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Abstract—Normalized Systems theory has recently
been proposed to engineer evolvable information sys-
tems. In order to build information systems accord-
ing to this theory, a method to identify the Nor-
malized Systems’ primitives has to be constructed.
Because business processes are currently receiving
more attention as process-centric representations of
an enterprise, the method should be able to translate
business process models into the Normalized Systems
primitives. In this paper, a preliminary mapping
method based on proven software engineering prin-
ciples, is discussed. The proposed method adheres
to the Normalized Systems’ viewpoint of business
processes being normalized production lines. In this

sense, business process production lines are identified
as workflow elements operating on a single type of
data element. These process lines are operated as state
machines, triggering action elements on the specified
data element. The mapping method is illustrated
using an example of a realistic business process flow.
Preliminary guidelines and conclusions on the method
construction are presented.

Keywords—Normalized Systems, Business Process
Engineering, Business Process Modelling, BPMN

I. INTRODUCTION

Contemporary information systems are con-

fronted with higher demands of evolvability, i.e.

able to be swiftly adapted to the changing business

environment. The required business agility needs

to be translated towards the supporting software,

which makes software change inevitable. However,

due to the invasiveness and frequency of these

changes and because most IT infrastructures are

poorly architected, organizations severely suffer

from the number and nature of their complica-

tions [26]. Most of the time, these adaptations

happen during the mature life cycle stage of an

information systems and are thus coined as soft-

ware maintenance [25]. Software maintenance is

therefore regarded as the most expensive phase

of the software life cycle, and often leads to an

increase of architectural complexity and a decrease

of software quality [9]. This phenomenon is known

as Lehman’s law of increasing complexity [14],

expressing the degradation of information systems’

structure over time. To accomplish the required

agility within information systems, the Normalized

Systems theory has recently been established [16].

Based on the systems theoretic concept of stabil-

ity, a software engineering theory is proposed to

engineer evolvable information systems. Although

the theory has already been used to design global

mission-critical information systems [15], a system-

atic way to derive primitives underlying Normalized

Systems from organizational requirements is not yet

completely determined. For this purpose, different

approaches to describe organizational requirements

are available, but business processes are recently

receiving more attention as process-centric repre-

sentations of an enterprise. Whereas earlier, mostly

data-driven approaches have been pursued as a

starting point for information systems modelling,

there is currently a tendency to apply process-driven

requirements engineering [24].

A relatively large number of notations, languages
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and tools exist to model business processes. These

existing business process languages however have

some limitations, e.g., absence of formal semantics,

limited potential for verification, message-oriented

approach and multi-party collaborations modelling

[4]. Nevertheless, they are currently adopted within

numerous organizations, and especially the Busi-

ness Process Modelling Notation (BPMN) is one of

the most applied notations [18]. Although the con-

structs of BPMN are rather ambiguously defined,

the notation seems to be quite intuitive, and easy

to understand and learn [7]. It is even argued that

BPMN has become the de facto process modelling

standard, being more widely adopted and supported

than other business process modelling languages

such as Event-Driven Process Chains (EPC) [21].

Therefore, BPMN models are chosen to represent

organizational requirements in our research. The

contribution of this paper is thus aimed at mapping,

in a systematic way, the organizational requirements

represented as BPMN models, to the primitives

of Normalized Systems exhibiting proven evolv-

ability. In this sense, the paper provides a way

to derive stable information systems from con-

temporarily widely applied process-centric require-

ments representations, offering a potential answer

to the problems earlier stated. This paper extends

the method presented in [1] by adding a number

of theory-grounded guidelines and illustrating their

applicability on an expanded case study.

The remainder of the paper is organized as fol-

lows. In Section 2, the Normalized Systems theory

will be discussed. In addition, it will elaborate

on the different types of the Normalized Systems

primitives, and how these primitives can enable

business processes. A third section provides insights

on a systematic way to map business processes onto

these primitives of Normalized Systems. Finally,

conclusions and future research are discussed.

II. NORMALIZED INFORMATION SYSTEMS

Manny Lehman’s law of increasing complexity

[13], [14] expresses the degradation of information

systems’ structure over time. Normalized Systems

Theory has been proposed to design and implement

information systems that defy this law. In a first

section, a brief summary of this theory is pre-

sented. A second section explains the implications

of Normalized Systems Theory on the automation

of business processes.

A. From Stability to Evolvable Elements

In this section, we present a brief overview of

Normalized Systems theory. Starting from the sys-

tems theoretic concept of stability, both software

design theorems and evolvable software elements

are deduced.

1) Stability and Combinatorial Effects: The ba-

sic assumption of Normalized Systems theory is

that information systems should be able to evolve

over time, and should be designed to accommodate

change. Therefore, the software architecture should

not only satisfy the current requirements, but should

also support future requirements. Although this is

an important concern for all information systems, it

is particularly important for large-scale information

systems and even more important for Software

Product Lines, as future applications are sometimes

hard to predict [15], [17].

In order to support these changes, Normalized

Systems Theory states that an essential character-

istic of an information system is its stability. In

systems theory, stability refers to a system in which

a bounded input function results in bounded output

values, even as t → ∞. When applied to informa-

tion systems, this implies that there should be no

combinatorial or change propagation effects in the

system. This means that applying a specific change

to the information system should require the same

effort, irrespective of the size of the information

system or the point in time at which the change

is applied. This implies that such systems defy

Manny Lehman’s Law of Increasing Complexity,

which states that as time goes by, the structure of

software will degrade and become more complex as

changes are applied to it, causing the impact of a

given change to increase over time [13], [14].

Normalized Systems are defined as information

systems exhibiting stability with respect to a defined

set of changes [15]. In this sense, evolvability is

operationalised as a number of anticipated changes

that occur to software systems during their life cycle
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[16]. The existence of changes that are dependent

on the size of the system, pose a serious threat to

stability, and are called combinatorial effects [15],

[16].

2) Design Theorems for Software Stability: To

contain these combinatorial effects, a sound archi-

tectural approach is required, following a set of

design rules as called for by Baldwin and Clark

[2]. In Normalized Systems Theory, a set of four

design theorems is deduced that act as design rules

to identify most combinatorial effects [15], [16]. Es-

sentially, these theorems identify, in very clear and

specific terms, places in the software architecture

where high coupling is threatening evolvability.

The first theorem, separation of concerns, implies

that every change driver or concern should be

separated from other concerns. This theorem allows

for the isolation of the impact of each change driver.

This principle was informally described by Parnas

already in 1972 [19] as what was later called design

for change. This theorem implies that each module

can contain only one submodular task (which is

defined as a change driver), but also that workflows

should be separated from functional submodular

tasks. Any violation automatically results in a com-

binatorial effect: for instance, consider a function

F consisting of task A with a single version and

a second task B with N versions; thus leading

to N versions of function F . The introduction of

a mandatory version upgrade of the task A will

not only require the creation of the additional task

version of A, but also the insertion of this new

version in the N existing versions of function F .

The number N is clearly dependent on the size of

the system, and thus implies a combinatorial effect.

The second theorem, data version transparency,

implies that data should be communicated in ver-

sion transparent ways between components. This re-

quires that this data can be changed (e.g., additional

data can be sent between components), without

having an impact on the components and their

interfaces. For instance, consider a data structure

D passed through N versions of a function F .

If an update of the data structure is not version

transparent, it will also demand the adaptation of

the code that accesses this data structure. Therefore,

it will require new versions of the N existing

processing functions F . The number N is clearly

dependent on the size of the system, and thus

implies a combinatorial effect. This principle can,

for example, be accomplished by appropriate and

systematic use of web services instead of using

binary transfer of parameters. This also implies that

most external APIs cannot be used directly, since

they use an enumeration of primitive data types in

their interface. As a result, such interface is not data

version transparent.

The third theorem, action version transparency,

implies that a component can be upgraded without

impacting the calling components. Consider, for

instance, a processing function P that is called

by N other processing functions F . If a version

upgrade of the processing function P is not version

transparent, it will, besides upgrading P , also cause

the adaptation of the code that calls P in the

various functions F . Therefore, it will require new

versions of the N existing processing functions F .

The number N is clearly dependent on the size of

the system, and thus implies a combinatorial effect.

This principle can be accomplished by appropriate

and systematic use of, for example, polymorphism

or a facade pattern. In practice, it can often be

observed that upgrading a component can have an

impact on the rest of the system. A possible reason

could be that they are not used in an action version

transparent way.

The fourth theorem, separation of states, implies

that actions or steps in a workflow should be

separated from each other in time by keeping state

after every action or step. For instance, consider

a processing function P that is called by N other

processing functions F . Suppose the calling of the

function P does not exhibit state keeping. The

introduction of a new version of P , possibly with

a new error state, would force the N functions F

to handle this error, and would therefore lead to

N distinct code changes. The number N is clearly

dependent on the size of the system, and thus

implies a combinatorial effect. This theorem sug-

gests an asynchronous and stateful way of calling

other components. Synchronous calls—resulting in

pipelines of objects calling other objects, which are
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typical for object-oriented development—result in

combinatorial effects.

It needs to be emphasized that each of these

theorems is not completely new, and even relates

to the heuristic knowledge of developers. However,

formulating this knowledge as theorems that cause

combinatorial effects, supports systematic identifi-

cation of these combinatorial effects so that systems

can be built with minimal combinatorial effects.

3) Encapsulations for Evolvable Elements: The

design theorems show that software constructs, such

as functions and classes, by themselves offer no

mechanisms to accommodate anticipated changes

in a stable manner. Therefore, Normalized Systems

Theory proposes to encapsulate software constructs

in a set of five higher-level software elements, mod-

ular structures that adhere to the design theorems, in

order to provide the required stability with respect

to the anticipated changes [15].

The second and third theorem imply that the basic

software constructs, representing data and actions,

need to be encapsulated in order to build stable

information systems. This leads to the following

encapsulations or elements:

• Data Encapsulation, the composition of soft-

ware constructs to encapsulate a data con-

struct into a data element, implies that

data elements have get- and set-methods for

data version transparency, So-called cross-

cutting concerns—such as remote access and

persistence— can be added to the element in

separate constructs.

• Action Encapsulation, the composition of soft-

ware constructs to encapsulate an action con-

struct into an action element, implies that

the core action construct can only contain a

single functional task, not multiple tasks, and

that workflow has to be separated from these

elements. Arguments and parameters need to

be encapsulated as data elements, and so-called

cross-cutting concerns—such as remote access,

logging and access control— can be added to

the action element in separate constructs.

The first and fourth theorem, dealing with ag-

gregations of tasks, imply that workflow must be

separated from other action elements, actions must

be separated or isolated by intermediate states, and

information systems must be able to follow up and

react on states and/or error states. This leads to

additional encapsulations:

• Workflow Encapsulation, the composition of

software constructs to create an encapsulated

workflow element, implies that workflow el-

ements cannot contain other functional tasks,

and that they must be stateful. This state is

required for every instance of use of the action

element, and therefore needs to be part of, or

linked to, the instance of the data element that

serves as argument.

• Trigger Encapsulation, the composition of

software constructs to create an encapsulated

trigger element, implies that trigger elements

need to control the separated—both error and

non-error—states, and check whether an action

element has to be triggered. So-called cross-

cutting concerns—such as controlling the trig-

ger and its time interval—can be added to the

element in separate constructs.

• Connector Encapsulation, the composition of

software constructs to create an encapsulated

connector element, implies that connector el-

ements must ensure that external systems can

interact with data elements, but that they can-

not call an action element in a stateless way.

So-called cross-cutting concerns—such as set-

ting up network listeners—can be added to the

element in separate constructs.

B. Business Process Production Lines

In this section, the viewpoint of the Normalized

Systems theory on business processes will be first

discussed. The subsequent subsections will describe

the different elements of Normalized Systems rele-

vant to enable business processes.

1) Normalized Production Lines: Automated

manufacturing is based on so-called production or

assembly lines, where products are assembled as

they pass through the production line. At every

step or position of the assembly line, a specific

and dedicated operation is performed on the product

that is being created. Though production lines seem

highly integrated at first sight, they actually exhibit
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loose coupling. Though every single processing step

requires the completion of the previous steps on

that instance of the product that is being created,

it neither requires any knowledge of the previous

processing steps, nor of the subsequent steps. More-

over, they do not have to be aware of the timing

of the other steps. Any step can be performed

on thousands of product instances that have been

prepared hours, or even days, earlier.

It is this proven model or metaphor for automated

production in the industrial world that we propose

to apply to the automated execution of business

processes by information systems. We translate the

concept of a production line, that assembles in-

stances of a specific product that is being created,

to a business process flow, that performs operations

on instances of a specific target data argument.

The software primitives of these production lines

are the elements of Normalized Systems theory.

These elements are encapsulated software entities

that exhibit stability with respect to a defined set of

basic changes, and that are able to take care of a

number of so-called cross-cutting concerns, such as

persistency and remote access. Software entities are

defined as instantiations of programming constructs,

for instance Java or C# classes.

2) Data and Action Elements: Based on the laws

of separation of concerns and separation of states,

we propose that every flow is concerned with one,

and precisely one, type of data element. Due to

separation of states, every flow should be divided

in its constituent actions to isolate the different

functional tasks and to sequence the state transi-

tions. As such, the artefact whose state is being

altered by the subsequent functional tasks should be

uniquely defined. Complementing this insight with

the metaphor of the normalized production line, it

is clear that the artefact underlying a flow, is a

data element. Based on separation of concerns, this

artefact cannot represent more than one concern;

thus a flow is concerned with one, and precisely one

data element. This type of data element is called the

life cycle object of the flow, and corresponds to the

type of product that is created on an assembly line.

Every instance of this data element goes through

the life cycle of this flow, and a dedicated state

attribute stores the state of this product instance.

In this way, the state of a product instance is

available to the outside world, resulting in the

required loose coupling between operations, both in

features and time. These data elements or life cycle

objects basically correspond to the nouns of the

business processes. Indeed, as every data element is

built around a single data entity, and cross-cutting

concerns such as persistency and remote access are

integrated into the element, this long time promise

of object-oriented software can finally be realized.

In object-oriented software, nouns could only be

implemented in plain classes if all cross-cutting

concerns would be part of the same class.

We propose that every operation in a flow con-

sists of one, and precisely one, action element.

Once again, this is made possible by the fact that

every action element is built around a single action

entity and therefore task, and that cross-cutting

concerns like remote control, logging, and possible

access control are integrated into the element. In

our opinion, the following types of action elements

are distinguished in business process flows:

• Standard actions: the information system per-

forms an actual action, e.g., sending an e-mail,

checking the availability of a part, deciding

on a type of procedure, sending an invoice,

confirming an order, etcetera.

• Bridge actions: the information system creates

another type of life cycle data element that will

be processed in its own state machine flow;

e.g. creating an order upon an approved offer,

creating a number of parts to be reserved upon

an accepted order, creating an invoice after an

order has been delivered, etcetera.

• Manual actions: a human user is required to

perform the action, and to set the state of the

life cycle data element through a user interface,

e.g. approving an expense report, granting a

holiday, checking whether a payment has been

made, etcetera.

• External actions: another process, possibly

belonging to another information system, is

assumed to perform the action, and to set

the state of the life cycle data element, e.g.

reporting the state of another system, trigger-
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ing an alarm, acknowledging the receipt of a

transmission, etcetera.

3) Flows, Tasks, and Timers: As mentioned in

paragraph II-A, a workflow element is responsible

for executing the process flow for every instance of

the target life cycle data element. Because it should

be possible to (re-)define and to (re-)configure

workflows in a dynamic way, the definition of the

workflow should not be programmed or hard-coded.

According to the theorem of separation of con-

cerns, a particular workflow description language

like BPEL should not drive the workflow as this

combines the process flow with a specific technol-

ogy. Workflows should therefore be defined using a

neutral representation consisting of data elements.

To apply descriptions like BPEL, a connector el-

ement should be used. As such, the concern of a

specific technology and the concern of workflow

execution are separated. Thus, in order to specify a

process flow according to the Normalized Systems

theory, the following data elements are defined:

• Flows: An instance of a Flow data element

represents a process flow operating on a single

life cycle data element, e.g. an InvoiceFlow,

an OrderFlow, etcetera. Such a flow consists

of multiple tasks on the target data element. It

is possible to have different flows operating on

the same life cycle data element, e.g. multiple

invoice flows.

• Tasks: An instance of a Task data element rep-

resents a task operating on a single life cycle

data element. Such a task identifies a specific

action element operating on the data element,

a parameter data element, a begin or trigger

state, a success state, and a failure state. This

failure state allows the flow to branch from

the so-called golden path for specific instances

of the data element. Tasks are grouped using

flows.

• Timers: An instance of a Timer data element

represents a timing constraint operating on a

single life cycle data element. Such a timer

specifies a maximum allowed period between

two states or anchor points in a flow. The timer

may identify a specific action element to be

executed in case the timer expires, and/or a

new state that needs to be set in any instance

of the data element for which the timer expires.

The need for the first two elements can be

straightforwardly derived, the third element is intro-

duced because of its omnipresence in contemporary

business processes. The control flow model of such

a process flow is based on the following three

primitives:

• Trigger states: Every instance of the target

or argument data element needs to have a

state field or attribute. This persistent field will

always keep track of the current position of

that data element instance in the control flow. It

represents which operations have already been

performed on that instance of the data element

that is being processed.

• State transitions: A processing step or op-

eration on an instance of a data element is

specified as a state transition. Performing an

operation is represented in the control flow

model as a transition from one state—a value

of the described state field—to another. In or-

der to allow branching, such a state transition

can in general have two outcomes.

• Transition actions: A state transition corre-

sponds to the execution of an actual operation

on that instance of the data element. Such

transition action performs a real operation, and

is implemented in a so-called action element.

III. MAPPING METHOD CONSTRUCTION

The construction of the mapping method will be

illustrated using a generic business process example

of a make to order producing company. Figure

1 represents the process description modelled in

BPMN. It should be mentioned that the business

process example has a rather restricted scope, and

can thus only be considered as a proof-of-concept to

exemplify the applicability of the proposed mapping

method.

A small company manufactures cus-

tomized bicycles. When an order for a

customized bicycle is received by the

organization, it is first evaluated by the

sales department. If the order is rejected,

the customer is notified and the process
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Figure 1. BPMN business process model

ends. If it is accepted, both the warehouse

and production are informed. Production

is commanded to plan and prepare the

assembly. The warehouse processes the

required items by checking the availabil-

ity of the parts. If the items are available

in-house, they are reserved; otherwise the

items are back-ordered. Upon arrival of

the ordered items, they will be received

and reserved. When all required items are

available and the assembly is prepared,

the order is produced. After production,

the order is passed to the shipping de-

partment that will ship the bicycle to the

customer. When the order has not been

completed within six weeks, the customer

will be contacted. This option is incorpo-

rated to offer the customer the opportunity

to cancel or change and resubmit the

order.

In a first subsection, it will be discussed how

data elements will be derived from the model. In a

second subsection, the identification of flows, con-

stituent tasks and action elements will be described.

A third subsection will provide a summary on the

proposed way of working, and thus constitutes a

first draft of the resulting method.

A. Data Elements

Based upon the theorems of separation of con-

cerns and data version transparency, business en-

tities and business actors are analyzed if they

correspond to separate data elements. For every

noun represented in the BPMN model, expressing

an business entity or actor, it should be decided

whether it indicates an entity, an instance of an

existing entity, or an attribute describing an existing

entity. In this way, the identification is rather similar

as searching for business objects within object-

orientation. The choice is however not irreversible

as introducing a new separate data element and an

additional flow regarding this data element, is a

functional change that can be translated in a set

of anticipated changes for which Normalized Sys-

tems exhibit proven evolvability [15]. Determining

data elements representing the life cycle objects on

which the process flow is executed, can however

be considered to be more concise. As business pro-

cesses symbolize a sequence of activities on one or

more business entities, the life cycle entities are rec-
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ognized as the elementary artefacts, i.e. concerns,

passing through the different states. Because of

the relatedness to the information-centric business

process modelling approach, research results from

that domain can, to some extent, be incorporated in

our work. As such, three conditions to determine

whether an information entity is a business entity

were identified [3, p.290]:

• business entities are records storing informa-

tion pertinent to a given business context;

• business entities have their own, distinct life

cycle from creation to completion;

• business entities have a unique identifier within

the organization.

Applying our insights complemented with the

aforementioned guidelines leads to the identification

of the following data elements. A first data element

is of course the User: all actors in the description

need to be defined as users of the information

system. In general, this data element is already

in existence for other business processes that have

previously been automated, as a user symbolizes

a generic concern in all information systems. Also

the criteria mentioned by the related research apply,

as a User has a distinct life cycle and a unique

identifier. This also accounts for a Customer data

element, probably linked to the User element, as

a Customer has its distinct life cycle and unique

identifier within the organization. It should be

mentioned that, according to Normalized Systems

theory, the introduction of one or more additional

data attributes to an existing data element can be

done with a limited impact [16].

There are two main life cycle data elements in

the described business process or flow: the Order

and the Part. Although the business process in

Figure 1 is described as a unified process of Order

and Part, the actions on these entities cannot be

represented by the same flow because they can

clearly evolve independently from each other, and

are thus different concerns. Moreover, the two el-

ements have obviously independent life cycles. An

instance of the Order data element is created by the

customer and goes through the various processing

steps that have been described, ending with the

shipment or delivery of the order. For every part

that makes up the specific instance of a product,

an instance of the Part data element is created,

and linked to the instance of the respective Order

data element. Every individual instance of the Part

data element goes through its own life cycle of

reservation, reception, and so on. The observations

that different information is stored and that different

identifiers are used to pinpoint an Order and a

Part, add to the rationale to identify these data

elements.

Several tasks that are described in the process

involve some kind of notification. Such a notifica-

tion clearly consists of two concerns: the extraction

of the information that makes up the message’s

content on the one hand, and the actual sending

of the message on the other. This means that, in

accordance with separation of concerns and sepa-

ration of states, they have to be separated into two

different tasks or action elements. The second task

is actually quite a generic one: the sending of a

notification message, such as an e-mail or SMS.

Therefore, it should operate on a corresponding

generic target data element Notifier, in a corre-

sponding separate flow. This also implies that the

first task of such a composed notification task will

be implemented as a bridge action. Based on the

appropriate information extracted from the order

state, an instance of the Notifier data element

will be created.

B. Flows, Tasks and Action Elements

This paragraph discusses how flows, tasks and the

diverse kinds of action elements will be detected.

A number of recommendations and guidelines with

their rationale will be provided, each of them il-

lustrated by the representative examples within the

scope of our case example. It should be repeated

that based upon the four Normalized Systems’ the-

orems, workflow elements are represented by state

transition diagrams of a single data element; and

action elements will contain only one functional

task resulting in a state transition of the life cycle

data element driving the flow. The resulting state

transition diagrams of the elementary life cycle data

elements Part and Order can be found in Figures

2 and 3 respectively.
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Figure 3. Schematic representation of the Order state transition diagram.

Figure 2. Schematic representation of the Part state transition
diagram.

1) State labelling: The figures illustrate that due

to separation of states, the different states must be

explicitly defined. Moreover, this state definition

has to be very concise because every defined state

has to be unique for the life cycle object driving

the flow. Otherwise, the action element triggered

by the respective state can not be determined as it

is not clear which state the life cycle object has.

For example, an order can be rejected at multiple

points in the flow, either by the sales department

when receiving the order, or by the customer when

the order takes longer than six weeks to complete.

If these rejection states would be both labelled

rejected, it would not be possible to distinguish

between the two different notifications that have

to be sent. A best practice is therefore to provide

each state with a distinctive, self-explanatory label.

2) Interacting life cycle data elements: Certain

life cycle data elements will be created as a result

or as a consequence of actions performed by other

life cycle data elements. Based on the Normalized

Systems theorems separation of concerns and sep-

aration of states, these two life cycle data elements

are not the same concern and both life cycles should

be separately managed. Within paragraph II-B2, a

bridge action was mentioned as one of the types of

action elements. This action element will be used

when a second life cycle data element has to be

initiated. Following examples will exemplify the

way of working.

Concerning the Part Processor, it was men-

tioned in Section III-A that the Part data element is

identified as a separate life cycle element, and there-

fore Part Processor is a bridge action because at

this point in the process, an instance of the Part life

cycle data element is created for every single part of

the order. Handling the Item Processing subprocess

exemplified in Figure 1 is clearly another concern

than handling the complete order. It should also be

mentioned that abstraction is made of the Prepare

Assembly activity mentioned in Figure 1. This ac-
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tivity probably consists of planning the production,

reserving the needed resources, etcetera. In this

sense, it is argued that this activity is most likely a

bridge action to an additional workflow element, for

instance a ProductionPlanningFlow. The final

step of the Order flow consists of shipping the

order to the customer: a bridge action will create

a shipment data element that will go through the

shipping process not further explained in this paper.

The Part Orderer within Figure 2 is a bridge

action to another flow or information system, as

purchase orders will probably be handled by a

PurchaseFlow. Based on the Normalized Systems

theorems separation of concerns and separation of

states, the issue of purchase orders being delivered

on time, with the correct amount, etcetera. is not

an issue of the PartFlow, but of a PurchaseFlow.

3) Notifying stakeholders: Like already men-

tioned at the end of Section III-A, business pro-

cesses often require activities to notify certain stake-

holders. This requirement is actually a particular

case of interacting life cycle data elements, as one is

always an instance of the Notifier data element.

Based upon the theorem separation of concerns,

sending notifications to diverse stakeholders is con-

sidered a separate concern. Delivering a message

in the correct format to the intended recipients

at the right time, with the related fault handling,

does not concern other data elements. Our solution

consists of implementing a bridge action that will

trigger the creation of a Notifier data element.

Of course these bridge actions will differ from

each other, as the semantics of the message that

has to be communicated, vary depending on the

situation. Therefore, the bridge action will pass a

set of parameters defining the message’s content and

format. Additional tasks that should be performed

to send the notifications, can be designed using

workflow elements defined upon the Notifier data

element.

In the example, notifiers can be found at diverse

points within the Order workflow represented

by Figure 3. First, when receiving an order, a

notification is sent to a sales representative in

order to evaluate the order. The Sales Notifier

bridge action will thus result in the creation

of a Notifier data element that sends an

e-mail to a sales representative stating that a

particular order has to be evaluated. Second, the

Department Notifier bridge action creates a

notification or assembly preparation request that

is sent to the manufacturing department, and the

individual parts are created. Third, when the six

weeks timer elapses, a Delay Notifier bridge

action is triggered that will create a notification

sent to the customer to inform her about the delay

and to request the wanted action. The multiple

notifiers illustrate the usefulness of isolating a

change driver in its designated data element to

obtain true reusability as notification functionality

can thus be reused by applying a bridge action.

4) Communicating life cycle data elements:

Different life cycle data elements sometimes need

to communicate their state to one another in order

to trigger further execution of the flow. Although

in many cases an external action can implement

this, like the Order Assembler action in the

OrderFlow or the Part Receiver action in the

PartFlow, this will not suffice in the particular case

when a life cycle data element A triggers multiple

instances of another life cycle data element B, and

its flow can only continue when all these instances

have reached a particular state. In this case, an

action element on the triggering life cycle data

element A has to be implemented that will verify

the state of the initiated instances of B. When all

the initiated instances of B reach the target state, the

action will set off the state transition on A. If one

of the triggered instances of B has not yet arrived

at the target state, A’s state will not be altered. As

such, the action element will be initiated until all

instances of B attain the target state.

An example from the case will exemplify and

further ground the proposed solution: when all

parts are created in the OrderFlow, the order

has to wait until it can be produced. This implies

that the manufacturing department is ready to

start the assembly, and that all parts are reserved

and available in stock. Actually, both these

conditions will become available in the instance
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of the Order data element, either through a

data attribute or data links. Therefore, though

this information will be entered by another flow

(e.g. the PartFlow) and due to the separation of

concerns theorem not allowing one flow to actively

interfere with another one; a simple standard action,

Assembly Readiness Checker, is needed to

check the appropriate information on a regular

basis. A flow element actively interfering with

another flow element can be considered a so-called

GOTO statement. Although most contemporary

business process descriptions and languages do

not inhibit this behaviour, Normalized Systems

theory does not allow their presence in accordance

with the seminal work of Dijkstra [8]. The

reason why Assembly Readiness Checker is

positioned in the OrderFlow, and not within the

PartFlow, is quite straightforward as the Order

instance “knows” through its data links, which

Parts are created. Therefore, an action in the

PartFlow communicating that everything has

completed correctly for a particular part can not

be implemented as there are multiple parts for a

single order and the individual Part instances

are not aware of the existence of the other instances.

5) Human tasks: Whether a task is executed by

a human or an information system does actually

not matter, as it is the encapsulated functional

task representing the change driver that should

be isolated within its designated action element.

When defining the action element within paragraph

II-A, it was derived that an action element

encapsulates one and only one functional task. The

way in which this task is performed, manually or

automated, is just a matter of implementation and

should, adhering to the action version transparency

theorem, be kept hidden from the action or flow

calling the respective action element. For instance,

it is obvious that Order Evaluator within Figure

3 is a manual action: the sales manager verifies the

order and takes a decision whether or not to accept

the order. This task is not identified as a separate

element because of being performed manually, but

because it represents a separate concern, namely

an elementary functional task, and because the task

triggers a state transition relevant to the life cycle

of the underlying Order data element.

6) Timer functionality: Contemporary business

processes very often contain time constraints, e.g.

stakeholders only have a given period to answer,

a management reporting process should be run

every morning at 7 AM, etcetera. Because of its

omnipresence and its clear concern, a time con-

straint, a timer element was introduced in paragraph

II-B3 to represent this functionality. Adhering to

the Normalized Systems’ theorems, such a timer

element can only operate on a single life cycle data

element and will specify a maximum allowed period

between two states of the associated data element.

As such, the start state will probably trigger two

elements: the action element that is described within

the flow element, and the timer element. When the

timer expires, either a new state is set in an instance

of the data element, or a specific action element is

triggered.

The description of the OrderFlow process

specifies a timer of the second kind. When an

order takes longer than six weeks to be completely

processed, the customer has to be contacted. This

individual timer element, schematically represented

in Figure 3 by the open circle and described in Table

I, has an allowed time window of six weeks between

start state accepted and target state assembled

before the Customer Delay Notifier bridge

action is potentially triggered. The start state

accepted thus triggers both the timer element

Customer Delay Timer and the bridge action

Department Notifier.

7) Cancellation Pattern: Within the business

process, a customer contact was provided to offer

the customer the opportunity to cancel his order.

However, one should be very cautious with possible

cancellations. If the customer decides to cancel the

order, the state cannot simply be set to cancelled

and thus disregard everything that has already been

done. This would very quickly lead to an infinite

amount of parts in stock as these parts will be

kept reserved for an already cancelled order. If it is

absolutely necessary to offer the customer the pos-
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Start state Target state Timer Element Name Time elapse Action Element Triggered

accepted assembled Customer Delay Timer 6 weeks Customer Delay Notifier

Table I
TIMER ELEMENT OF ORDER FLOW

sibility to cancel the order, an entire branch should

be added to the process flow of the order, where

the assembly request is withdrawn and the various

reserved parts are released. Within our example,

only the Part Releaser action element was mod-

elled, because no details were provided what should

be performed when the customer cancels its order.

The Part Releaser is a standard action sending

a release request to the Part data element, which

will handle the request accordingly.

However, contemporary organizations need to

provide the customer an opportunity to cancel an

order during a part of or even the whole process.

By consequence, cancel requests can arrive not only

on specified moments like discussed above, but also

during the regular flow execution. Like mentioned

in paragraph III-B4, the Normalized Systems’ the-

orems do not allow to directly interrupt a flow and

to change the state. Due to transactional integrity

reasons, flows can only be routed by elementary ac-

tion elements resulting in state transitions of the un-

derlying data element. To support this cancellation

functionality, we suggest to add a cancelRequest

data attribute to every data element representing a

business artefact that might be have to cancelled.

The following cancellation pattern describes how

to handle such a cancel request:

• Capture cancel request by updating

cancelRequest data attribute. Conditions

that check whether the cancel request is valid,

are designed in the update operation of this

data attribute.

• The engine supporting the flow element then

checks the cancelRequest data attribute,

equivalent to the way it verifies the different

states of the different data elements to trigger

the correct action element.

• If the cancelRequest data attribute’s state is

true, the regular state field is updated to a value

such that the regular flow does not continue;

and the state field in which the data element

was before cancelling, will be stored in another

state attribute of the respective data element.

This second state attribute will be referenced in

our approach as a parking state field. The value

attributed to the regular state attribute must be

the same for every data element, as this will

uniquely define the situation and can thus be

recognized within all data elements; as such

we suggest to label it cancel requested.

The second state attribute (see also paragraph

III-B8) is necessary to trigger the correct ac-

tions to handle the cancellation. The way a

cancellation will be handled, evidently varies

according to the data element’s life cycle state.

For instance, cancelling an accepted order will

be totally different compared to cancelling an

already produced order.

• Finally, an action element will be triggered that

based upon the value of the parking state field

will decide which cancellation flow should be

triggered as the scenario will differ according

to the actions already executed upon the data

element that was requested to be cancelled.

The output of this action element is attributing

a value to the regular state field of the particu-

lar data element that uniquely describes which

action should be triggered to initiate the correct

cancellation flow.

If the customer decides to confirm the order, the

process can simply continue, and should of course

not be restarted, nor should it re-create the various

parts. This latter option will be discussed in the

next paragraph.

8) Pausing flows: When the customer is con-

tacted to either cancel or resubmit the order, it

can be argued that a third option is missing: the
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customer still wants its initially ordered bicycle to

be delivered. In this case, the order has to continue

its regular flow. In the BPMN model however,

this behaviour is difficult to model as neither the

interrupting nor the non-interrupting intermediate

events added in the latest proposed BPMN standard

version 2.0 [18], exhibit the wanted behaviour of

“pausing” the flow until the customer answer is

received. Interrupting intermediate events break off

the flow, and non-interrupting intermediate events

let the flow continue.

The Normalized Systems’ theorems and de-

rived primitives do however enable this desired

behaviour in a quite straightforward and easy to

comprehend way: preserve the life cycle data el-

ement’s state in the parking state data attribute.

The way of working will be explained by applying

it to the example case, in particular when the

Customer Delay Notifier discussed in para-

graph III-B6 elapses and the customer will be noti-

fied. As a result, the Order data element’s state will

become customer delay notified. The state

in which the Order data element was before the

timer elapsed should however not be neglected as

it might be possible that the customer requests the

continuation of the initial order. Therefore, this state

should be made be persistent by storing it in the

designated parking state data attribute. In this way,

the flow will be paused and can be reinstated upon

request by retrieving the state from the parking state

data attribute and updating the regular state field

with this value.

The fact that this requirement can be solved in

a rather simple way is due to the deterministic

nature of the Normalized Systems’ theory. First,

the separation of concerns theorem prescribes that

atomic functional tasks should be separated in dif-

ferent action elements. Second, the separation of

states theorem adds the need of defining action

states in order to isolate these individual tasks.

Third, combining the two theorems leads to our

proposition that business processes should be im-

plemented as state machines operating on a single

data element. Fourth, adding the state labelling

guideline discussed in paragraph III-B1 to these

characteristics realizes that any business process

state will be uniquely and unambiguously defined

by the state field of the life cycle data element going

through the process flow. Fifth, the deterministic

pattern expansion used to design and implement

Normalized Systems’ elements makes it possible to

introduce such an additional state field in a standard

way to any instance of the respective data elements.

Sixth, as such the initial life cycle data element’s

state can persistently be stored and retrieved upon

request without interfering with the prerequisite of

transactional integrity.

C. Method Overview

To summarize the results when obeying to the

guidelines discussed above, Tables II and III repre-

sent the flow elements driving the business process.

In the first section, the limited potential for

verification was mentioned as one of the drawbacks

of contemporary business process languages. When

comparing the business process represented as Nor-

malized Systems elements in Figures 2 and 3, to the

BPMN of Figure 1, it can be noticed that the former

representations offer better support for verification

as process states are explicitly modelled, and can

thus be compared with the allowed state transitions

of the underlying data element. We also claim in

accordance with Kumaran et al. [12, p.41] that

representing processes as state machines of life

cycle data elements (or business entities) increase

the understandability of these models.

It can be concluded that applying the Normalized

Systems’ theorems on business processes already

provides some principles to assess these business

processes. In this sense, the following preliminary

guidelines are proposed in this article:

• Business processes should be separated in

workflow elements driven by the persistent

state field of a single life cycle data element.

• These life cycle data elements are identified

as the elementary artefacts passing through the

different states during business process execu-

tion, e.g. Order. Useful conditions to identify

such life cycle data elements are found in the

work regarding business entities [3, p.290].

• Time constraints should be isolated in separate

timer elements, e.g. a six weeks timer.
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Start State End State Action Element Name Action Element Type

created sales-notified Sales Notifier Bridge

sales-notified accepted XOR not-accepted Order Accepter Manual

not-accepted refusal-notified Customer Reject Notifier Bridge

accepted departments-notified Department Notifier Bridge

departments-notified processing-parts Part Processor Bridge

processing-parts ready-for-assembly Assembly Readiness Checker Standard

ready-for-assembly assembled Order Assembler External

assembled shipped Order Shipper Bridge

customer-delay-notified rejected Customer Decider Manual

rejected cancelled Part Releaser Bridge

Table II
STATE TRANSITIONS DESCRIBING ORDER WORKFLOW ELEMENT

Start State End State Action Element Name Action Element Type

created available XOR not-available Part Checker Standard

not-available ordered Part Orderer Bridge

ordered available Part Receiver External

available reserved Part Reserver Standard

Table III
STATE TRANSITIONS DESCRIBING PART FLOW ELEMENT

• When the creation of a life cycle data element

is dependent on actions performed by another

life cycle data element, the interaction between

the two elements has to be implemented using

a bridge action.

• Frequently required generic functionality like

notifying people, should be isolated in separate

workflow elements driven by a generic data

element, e.g. Notifier.

• Separating the activities of a business pro-

cess into different tasks and action elements

can be done in a structured way by di-

viding different concerns, representing dif-

ferent change drivers, into different Nor-

malized Systems primitives. For instance,

the identification of the action element

Assembly Readiness Checker based upon

the communicating life cycle data elements

guideline, exemplifies the fact of only allow-

ing one functional task in one single action

element: some designers might be tempted to

implement this task either in the workflow

element itself, or in the PartsCreator action

element.

• To cancel processes, a Cancellation Pattern is

proposed needing a cancelRequest and a

parking state field data attribute that are

by default provided in every life cycle data

element.

• To enable processes to be paused, a pattern is

proposed again using the by default provided

parking state field data attribute.

IV. RELATED WORK

Our work relates to research in three areas. First,

it is related to research on modularity and stability.

Modularity expresses the idea to decompose a sys-

tem in loosely coupled building blocks. In software

engineering, modularity is used to decompose an

information system in independent modules [19].

Stability refers to the systems theoretic notion that a

bounded input results in bounded output. Although

no precise definition exists in the context of in-

formation systems, most authors imply it to refer

to software or information systems architectures

designed to be resistant to change propagations

[10].

Second, two business process theorems relate to
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a certain extent to our viewpoint. First, the case

handling paradigm also focuses on the role of data

objects to drive the flow [22]. This orientation

considers a case to be the central concept and

describes it as a product, which is produced with

structure and state. This structure and state are

based on a collection of data objects representing

valuable information about the case. As such, a

process is defined as the recipe for handling cases

of a certain type. The main differences with other

workflow approaches are the focus on the whole

case and not on single work-items; and the state of

the case, rather than the control flow, that primarily

determines which activities are enabled [23]. Sec-

ond, our work is related to the information-centric

approach on business process modelling where a

business process is modelled as the interacting life

cycles of information entities [12]. These infor-

mation entities, also called business entities, are

used to describe business processes operating as

state machines where state transitions are caused

by activities acting on the most important entity.

Business processes are thus defined as the life

cycles of the business entities from their initial to

final state. In this sense, the approach is very closely

related to ours.

Third, the mapping method presented in this

paper relates to research in the Service-Oriented

Architectures (SOA) domain. In this domain, a

number of approaches exist that describe how to

identify service operations based on business pro-

cess models. These approaches originate from both

practice, e.g., Mainstream SOA Methodology [5],

and academia, e.g., [6]. A more comprehensive

overview can be found in [11], [20]. Because our

proposed method is based upon proven software

engineering principles, it mainly relates to the

principles-driven design approaches [20].

V. CONCLUSION AND FUTURE WORK

When deriving Normalized Systems’ primitives

from business process models, the following ini-

tial conclusions can be drawn. Data elements are

mostly only indirectly represented within business

process models. Therefore, every noun should be

systematically checked as a potential data element

candidate. The identification of the elementary life

cycle data elements is however considered relatively

straightforward as they represent the business en-

tities going through different business states dur-

ing business process execution. Moreover business

processes will potentially be enabled by multiple

workflow elements as the Normalized Systems the-

orems propose that a workflow element should only

relate to one and only one data element. In this

sense, both Order and Part workflow elements

were identified.

Due to the fact that business process models em-

phasize the flow of activities, the constituent tasks

of these workflow elements can be deducted in a

structured way. Also action elements are obtainable

by merging the Normalized Systems’ laws with

the functionality exhibited by the activities within

the business process model. For instance, timer

elements are basic blocks of both business processes

and Normalized Systems, and can therefore be

mapped in a structured way. In addition, the case

demonstrated how the omnipresent tasks of con-

tacting diverse actors can be mapped to a generic

Notifier data element on which workflows taking

care of the requested notification functionality can

be defined.

Our future work will be, next to executing more

extended and additional case studies, targeted at

formalizing the method proposed in this paper.

The rather implicit rules must be translated into

strict guidelines, providing an unambiguous way

to derive the Normalized Systems elements from

business process models. This will also include

identifying the different concerns existing at the

level of business processes, as they will vary from

the concerns identified at the software level. Second,

the mapping of other business process modelling

languages and enterprise architecture descriptions

to Normalized Systems primitives will be studied.

Finally, research on the Normalized Systems theory

itself will be extended. Key areas are the introduc-

tion of additional supporting tasks into the stable

software elements, and porting the stable element

patterns to supplementary software platforms.
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