specifications and design definition stage. The
system specification validation activities are led in
the phase.

 The “Equipment level” corresponds to the
implementation of system specifications and designs
in real equipment.

We will focus on systems validation activities in the rest
of the paper.

Unit test &
Formal verification

Integration & test

Lab tests

Ground tests

Flight tests

Model
Validation

Aircraft level
simulation

Aircraft
High level

requirements

SRD (System
requirements)

DFS (detailled
specification)

SCADE model

Partial automatic
code generation

Partial manual
coding

E
q

u
ip

m
e
n

t
le

v
e
l

S
y
s
te

m
le

v
e
l

A
ir

c
ra

ft
le

v
e
l

TRD

Validation cycle

(L1)

(L2)

(L3)

(L4)

(1)

(2)

(3)

(4)

(5)

Figure 8. AIRBUS Flight control systems V&V process

A. System validation cycle

System validation activities are mainly based on testing
and traceability activities. The model validation activities (5)
consist in executing tests on a desktop simulator dedicated to
flight control system. This simulator embeds system
functions code automatically generated from the SCADE
model. The traceability process relies on a documents
cascade and on a SCADE model managed by the DOORS
tool [5]:

 SRD (System Requirements Document) (1)
specifying system requirements refined from aircraft
requirements.

 DFS (Detailed Functional Specification) (2)
document describing the system detailed functions
that meet the system requirements.

 TRD (Test Requirements Document) (3) defining for
each DFS function the tests data (functional tests
description, tests vectors and expected tests results).

 SCADE model (or detailed specification) (4)
corresponding to a formal implementation of the
detailed functions and from which the embedded
code is automatically generated.

The traceability activities, based on DOORS tools,
consist in checking that:
 All the system requirements described in the SRD

are considered in the system functions (L1);
 The SCADE model implements only once all the

systems functions specified in the DFS (L2) (neither
under-specification nor over-specification);

 The tests defined in TRD cover all the functions of
the DFS (L3) and the functions of the SCADE model
(L4) (no missing tests).

In order to alleviate drastically the coverage analysis
activities described above, we propose to rely on the
testability flows determined by SATAN on the SCADE
model.

44

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Indeed, if we can demonstrate that there is a clear link
between testability flows and DFS requirements, the
relationship between SCADE model and DFS becomes
obvious. Another important issue of this approach in the
validation process is the definition of relevant set of tests
ensuring the coverage of the SCADE model. Enough tests
have to be identified to cover all the system requirements,
but redundant tests must be avoided for cost-efficiency
reasons.

The next Section IV presents developed methods in order
to take AIRBUS systems specific characteristics into account
during testability analysis.

IV. ADAPTING THE TESTABILITY ANALYSIS TO THE

AIRBUS CONTEXT

Appling the testability analysis on AIRBUS systems needs
the development of new testability concepts. Indeed, systems
specification use specific operators defined in the AIRBUS in-
house libraries in addition to those predefined in the SCADE
environment. The testability analysis must build ITM for
each specific operator and integrate new approaches in order
to comply with system validation functional tests definition
process. We first describe the proposed technique for
modeling AIRBUS specific operators ITM and ITN (Section
A). Indeed, previous research works highlight the interest of
testability measures on some systems [12, 15]. In this paper,
we will check the relevance of these measures in the AIRBUS

systems functional testing context. Then, we define
testability flows classification method relying on the
different phase of systems operation (Section B). Finally, we
present defined testability approaches for systems validation
(Section C).

A. AIRBUS specific operators ITM and ITN

The in-house libraries operators can be mainly split in
two categories: combinative and temporal operators. Indeed,
SCADE uses the synchronous approach for systems
specification [14]. In this approach, the time is divided into
discrete instants (cycles) defined by a global clock. At instant
t, the system receives input it from its external environment,
and computes output ot. Fig. 9 illustrates the synchronous
approach principles.

Environment
Synchronous

system

i
0

i
1

i
2

...

...o
2

o
1

o
0

Figure 9. Synchronous mechanism

The synchronous hypothesis expresses that the
computation of the output values is made instantaneously at
the same instant t.

The combinative operators compute the output
considering information of the current cycle. Arithmetic and
logical and switch operators belong to the category of
combinative operators. SATAN already proposes techniques
to model these operators.

Temporal operators compute the output considering
information of previous cycles (operators memory) in
addition of the current one. These operators implement the

past linear temporal logic. The flip-flop, state change
confirmation and state change stabilizer operators belong to
the category of temporal operators. This temporal aspect is
not currently taken into account by the testability analysis.
We use the flip-flop with priority to reset (BASCR) to
describe the ITM and ITN modeling techniques in order to
integrate the temporal aspect into the testability analysis
proposed by SATAN.

Fig. 10 highlights the graphical representation of
BASCR. Four different inputs and one output can be
identified for this operator.

SE is the “Set” input (boolean);

RE is the “Reset” input (boolean);

 Init represents the initialization value (boolean);

 InitB _ corresponds to the initialization boolean;

 1S is the output (boolean) of the operator.

Figure 10. SCADE representation of BASCR

The algorithm highlighting the behavior of this operator
is described below. We denote kE as the value of the flot

E at the cycle k .

 111

1

1

1_

kSkSElse

TruekSThenTruekEIfElse

FalsekSThenTruekEIf

nCalculatio

nCalculatioElse

kInitkSThenTruekInitBIf

tionInitializa

S

R

1) ITM of BASCR operator
The data-flow modeling of BASCR for testability

analysis is represented using two modules (see Fig. 11).

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

Figure 11. ITM of the temporal operator BASCR

45

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The first module (_BASCR_Init) computes the value of
1S when InitB _ is True from the input Init in the

initialization cycle. The module “_BASCR_Nominal”
computes 1S from

SE ,
RE and the value of 1S in previous

cycle when InitB _ is .False

2) ITN of BASCR operator
The ITN modeling of BASCR operator returns to

calculate the capacity of its modules (“_BASCR_Init” and
“_BASCR_Nominal”).

The basic hypothesis is to consider the occurrence of an
operator inputs value as independent events from a cycle to
another one. Indeed, it is difficult to make a correlation
between these values according to the complexity of their
production and the use of the operator in the system
specification. We also suppose that these events comply with
the Bernoulli distribution [16].

The “_BASCR_Init” module produces Null when

InitB _ is equal to 0orFalse and calculates 1S when

InitB _ is equal to .1orTrue As result, three different

values (Null , 0 and 1) can be observed on the output of this
module. Therefore, the maximum capacity of the output is
equal to .3log2Q We denote

BP the probability of the

event .1_ InitB Let AP mi _
be the occurrence

probability of A at the output of “_BASCR_Init”.

 Bmi PInitBPNullP 10__

 001_0_ InitPPInitandInitBPP Bmi

 111

11_1_

InitPPInitPP

InitandInitBPP

BB

mi

The capacity of this module can be expressed as follows:

1,0,

2 log__
Nullj

mimi jPjPInitBASCRCapa

In addition, the ILC (Information Loss Coefficient) of
this module is defined in the following expression.

 3log

__
__

2

InitBASCRCapa
InitBASCRILC

Considering the module “_BASCR_Nominal”, it
produces Null when 1_ InitB and calculates 1S when

.0_ InitB As result, three different values (Null , 0 and

1) can be observed on the output of this module. Therefore,
the maximum capacity of the output is equal to

 .3log2Q Let AP mn _
be the occurrence probability of

A at the output of “_BASCR_Nominal”. We denote p the

probability of the events 1kEP R
or .1kEP S

 Bmn PInitBPNullP 1__

 111

110_1_

kSPP

kSandInitBPP

B

mn

When 0_ InitB , the probability of the event

 11 kS can be expressed using the following table.

 kER
 kES kS1

0 0 11 kS

1 0 1
0 1 0
1 1 0

 11100

0111

kSandEandEPor

EandEPkSP

SR

SR

 111111 kSPppppkSP

p

p
kSP

2

1
11

Therefore,
p

p
PP Bmn

2

1
11_

 1111

010_0_

kSPP

kSandInitBPP

B

mn

p

PP Bmn

2

1
10_

The capacity of this module is:

1,0,

2 log__
Nullj

mnmn jPjPNoMinalBASCRCapa

The ILC is defined in the following expression.

 3log

__
__

2

NoMinalBASCRCapa
NoMinalBASCRILC

These capacities depend on the probabilities
BP and .p

Fig. 12 presents an ITN of BASCR with 5,0BP 5,0p

and .5,01 InitP

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

11111

2

1,5 1,46

1 1

11

3

Figure 12. ITN of the temporal operator BASCR

This modeling technique can be applied to other temporal
operators. It introduces new aspects (the state of memory and
the initialization phase of operators) in the testability
measures computing process.

B. Testability flows classification

Testability flows are the basic element of the proposed
testability analysis. Indeed, they represent system elementary
functions. The initialization phase modeling for temporal
operators ITM leads to the identification of two different
categories of testability flows. These categories reflect the
normal operation of reactive systems (initialization and
nominal phases).

 The initialization phase corresponds to the program
memory initialization in order to ensure a

46

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

deterministic behavior. However, the memories of
all the used temporal operators represent the memory
of the program. In this instance, this phase returns to
the initialization of these operators.

 The nominal phase represents the cyclic operation of
the program. This periodic operation is composed of
three main parts: the inputs reading, the outputs
computing and the memory updating. In a
synchronous paradigm, this period corresponds to a
cycle.

In order to make the testability analysis more
representative of systems operation, we define two classes of
testability flows corresponding to each operation phase. The
method of testability flows classification is illustrated in aid
of the Fig. 13.

_BASCR_Init

Init

S1

_BASCR_Nominal

B_Init E
R

E
S

Figure 13. An ITM representing the two classes of flows

As previously described, the ITM of the BASCR
operator is composed of two modules representing
respectively the initialization and the nominal phases.
Considering this ITM, one flow coming from
“_BASCR_Init” or “_BASCR_Nominal” is required to
activate .1S Indeed, it corresponds to the attribution mode
(see Fig. 2). Therefore, the classification method consists in
separating testability flows which contain initialization
modules from the other testability flows. Referring to Fig.
13, the dotted line represents the flow which activates
“_BASCR_Init”. This technique can be applied to other
temporal operators and information transfer modes. It allows
the identification of testability flows (functions) which are
activated in the both phases. This can be interesting for test
definition issue.

C. Testability analysis approahces

Testability analysis information is useful only if it
reflects the development process. In this section, we present
three testability approaches defined for AIRBUS needs.

1) Output variable approach

This first approach consists in identifying all the SCADE
output variables involved in the DFS. The part of the
SCADE model related to each output variable is extracted.
Thereby, testability flows are determined for each extracted
part of the SCADE model. This approach allows a local
testability view of the system for all output variables.

2) Set of output variables approach
This second approach consists in identifying the set of

output variables per function. The part of the SCADE model
related to this set of output variables is extracted and
testability flows are determined. It allows the testability
assessment for each function defined in the system.

3) Component approach
In this third approach, we propose to split the SCADE

model into independent parts from a data-flow point of view
(called hereafter components). This approach consists in
extracting each component and performing the testability
analysis. It allows the analysis of system independent parts
separately.

To illustrate testability approaches, we use the system
specification depicted in Fig. 4. “Tab I” below summarizes
the result when applying these methods. We assume

1O performs a function and
2O and

3O perform another

function.
We observe that the number of selected testability flows

decreases from (1) to (3). Indeed, the description of some
output variables can share SCADE model parts.

 In approach (1), these common parts are analyzed
for each output variable. Thereby, an important
number of testability flows is determined. Fig. 14
highlights the notion of common parts. The part (A)
computes the output variable

2O and (B) performing

3O involves (A). Using this approach, testability

flows determined for (A) are also considered during
flows identification for (B). (A) is then a common
part of the model.

 Regarding the approach (2), common parts used by a
set of output variables related to a function are
analyzed once during testability analysis. Common
parts related to different functions are analyzed
several times. So, the number of testability flow
decreases compared to (1) but is still high. The part
(A) performs

2O and
3O output variables; (B)

performing
1O involves (A) (see Fig.14).

TABLE I. TESTABILITY APPROACHES ILLUSTRATION

Methods
Output variables (1) Set of output variables (2) Component (3)

Number of
selected flows

12 (6 for
1O , 2 for

2O and 4

for
3O)

11 (6 for the 1st function and 5
the 2nd function)

8 (5 for
1O , 2 for

2O and

1 for
3O)

47

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 14. Specification common parts illustration

 In approach (3), all SCADE model related parts are
analyzed together. Each part of the specification is
explored only once during testability analysis. As a
result, testability flows determined by this approach
represent the lowest number compared to the two
others. The specification depicted in Fig. 14 contains
only one component.

We present, in this section, the main developed methods
for AIRBUS systems testability analysis. The next section
(Section V) defines a methodology based on testability
analysis to support system coverage analysis.

V. TESTABILITY ANALYSIS METHODOLOGY

The methodology defined for AIRBUS systems is based
on DFS document, TRD document and SCADE model. It is
composed of three main activities: a testability approach
application, the coverage assessment of the requirements
against the SCADE model, and the test cases against the
SCADE model.

A. Testability approach application

The testability analysis stage is depicted in Fig. 15. It
consists in applying one of the three testability approaches
defined in the previous section. Relevant testability flows are
selected using the Start-Small strategy (Section II). These
flows are exploited for coverage activities. Testability
measures are determined from selected flows. The relevance
of these measures is checked during experiments (Section
VI).

SCADE Model

Testability analysis
- Choice of the appoach
- Start-Small strategy

Testability
measures

Relevant flows

Figure 15. Testability approach application stage

B. SCADE model coverage against system requirements

Systems functional requirements have to be specified into
a formal model for their validation. This coverage analysis
uses relevant testability flows selected in the previous section
to give information about the completeness of the formal
specification. Fig. 16 presents the SCADE model coverage
analysis process.

This coverage analysis is mainly composed of three
activities.

a) Requirements output variables identification: This
activity consists in using the DFS document to identify
SCADE ouput variables involved in each system
requirement definition. The identification is performed
manually.

b) SCADE model coverage analysis: Testability flows
are associated automatically with output variables in this
step. This coverage activity allows highlighting a link
between requirements and testability flows. It also points
out the presence of:

Detailed
specification

Validation

SRD (System
requirements)

DFS (detailled
specification)

Formal model

(L2)

DFS

Requirements
SCADE output variables

identification
Sets of SCADE

output variables
Relevant flows

Coverage analysis

Set of flows for
each requirement

Missing flows in
the SCADE model

Orphan flows in
the SCADE model

Check DFS and
SCADE model

Figure 16. SCADE model coverage analysis against requirements process

48

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 Orphan flows: Is called orphan a flow which has not
any association with a requirement. The
identification of these flows highlights the presence
of SCADE output variables which are not defined in
the DFS. The presence of these flows points out
either a possible over-specification of the SCADE
model or the implementation of derived
requirements in the SCADE model.

 Missing flows: This situation is due to the absence of
flows associated with some output variables. The
detection of these outputs means that no SCADE
model part corresponds to these output variables. It
highlights the SCADE model is incomplete: the
implementation of some DFS requirements is
missing.

In addition, for each DFS requirement, the minimum
number of tests to be defined can be deduced from the
number of testability flows: at least one test per flow. It
allows evaluating the testing effort.

c) SCADE model check: It consists in analyzing
orphan and missing flows data and may lead to
modifications in the SCADE model: suppress the SCADE
part related to orphan flows; add the SCADE part related to
the unimplemented DFS requirements highlighted by the
missing flows. This checking activity needs human
intervention.

C. Tests coverage against SCADE model

Testing is the dynamic verification technique led on the
simulated code of the system in order to verify the
completeness and the correctness of implanted requirements.
This coverage analysis uses testability flows associated with
system requirements in the previous section to give
information about defined test cases for validation. Fig. 17
presents the tests coverage analysis process.

This tests coverage analysis is mainly composed of three
activities.

a) Requirements test cases identification: This activity
consists in using the TRD to identify test cases associated
with each requirement described in the DFS. The
identification is performed manually.

b) Tests coverage analysis: This step highlights the
link, for each requirement, between relevant testability
flows and identified test cases. When a relevant flow
associated with a requirement cannot be linked to a
described test in the TRD, a missing test is identified. When
that a same flow is linked to different tests, potential

redundant tests are identified. It is also pointed out that the
number of determined flows is dependant of the ITM
modeling (Section II). In the current study, the ITM
modeling principle is based on branch and decision
coverage criteria.

c) TRD document check: This third activity consists in
analyzing missing and potential redundant tests data and
may lead to modifications in the TRD. These modifications
could be: the definition additional tests related to testability
flows which are not associated with any test and the deletion
tests when analysis shows they are functionally redundant.

Otherwise, the relation between relevant flows and test
cases can be used to define tests scheduling. Indeed, Start-
Small strategy (Section II) proposes an order of execution of
the tests related to the selected flows. This order aims at
minimizing diagnosis effort.

In the following section, we apply our methodology to
an academic example and present the results of its use for
two industrial case studies.

VI. CASE STUDIES

In this section, we first depict two experiments on
coverage analyses: the pumping system which is academic
and two Auto-flight systems which are AIRBUS operational
systems. Then we give some conclusion on the relevance of
the testability measures in the AIRBUS systems functional
testing process.

A. Coverage analyses

For interpretation purpose: (1) means the “Output
variable approach”, (2) means the “Set of output variables
approach” and (3) means the “Component approach”. We
will focus on nominal tests coverage analysis in this paper.

1) A house pumping system
This academic case study controls the water supply of a

house. Two pumps are used to specify this system: the first
one brings up water from a well to fill a tank; the second
pump supplies water to the residence. Three main functions
can be defined for controlling this system: one manages the
first pump; another controls the second pump and the last
one performs the system’s global status. These functions can
be described by the following requirements:

 R1: the system shall actuate the first pump when the
water-level in the tank decreases and reaches the
“filling level”;

Detailed
specification

Validation

SRD (System
requirements)

DFS (detailled
specification)

Formal model

TRD

(L3)

(L4)

TRD

Requirements tests
identification Sets of test cases for

each requirement
Set of flows for

each requirement

Coverage analysis

Missing tests

Possible redundant
tests

Check TRD

Figure 17. Tests coverage analysis against SCADE model process

49

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fill_Level

Idle_Level

TH1

PB1

PS

Flow

Warm_level

TH2

PB2

Turn_On

Turn_Off

Warm_level

On

CTRL1

CTRL2

S
ig

n
b

o
a

rd

Cmd_P1

L1

L0

Cmd_P2

L2

L3

Figure 18. Formal specification of pumping system

 R2: The pumping shall stop when the water-level in
the tank raises and reaches the “pumping idle level”;

 R3: The first pump shall stop running when the
temperature of the pump is abnormally high (only a
push button can actuate it).

 R4: The second pump shall be actuated by the
decrease in pressure due to the turning on of a tap in
the residence. Its shutdown is provoked by the
turning off all the taps in the residence;

 R5: the system shall warn and idle the second pump
when water reaches the “warning level” (the water-
level is lower than the “filling level”);

 R6: The pump shall be idled when the water flow
rate is too low;

 R7: The pumping shall stop when its temperature is
abnormally high (only a push button can actuate it).

 R8: the system shall indicate its global status by
taking into account the two pumps.

The following figure Fig. 18 shows pumping system
SCADE model.

The “Tab. II” gives the result of testability analysis
process on this case study. It shows that the number of tests
(48) is higher than the number of testability flows (45, 45 or
27) selected using respectively (1), (2) or (3).

We observe that the number of selected testability flows
is stable from using (1) to (2) in this case study. This is
mainly due to the structure of the SCADE model. Indeed,
each output variable corresponds to a function description.
The number of selected flows decreases from using (2) to
(3).

The requirement R8 is verified in combination with the
seven other requirements. Indeed, L0 represents the state that
is checked what ether the pump behavior.

An example of functional tests defined for requirement
R1 is described as follow: “the water-level reaches the
filling level (Fill_level = true and Idle_level = false); the
pump temperature is normal (TH1 = false and PB1 = false);
as result the first pump is activated (Cmd_P1 = true)”.

The experiment result analysis outlines interesting points:
 For this academic example, we found no orphan

testability flows; neither missing implemented
requirement in the SCADE model. Indeed, this
specification is a final version which has been tuned;

 In order to introduce missing test problem, we
deliberately omitted to define tests verifying the
second pump is running without output rate (R5). As
a result, three testability flows have not been linked
to any test;

 For redundant tests, we identify several tests
verifying the second pump behavior when its
temperature is too high (R7). These tests are linked
to the same testability flows. Consequently, they can
be considered redundant because they all address the
same pump behavior.

TABLE II. PUMPING SYSTEM ANALYSIS RESULT

Number

Functional
requirements

Output
variables

Defined
tests

Selected
nominal flows

Selected
initialization flows

Input variables

(1) (2) (3) (1) (2) (3)

R1
R2

Cmd_P1 6 5 5 5 5 5 5
Fill_level; Idle_level;

TH1; PB1.

R3
Cmd_P1

L1
6 6 6 4 6 6 4

Fill_level; Idle_level;
TH1; PB1.

R4 Cmd_P2 6 4 4 4 4 4 4
PS; Flow; Warn_level;

TH2; PB2.

R5
Cmd_P2

L3
6 3 3 3 2 2 2

PS; Flow; Warn_level;
TH2; PB2.

R6
R7

Cmd_P2
L2

24 13 13 9 13 13 9
PS; Flow; Warn_level

TH2; PB2.

R8 L0 48 14 14 2 14 14 3
Fill_level; Idle_level; Warn_level;

TH1; PB1;TH2; PB2.

50

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1) Industrial examples
Our testability analysis process has been experimented

with two systems LM1 and LM2 provided by AIRBUS. These
examples are extracted from an AIRBUS program Auto Flight
systems. LM1 and LM2 contain respectively 69 and 146
nodes.

The following table “Tab. III” exposes the result of the
defined testability analysis methodology application on these
systems.

We observe that the number of selected testability flows
decreases from (1) to the (3). The “Section IV” describing
the different testability approaches gives explications about
the mechanism. Indeed, the description of some output
variables can share SCADE model parts.

In (1), these common parts are analyzed for each output
variable. Thereby, an important number of testability flows is
determined using this approach.

Regarding (2), common parts using by a set of output
variables related to a function are analyzed once during
testability analysis. Common parts related to different
functions are analyzed several times. So, the number of
testability flow decreases compared to (1) but is still high.

In (3), all SCADE model related parts are analyzed
together. Each common part is explored only once during
testability analysis. As a result, testability flows determined
by this approach represent the lowest number compared to
the two others.

Considering these approaches, the principle of (3) sticks
to the AIRBUS testing process of system validation.

The experiment result analysis of LM1 and LM2 outlines
the following points:

 No orphan testability flows has been detected after
running our testability analysis process. Neither
missing flow is identified in the detailed
specification.

 Considering (3), for LM1 (resp. LM2), the number
of tests (70 (resp. 114)) is lower than the number of
flows (84 (resp. 127)). At least, 14 (resp. 13) tests
are missing.

 During tests coverage analysis process, we identified
that several tests are linked to the same testability
flows. Consequently, they can be considered
redundant.

These experiments show the testability analysis
methodology described in Section IV can support efficiently
the AIRBUS system detailed specification validation process.
Nevertheless, the applicability of the method in term of
scalability must be confirmed on larger operational systems.

B. Testability measures assessment

This assessment aims at checking testability measures
relevance in the AIRBUS systems validation context. Indeed,
these measures should give information about the complexity
introduced by some operators during test definition. The
main idea is the highlighting of a possible correlation
between predictive controllability and observability
measurements and the test effort during the validation of the
system specification. The results show that it is difficult to
build this relation in AIRBUS context based on functional test.
We use the diagram of operators described below Fig. 19 to
illustrate this difficulty. It is extracted from the system LM1.
This diagram is composed of temporal operators (PULSE1,
PULSE2 and PREV) and logic operators (AND and NOT).
PULSE1 (resp. PULSE2) outputs pulses on the rising (resp.
falling) steps of a Boolean signal. PREV delays a Boolean
signal. I1, I2, I3, I4 are the inputs of the diagram and O1, O2

represent the outputs the diagram of operators.
The “Tab. IV” exposes the testability measures

associated with each operator used in the diagram above.

1) Controllability measurement
The “Tab. IV” highlights a difference of about 13%

between the controllability measure associated with AND_1
(1.0) and AND_2 (0.8754). This difference is due to the lost
of information caused by AND_1 on AND_2 input. This
reduces the effective information quantity available on
AND_2. Therefore, the controllability measurement of
AND_2 becomes lower than the AND_1.

TABLE III. LM1 AND LM2 TESTABILITY ANALYSIS RESULT

Number

Functional
requirements

Output
variables

Defined tests
Selected

nominal flows
Selected

initialization flows
(1) (2) (3) (1) (2) (3)

LM1 34 58 70 615 198 84 155 83 73

LM2 57 92 114 534 202 127 203 132 112

Figure 19. Diagram of operators extracted from the system LM1

I1

I2

I3

I4

O1

O2

PULSE1_1 PREV_1

PULSE2_1

NOT_1

NOT_2

AND_1

AND_2

51

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE IV. TESTABILITY MEASURES

PULSE1_1 PREV_1 PULSE2_1 NOT_1 NOT_2 AND_1 AND_2

Controllability 1.0 0.9539 1.0 0.9443 1.0 1.0 0.8754
Observability 0.9273 0.9271 0.9177 0.9271 0.8754 1.0 1.0

In a functional test context, the activation effort of
AND_2 is at the most equal to the needed effort to activate
AND_1. The coverage effort of AND_2 is limited to the
production of “true” and “false” by AND_1. Indeed, the
second input of AND_2 corresponds to a system input (I1).
Considering this example, we can conclude that it is difficult
to construe the controllability measurement (defined as such)
in terms of the effort of an operator or a component.

2) Observability measurement
The observability measures associated to operators

presented on “Tab. IV” show a difference of about 5%
between NOT_1 (0.9271) and NOT_2 (0.8754). Indeed, the
effective information quantity available on the output
NOT_1 is lower than NOT_2 one. Then, the information loss
from NOT_1 is less important than NOT_2 from the both
operators to the outputs (O1 and O2).

In a functional test context, the observation effort of the
output of NOT_1 is equal to NOT_2 one. Indeed, the
information flows produced by the both operators are treated
in the same way to the outputs (O1 and O2). Considering this
case, we can conclude that it is difficult to interpret the
observability measurement (defined as such) in terms of the
effort of an operator or a component.

VII. CONCLUSION AND FUTURE WORK

This paper deals with the definition of a methodology
based on testability principles to support traceability
activities and test design in the system validation process.

We propose methods highlighting links between the
detailed specification, the SCADE model, the test data and
the testability flows. AIRBUS systems testability analysis
required the extension of SATAN (System’s Automatic
Testability ANalysis) technology principles. This extension
concerns the definition of Airbus specific operators modeling
techniques.

We also introduce the temporal aspect in the testability
analysis process by proposing the information loss
assessment technique considering several execution cycles of
the system. A testability flows classification technique has
been defined. It splits testability flows in two categories: the
initial flows related to system initialization phase; and the
nominal flows. Such an approach allows facilitating
coverage analysis activities and tests design. The validation
phase is thus shortened generating important cost and effort
reduction. However, we demonstrate that testability
measures, such as defined, do not provide relevant
information about the complexity introduced by some system
parts during test definition in the functional testing context.

In the future, our work will focus on two main objectives.
The first one consists in leading new experiments on a larger
number of systems in order to enhance tools supporting the

systems specification coverage analysis methodologies. This
allows their consolidation for their deployment in operational
conditions.

The second objective of our future work aims at
adapting testability measures to a functional testing context.
This requires the consideration of value and constraints
related to information flows in the system specification
during information loss coefficient assessment of operators.

REFERENCES

[1] F. Doumbia, O. Laurent, C. Robach, and M. Delaunay, "Using the
Testability Analysis Methodology for the Validation of AIRBUS
Systems," VALID 2009, First International Conference on Advances
in System Testing and Validation Lifecycle, pp.86-91, September
2009.

[2] H. V. Do, M. Delaunay, and C. Robach, “Integrating testability into
the development process of reactive systems”, IASTED SE 2007,
Innsbruck, Austria, February 2007.

[3] C. Robach: “Test et testabilité de systèmes informatique”, PhD
Thesis, 1979.

[4] N.Halbwachs, P. Caspi, P. Raymond, and D. Pilaud: “The
synchronous dataflow programing language LUSTRE”, Proceedings
of the IEEE, 79(9): 1305-1320, September 1991.

[5] Esterel Technologies SA. SCADE Technical Manual, 2005.

[6] R. S. Freedman. Testability of Software Components. IEEE
Transactions on Software Engineering, 17(6):553–564, Jun 1991.

[7] Y. Le Traon and C. Robach. Testability Measurements for Data Flow
Design. In Proceedings of the Fourth International Software Metrics
Symposium, pages 91–98, Albuquerque, New Mexico, Nov 1997.

[8] T. J. McCabe. A complexity measure. IEEE Transactions on
Software Engineering, 2(4):308–320, December 1976.

[9] B. A. Nejmeh. Npath: A complexity measure of execution path
complexity and its applications. Communications of the ACM,
31(2):188–200, February 1988.

[10] C. Robach and P. Wodey. Linking design and test tools: an
implementation. IEEE Transactions on Industrial Electronics,
36:286–295, 1989.

[11] J. M. Voas and K. W. Miller. Software testability: The new
verification. IEEE Software, 12(3):17–28, May 1995.

[12] H. V. Do, C. Robach, M. Delaunay, and J. S. Cruz. Testability
Analysis for Grapically Describec Algorithms of Reactive Systems.
EMBEDDED REAL TIME SOFTWARE (ERTS) 2006, Toulouse, France,
January 2006.

[13] A. Dammak: “Etude de Mesures de Testabilité de Systèmes
Logiques”, PhD Thesis, 1985.

[14] A. Benveniste and G. Berry. The Synchronous Approach to Reactive
and Real-Time Systems. Proceedings of the IEEE, 79(9), 1991.

[15] C. Robach, H. V. Do, and M. Delaunay. Testability as a component
of CASE tools. International Conference on Degradation, Damage,
Fatigue and Accelerated Life Models in Reliability Testing, Angers,
France, May 2006.

[16] Bermoulli Distribution.
http://en.wikipedia.org/wiki/Bernoulli_distribution.

[17] RTCA/DO-178B, "Software Considerations in Airborne Systems and
Equipment Certification", December 1992.

52

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

53

International Journal on Advances in Software, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/software/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

