
Quality-Oriented Design of Services

Michael Gebhart, Sebastian Abeck
Research Group Cooperation & Management

Karlsruhe Institute of Technology (KIT)
Karlsruhe, Germany

{gebhart | abeck} @kit.edu

Abstract—With the shift to a service-oriented architecture,
goals concerning the IT of an organization, such as an
increased flexibility and maintainability, are expected to be
attained. For this purpose, the building blocks of the service-
oriented architecture, the services, have to be designed that
certain quality attributes, such as loose coupling or autonomy,
are fulfilled. Existing design processes for services name these
quality attributes and consider them as important. However,
they do not explain their usage within a design process in order
to create services that verifiably fulfill these quality attributes.
This article shows an enhancement of existing design processes
that on the one hand comprehensibly describes how to derive
service designs from artifacts of the business analysis and on
the other hand integrates quality attributes in order to enable a
verifiably quality-oriented design of services. The approach is
applied to design services for a system at the Karlsruhe
Institute of Technology that guides students across the campus
of the university.

Keywords-service design; design process; quality attribute;
design decision; soaml

I. INTRODUCTION

Today, several companies structure their information
technology (IT) service-oriented, where functionality is
encapsulated and provided in form of services. The shift to a
service-oriented architecture is mostly associated with the
achievement of goals concerning the IT, such as an increased
flexibility and maintainability [3, 4, 24].

To support the achievement of these goals, quality
attributes could be identified, a service within a service-
oriented architecture should fulfill. Wide-spread attributes
are a unique categorization, loose coupling, autonomy and
discoverability of a service. After the analysis of the
business, the services are designed before they are
implemented. Thus, during the so-called service design
phase, the IT architect has to design the services in a way
that the implementation results in services that fulfill these
quality attributes. The service design phase consists of two
sub phases: the identification and specification phase [5].
Within the identification phase, service candidates as
preliminary services and their dependencies are identified [3,
5]. Service candidates consist of operation candidates that
represent preliminary operations. They constitute the
structural basis for the following specification phase. During
this phase, the service designs for each service are modeled.
They describe the service interfaces for accessing the

provided functionality and the service components that
perform the functionality.

Existing design processes in the context of service-
oriented architectures, as introduced by Erl [3], Engels et al.
[4], the Rational Unified Process [19] for Service-Oriented
Modeling Architecture (RUP SOMA) [5, 6, 7], and the
Service Oriented Architecture Framework (SOAF) [8], focus
on the steps that are necessary to design services at a high
level of abstraction. They even name an excerpt of quality
attributes and consider them as important. However, they do
not describe how the design of the services has to be
performed in order to verifiably fulfill the quality attributes.
Additionally, the design processes are mostly only described
abstractly, so that a detailed description about how to derive
service designs based on a standardized modeling language
from artifacts of the business analysis is missing. Other
work, as introduced by Erl [9, 22], Engels et al. [4], Reussner
et al. [10], Josuttis [11], Maier et al. [12, 13], Perepletchikov
et al. [14, 15], Hirzalla et al. [16], Choi et al. [17] and
SoaML [18], focuses on quality attributes a service should
fulfill. However, the authors of this work do not address how
these quality attributes can be used within a design process in
order to create services with these quality attributes.

This article introduces an enhancement for design
processes as they are introduced in existing work in order to
verifiably design services with certain quality attributes. For
this purpose, the derivation of service designs from artifacts
of the business analysis is described in detail. Additionally,
an iterative analysis and revision phase is added
subsequently to the identification and specification of
services for ensuring the fulfillment of certain quality
attributes. During the analysis phase, the quality attributes of
the current service designs are evaluated by measuring
quality indicators that represent the quality attribute and give
hints about their current value. Afterwards, if the quality
attributes do not correspond to the desired values, the
revision phase is performed. This phase consists of two
steps. First, the design flaws within the current service
designs are identified as they give the IT architect hints about
the model elements within a service design that should be
revised. Afterwards, action alternatives are derived and
presented to the IT architect. They represent design decisions
the IT architect should consider in order to create revised and
improved service designs.

To illustrate our approach, services of a service-oriented
system that guides students across the campus of the

144

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Karlsruhe Institute of Technology (KIT) are designed. This
system has its origin in a service-oriented surveillance
system developed at the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [33, 34] we
already designed services for [1, 2, 32]. The services are
designed with respect to loose coupling, autonomy, unique
categorization, and discoverability as desired quality
attributes. The service designs are modeled using the
Service-oriented architecture Modeling Language (SoaML)
[18] as standardized UML profile [38] and metamodel for
describing and formalizing service-oriented architectures.
Though SoaML is a very new UML profile and metamodel
and still under development, it is becoming increasingly
accepted and employed.

The article is organized as follows: Section 2 presents the
fundamentals in the context of design processes, quality
attributes, and modeling service designs. In Section 3, the
entire approach for a quality-oriented design of services is
introduced and exemplarily applied for designing services of
the service-oriented KITCampusGuide. Section 4 concludes
the article and offers suggestions for future research.

II. FUNDAMENTALS

A quality-oriented design of services consists of three
essential parts that have to fit together: First, the design
process as framework for the entire quality-oriented design
has to be specified. The design process describes the
necessary phases within the design process and specifies the
derivation of elements created during the business analysis
into elements of the service design phase and transformations
within the design phase. Additionally, the design process
describes when and how to consider quality attributes to
guarantee the fulfillment of quality requirements. The
availability of measureable quality attributes constitutes the
second part of a quality-oriented design of services. The
quality attributes, such as loose coupling and autonomy,
have to be described in a way that the IT architect can
verifiably measure them. The modeling of service designs
represents the third and final part of a quality-oriented
design. The created service designs have to be modeled, i.e.
formalized, that it is possible to evaluate them with respect to
quality attributes and derive implementation artifacts as
starting point for the implementation phase. Existing work
mostly focuses on one of these three aspects.

A. Design Processes

In [3], Erl introduces the service-oriented analysis and
design phases that describe the steps necessary to design
services. According to Erl, first, service candidates, the
included operation candidates, and dependencies between
these service candidates are identified. Afterwards, for each
service candidate an entire service design can be created that
specifies the service in detail. Even though the identification
and specification is described, the comprehensible
transformation of artifacts that have been created during the
business analysis phase into service candidates and
afterwards into service designs is missing. Also quality
attributes, such as loose coupling, are considered as
important but explained textually only. Information how to

evaluate a formalized service design regarding these quality
attributes in order to create service designs with verifiable
quality attributes is not provided. The service candidates and
service designs are also described using an own informal
notation. There is no formal language used.

In [4] Engels et al. describe a method to derive services
from prior described business services. For each business
service a service within the service-oriented architecture is
created. But also in this case, some quality attributes are only
mentioned as important and not explained in a way that they
could be measured on a formalized service design.
Additionally, the design process does not explain how to use
the quality attributes to gain services with certain quality
attributes. Engels et al. also do not use a formal language to
model created services. The services are mostly described
textual.

The Rational Unified Process for Service Oriented
Modeling and Architecture (RUP SOMA) as introduced by
IBM [5, 6, 7] provides a detailed description about how to
derive preliminary service candidates from prior modeled
business processes and how to transfer these candidates into
final service designs. However, also in this case quality
attributes are only mentioned and not further considered. For
modeling service candidates and service designs the
proprietary UML profile for software services is applied
[25]. But in current work [26], there is also a usage of the
standardized SoaML introduced.

In [8], the Service Oriented Architecture Framework
(SOAF) is introduced. This framework describes steps that
result in services with the prescribed quality attribute
business it alignment. The process does not consider own
preferences. Information about how to transfer artifacts
created during the business analysis phase into artifacts of
the service design phase is missing and for modeling service
designs an own notation is used.

B. Measureable Quality Attributes

Other work focuses on the description of quality
attributes and their measurement. Erl presents in [9, 22]
design principles and patterns for services. These principles
and patterns are explained in detail, but the concrete
measurement on formalized service designs is not explained.
Also the integration into an entire design process is missing.

Similarly, Engels et al. [4], Reussner et al. [10], Josuttis
[11], Maier et al. [12, 13], Perepletchikov et al. [14, 15],
Hirzalla et al. [16], Choi et al. [17] and SoaML [18]
introduce important and partially even measurable quality
attributes. But also in this case, the description of them is
addressed. How to use these quality attributes in order to
create quality-oriented service designs is not further
explained. In [2] we presented the evaluation of service
designs based on SoaML. This work already helps IT
architects to evaluate service designs according to the
informal description of quality attributes as described in
existing work. In [1] we introduced how this measurement
can be used for supporting design decisions within a design
process in order to create improved service designs.

145

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

C. Modeling Service Designs

According to Erl [3, 9, 22, 23] and IBM [5, 6, 7], the
design process consists of two phases, the identification and
the specification of services. During the identification phase,
service candidates as preliminary services are identified. In a
next step, final service designs are specified. Thus, to support
the design process with a formal modeling language, the
modeling of service candidates and service designs is
necessary. Erl does not use any formal language whereas
IBM uses an own proprietary UML profile for software
services [25]. In the meanwhile, SoaML [18] has emerged as
a standardized UML profile for modeling services within a
service-oriented architecture. However, the SoaML standard
does not explain how to use this modeling language within a
design process and how to evaluate service designs that have
been created using this language. SoaML supports several
elements of service-oriented architectures. In the following,
we introduce the modeling elements that are of interest in
this article for modeling service candidates and service
designs.

1) Modeling Abstract Capabilities: In SoaML a
Capability element exists that represents a collection of
capabilities. These capabilities describe the functionality a
service provides. The Capability element is a stereotyped
UML class, whilst the capabilities inside are modeled using
operations. Additionally, dependencies between these
Capability elements can be specified. They are modeled by
means of usage dependencies and represent that a group of
capabilities requires other capabilities to be performed. The
following figure shows three Capability elements and their
dependencies.

2) Modeling Service Designs: According to Erl [3, 23],

Engels et al. [4], and IBM [6], a service design includes the
design of a service interface and of a service component.
The service interface describes the service and the service
component realizes its functionality. To model a service
interface, in SoaML the ServiceInterface element exists in
form of a stereotyped UML class. A ServiceInterface
describes the operations the service provides for potential
service consumers. This is specified by a UML interface
that is realized by the ServiceInterface. Additionally, it
includes a specification of operations a service consumer
has to provide for example in order to receive callbacks. For
that purpose a second interface has to be created that is used

by the ServiceInterface. A ServiceInterface also allows the
description of participating roles in form of UML parts and
of an interaction protocol. Latter can be specified by an
UML Activity that is added as OwnedBehavior to the
ServiceInterface. An exemplary service interface is shown
in the following figure. This service interface describes that
one operation is provided and one operation is required to
be provided by the service consumer in order to receive
callbacks. The interaction protocol specifies the order of
operation calls for gaining a valid result.

When calling one of the provided or required operations,

messages are exchanged. These messages are described by
MessageType elements that extend the UML dateTypes. A
MessageType represents a document-centric message and
can contain several dataTypes. In context of specifying
service designs, also these messages have to be described. In
the following, an example for a message is depicted.

«Capability»
Group1

+ Capability1()
+ Capability2()

«use»«use»

«Capability»
Group2

+ Capability3()
+ Capability4()

«Capability»
Group3

+ Capability5()
+ Capability6()

Figure 1. Modeling abstract capabilities

«ServiceInterface»

ServiceName

«interface»

ProvidedOperations

+ operation1(: Operation1Request) : Operation1Response

consumer :
«interface» RequiredOperations

provider :
«interface» ProvidedOperations

+

Interaction Protocol

: provider : consumer

operation1

«use»

«interface»

RequiredOperations

+ callbackOperation1(: CallbackOperation1Request) :
CallbackOperation1Response

callbackOperation1

Figure 2. Modeling a service interface

«MessageType»

Operation1Request

«dataType»

DataType1

+ attribute1 : String
+ attribute2 : String

«MessageType»

Operation1Response

+ success : Boolean

*

«dataType»

DataType2

+ attribute3 : String
+ attribute4 : String

*

Figure 3. Modeling message types

146

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Finally, for each service design the service component
has to be specified that realizes the provided functionality.
For service components, SoaML includes the Participant
element that represents an organization, system, or software
component. For modeling a Participant in UML, the UML
component can be extended by an according stereotype. For
each provided service a ServicePoint is added and typed by
the describing ServiceInterface. If the service component
requires other services to fulfill its functionality,
RequestPoints can be added to the service component. They
specify required services and are also typed by the describing
ServiceInterface element. To model the internal behavior of
the service component, for each provided operation an
OwnedBehavior in form of an UML Activity can be added.
For each ServicePoint and RequestPoint a UML Partition is
added that is typed by this ServicePoint or RequestPoint and
for each operation of a service a CallOperationAction is
assigned to the according Partition. An AcceptEvent
describes that the service component waits for a callback
operation being invoked. For internal functionality that is not
performed by required services an OpaqueAction is added to
the Partition that represents the ServicePoint. An exemplary
service component is depicted in Figure 3. The service
component provides one service and requires two services.

D. Discussion

The analysis of the existing work shows that each work
focuses mainly on one aspect. Work focusing on design
processes describes the necessary steps within the process.
The concrete derivation of service candidates and final
service designs with a concrete modeling language is not
addressed. Also quality attributes are only considered as
important but it is not obvious how to measure them and how
to use this knowledge to create quality-oriented service
designs.

Other work focuses on exactly these quality attributes
and shows metrics that enable their measurement. But in this
case, it is not obvious how to measure the quality attributes
on a standardized modeling language, such as SoaML. The
textual descriptions have to be interpreted and the formalized
metrics require information that is mostly not part of service
designs. Finally, the quality attributes are not integrated into
an entire design process. Thus, there exist only detailed
descriptions of quality attributes but their usage to create
service designs with certain quality attributes is missing.

Modeling languages for service designs, such as the
UML profile for software services and SoaML, focus on
modeling elements and do not provide any information about
how to use this language within an entire design process.
Only IBM gives some hints about how to derive artifacts
from prior modeled business processes [6, 25, 26]. But how
to use this language to model service designs with certain
quality attributes and how to evaluate a modeled service
design regarding these attributes is not explained.

Our quality-oriented service design approach combines
these different approaches. We use the design processes as
described in existing work and add additional phases for
ensuring certain quality attributes. During these phases, our
approach to evaluate service candidates and services designs
based on SoaML [2] is applied. Afterwards, the service
candidates and service designs are revised in order to
improve chosen quality attributes [1]. Additionally, we add
detailed information about how to derive service candidates
in SoaML from modeled artifacts of the business analysis
phase and how to transfer service candidates into service
designs also based on SoaML. As result, a guideline is
provided that enables the IT architect to comprehensibly
create service designs with certain quality attributes.

III. QUALITY-ORIENTED DESIGN OF SERVICES

The design process of this article enhances design
processes discussed in Section 2 by details about how to
derive service candidates from artifacts of the business
analysis phase and service designs from service candidates.
Furthermore, subsequent phases for ensuring the fulfillment
of quality attributes are added.

«Participant»
ServiceComponent«ServicePoint»

serviceName :
ServiceName

«RequestPoint»
serviceName2 :
ServiceName2

«RequestPoint»
serviceName3 :
ServiceName3+

operation1

: serviceName : serviceName2 : serviceName3

internal operation

operation2

operation3

callbackOperation1

callbackOperation2

Figure 4. Modeling a service component

Existing
Services

Business Analysis

Analysis and
Revision

Service
Candidate

Service
Candidate

Service
Candidate

Service
Candidate

Existing Service

1

2

SpecificationIdentification

Analysis and
Revision

Service Design
Provided

Service Interface

Service Component

Required
Service

Interface

Required
Service

Interface

Business Process
Business
Use Case

Domain Model

Service

Service

Figure 5. Design process

147

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The design process requires a prior analysis of the
business. This means that a domain model, business use
cases and business processes are created. These artifacts are
then transferred into preliminary service candidates as part of
the identification phase. Afterwards, these service candidates
are analyzed in regard to quality attributes. If the current
attributes do not correspond to the preferred values, a
subsequent revision is performed. During the specification
phase, first, the service candidates are transferred into
preliminary service designs. Also in this phase, afterwards,
the service designs are analyzed in regard to quality
attributes and if required revised. As result, service designs
are created that fulfill certain quality attributes. Since the
created artifacts of the business analysis phase constitute the
basis for the design process, they are explained in the
following.

A. Scenario

To illustrate the artifacts of the business analysis and the
subsequent design process, in this article the human-centered
environmental observation domain referring to the network-
enabled surveillance and tracking system as introduced by
the Fraunhofer Institute of Optronics, System Technologies
and Image Exploitation [33, 34] is treated. In this context the
KITCampusGuide, a project at the Karlsruhe Institute of
Technology (KIT) to provide a guide for students, lecturers
and guest, is chosen as scenario. A person can ask for a
person or a room on the campus of the university and the
KITCampusGuide calculates the route. The following figure
illustrates the scenario in action.

The goal is, to create service designs for this scenario that

fulfill the quality attributes of an unique categorization, loose
coupling, autonomy and discoverability as introduced in [2].

B. Business Analysis

During the business analysis phase, the following threw
artifacts are created: The domain model captures all relevant
concepts of the domain and their relations. It determines the
relevant terms when designing the business processes and
also unifies the terminology of the services. The business use

cases describe the external visible business services that are
expected to be supported by IT. The business processes
describe the processes behind the business use cases, thus
describes their implementation.

For modeling the domain, an ontology can be used. In
this case, the ontology is created using the Web Ontology
Language (OWL) [30] by means of Protégé [37]. As
illustration, we choose a notation similar to the OntoGraf in
Protégé. For each concept a rectangle is depicted and the
relations between these concepts are represented by lines
between them. If a concept or relation is available in various
languages, this information can be added as labels. Each
label can have a suffix specifying the language of the label,
such as “@de” for German. An excerpt of the domain model
for the human-centered environmental observation is
depicted in Figure 7.

The business use cases can be seen as entry points for the

service design phase. They describe the externally visible
business services [4] that are supposed to be supported by IT
[6]. As notation, the UML profile for business services can
be applied [20, 27, 28]. The use case describes that a student
requests a route from his current position to a room or an
employee. Additionally to the route, the map that covers the
route is returned.

Mobile Phone

Michael GebhartTarget Go!

Figure 6. KITCampusGuide in action

Target
(Ziel@de)

Coordinates
(Koordinaten@de)

Map Excerpt
(Kartenausschnitt@de)

Map
(Karte@de)

Route with Map
(Route inklusive Karte@de)

Route
(Route@en)

Person
(Person@de)

Employee
(Mitarbeiter@de)

Student
(Studierender@de)

Room
(Raum@de)

Position
(Position@de)

Current Position
(Aktuelle Position@de)

has
(hat@de)

begins top
left at

(beginnt oben
links bei@de)

consists of
(besteht aus@de)

consists of
(besteht aus@de)

has
(hat@de)

has
(hat@de)

refers to
(bezieht sich auf@de)

ends bottom
right at

(endet unten
rechts bei@de)

subclass

Figure 7. Excerpt of the domain model

Get Route
with Map

Student

Figure 8. Considered business use case

148

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since each business use case or business service is realized
by a business process [4, 6], the underlying business process
has to be modeled. For this purpose the business process
model and notation (BPMN) [29] can be used. The business
process that realizes the considered business use case is
depicted in Figure 9.

C. Service Design

The service design phase starts with the identification of
service candidates. According to Figure 5, the identification
includes two steps: First, preliminary service candidates are
derived from artifacts of the business analysis phase.
Afterwards, these service candidates are analyzed regarding
quality attributes and if necessary they are revised in order to
improve the quality attributes. To derive the service
candidates, the business processes are considered. For our
scenario the business process as shown in Figure 9 is used to
derive service candidates.

For each pool representing an organizational unit a new

service candidate is created and for each message flow
between the pools, an operation candidate is added. Since a
service candidate represents a group of abstract capabilities,
the Capability element of SoaML corresponds with the
understanding of service candidates and thus can be used for
modeling service candidates and their dependencies.
Figure 10 shows the derived service candidates for our
scenario.

To evaluate these service candidates regarding a unique
categorization, loose coupling, autonomy and
discoverability, the evaluable quality indicators as introduced
in [2] are used and extended. For service candidates only a
subset of the quality indicators is evaluable. The following
table shows the quality indicators for each service candidate.
A “+” represents that the quality indicator is optimal and a
“-”describes that there is need for improvement. If a quality
indicator is not evaluable, a “0” is set.

TABLE I. EVALUATION OF SERVICE CANDIDATES

Quality Indicator SA PA FM ESP

Unique Categorization

Division of Business-Related and
Technical Functionality

+ + + +

Division of Agnostic and non-Agnostic
Functionality

+ + - +

Data Superiority 0 + + +

Usage of Common Business Entities + + - -

Loose Coupling

Compensation 0 0 0 0

Autonomy

Dependencies - + + +

Overlapping Functionality + + + +

S
tu

d
en

t
S

tu
d

en
t

A
d

m
in

is
tr

a
tio

n

Personnel Administration

Facility Management

External Service Provider

Enter Target
Get Route
with Map

Show Route
with Map

Get Route
with Map

Is Target Room
or Employee?

Get
Employee’s

Room

Get
Coordinates of

the Room

Employee

Room Determine
Person’s

Current Position

Determine Route between
Current Position and

Coordinates of the Room

Determine
Map Excerpt

Get Map
Merge Map
and Route

Return Route
with Map

Employee Room

Target Route with Map

Room Coordinates

Person Position

Current Position and Coordinates of the Room Route Map Excerpt Map

Figure 9. Business process to get a route with a map

«Capability»
Student Administration

+ Get Route with Map()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

«Capability»
External Service Provider

+ Determine Route between Current
Position and Coordinates of the Room()

+ Get Map()

«use» «use»

«use»

Figure 10. Derived service candidates

149

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Since the service candidates only provide business-
related functionality, the quality indicator to divide business-
related and technical functionality is optimal for all service
candidates. The division of agnostic and non-agnostic
functionality can be improved for the Facility Management
service candidate. Whilst the functionality to get coordinates
of a room is very agnostic functionality, the determination of
person’s current position is very process specific and will not
be used in many further scenarios. Since all service
candidates are explicitly responsible for the management of
used business entities, they fulfill the requirement for data
superiority. Since the Student Administration does not
manage any business entity, the data superiority is not
evaluable for this service candidate. The operations of the
Facility Management and of the External Service Provider
do not use common business entities. The former uses the
business entities room and person and both business entities
can exist for their own. In case of the External Service
Provider also different and independent business entities are
used by the operations. Since there are no state-changing
operations performed by any service candidate, there is no
compensating functionality required. The Student
Administration depends on other service candidates, thus the
dependency quality indicator is not optimal. Since every
service candidate is explicitly responsible for a functional
scope, there is no functional overlap.

In a next step, the IT architect has to revise the service
candidates, in order to improve their quality attributes. For
that purpose, in a first step, design flaws in form of weak
points have to be identified. They represent parts of the
service candidate model that are responsible for a specific
non-fulfilled quality attribute. Since each quality indicator
refers to one main artifact within service candidates, this
information can be used to identify the weak points. The
following table lists the quality indicators and the model
elements that represent the responsible part and thus the
weak point.

TABLE II. WEAK POINTS IN SERVICE CANDIDATES

Quality Indicator Weak Point

Division of
Business-Related
and Technical
Functionality

If at least the half of the operation candidates
provide business-related functionality, then the
operation candidates that provide technical
functionality represent the weak point, else the
operation candidates that provide business-
related functionality.

Division of Agnostic
and non-Agnostic
Functionality

If at least the half of the operation candidates
provide agnostic-related functionality, then the
operation candidates that provide non-agnostic
functionality represent the weak point, else the
operation candidates that provide agnostic
functionality.

Data Superiority

The operation candidates of other service
candidates that manage business entities that are
also managed by own operations represent the
weak point.

Usage of Common
Business Entities

First, the biggest set of used and depending
business entities is determined. The operation
candidates that use business entitites that are
not part of this set represent the weak point.

Compensation

The operation candidates that provide state-
changing functionality and do not have a
compensating operation candidate represent the
weak point.

Dependencies
The operation candidates that require other
service candidates represent the weak point.

Overlapping
Functionality

The operation candidates with overlapping
functionality to operation candidates of other
service candidates represent the weak point.

The table above helps the IT architect to analyze the

derived service candidates and to identify weak points that
should be revised. Thus, for the Facility Management
service candidate the operation candidate for determining
person’s current position represents a weak point, thus a
design flaw, as shown in Figure 11.

In a next step, the IT architect has to decide, how to

revise this service candidate in order to fix the weak point.
To support his decision, possible design decisions are
analyzed and associated with the prior identified weak point.
The quality indicators base on elements of service candidates
or service designs that can represent weak points. Design
decisions on the other hand influence these elements. This
enables the association of design decisions with quality
indicators. This association can be used to identify design
decisions that affect certain quality indicators and can such
be considered in order to improve weak points. The
following figure shows the approach.

Possible design decisions can be taken from existing

work that describes how to design services. Afterwards,
these design decisions have to be adapted for a revision of
service designs. For example, Erl describes in [3] that it is
necessary to decide the operation candidates within a service
candidate. Thus, a revision design decision is whether to
move an operation candidate into another service candidate
or not. For service candidates there are no further design
decisions. During the specification phase there will be some
more. The design decision whether to move an operation
candidate can be further refined. The decision tree for our
scenario including the various concrete action alternatives
(AA) is shown below.

«Capability»
Facility Management

+ Get Coordinates of the Room()
+ Determine Person‘s Current Position()

Operation Candidate
Represents Design Flaw

Figure 11. Identified design flaw

Weak Point

Element of
Service Candidate or

Service Design

Quality IndicatorDesign Decision

Influences Bases on

12

3

Figure 12. Approach for design decision identification

150

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

It is important to notice that only possible concrete action

alternatives can be considered that result in valid service
designs. This means that for example the deletion of an
operation candidate is not considered for this decision results
in service designs that do not fulfill the business
requirements. This restriction enables the convincing
evaluation of different action alternatives.

Afterwards, each of the different action alternatives can
be evaluated with regard to the quality attributes. This means
that the service candidates are evaluated for each action
alternatives. The following table shows this evaluation for
each service candidate and the action alternatives two to five.
For each quality indicator and action alternative, it is
displayed whether it improves (), gets worse () or does
not change () compared to the action alternative one that
has been evaluated in Table 1. For the optional service
candidate Facility Management 2, the new value is shown
for there is no existing value that could be compared.

TABLE III. EVALUATION OF ACTION ALTERNATIVES

Quality Indicator SA PA FM FM2 ESP

 Division of Business-Related
 and Technical Functionality

AA2    + 

AA3    n.a. 

AA4    n.a. 

AA5    n.a. 

 Division of Agnostic and non-
 Agnostic Functionality

AA2    + 

AA3    n.a. 

AA4    n.a. 

AA5    n.a. 

 Data Superiority

AA2 0   0 

AA3 0   n.a. 

AA4 0   n.a. 

AA5 0   n.a. 

 Usage of Common Business
 Entities

AA2    + 

AA3    n.a. 

AA4    n.a. 

AA5    n.a. 

 Compensation

AA2 0 0 0 0 0

AA3 0 0 0 n.a. 0

AA4 0 0 0 n.a. 0

AA5 0 0 0 n.a. 0

 Dependencies

AA2    + 

AA3    n.a. 

AA4    n.a. 

AA5    n.a. 

 Overlapping Functionality

AA2 0 0 0 0 0

AA3 0 0 0 n.a. 0

AA4 0 0 0 n.a. 0

AA5 0 0 0 n.a. 0

According to this table, action alternative two and four

are the most improving ones. Now, the IT architect has to
decide how to weight the quality indicators. In our case we
decide that dependencies are less harmful. Thus, the IT
architect chooses action alternative two. For the other weak
points this procedure is repeated adequately. As result,
service candidates are created that fulfill the four quality
attributes best. The service candidates are displayed in the
following figure.

Subsequently to the identification phase, the specification

follows. During this phase, first, preliminary service designs
are derived and afterwards, they are revised if necessary. To
derive the service designs, each service candidate is
transferred into one ServiceInterface with one realized
interface containing the provided operations and one
interface containing required operations for receiving
callbacks. The operation candidates are directly added as
operations within the realized interface and if there is an end
event within the corresponding business process that calls an
operation, this operation call is added within the interface
containing the required operations. Figure 15 shows the
derived service interface for the service candidate Student
Administration.

Move Operation
Candidate
„Determine Person‘s
Current Position“?

Do not Move

Move into new
ServiceCandidate
„Facility Management 2“

Move into Existing
Service Candidate

Move into
„Student
Administration“

Move into
„Personnel
Administration“

Move into
„External
Service Provider“

AA1

AA2

AA3

AA4

AA5

Figure 13. Action alternatives

«Capability»
Student Administration

+ Get Route with Map()

«Capability»
Personnel Administration

+ Get Employee‘s Room()

«Capability»
Facility Management

+ Get Coordinates of the Room()

«Capability»
External Service Provider

+ Determine Route between Current
Position and Coordinates of the Room()

«use» «use»

«use»

«Capability»
External Service Provider 2

+ Get Map()

«Capability»
Facility Management 2

+ Determine Person‘s Current Position()

«use»

«use»

Figure 14. Revised service candidates

151

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

For each operation adequate message types are created. They
are named according to the operation with the suffix Request
or Response. For the concepts exchanged as messages within
the business process data types are generated and assigned to
the respective message type. The interaction protocol of the
service interface can be derived by the exchanged messages
of the business process. All these artifacts are kept within a
package named after the service interface. During this step
already some information, such as potential naming
conventions, can be considered. For example white spaces in
the names of the service interface and the operations can be
removed if this is a convention. Another convention could be
the translation into another language. For example, if the
business has been analyzed in German and it is convention to
use English for service design artifacts, the artifacts can be
translated according to the domain model and its labels
containing the names of the concepts in various languages.

Additionally to the service interface, a service component
is generated. The service component contains one
ServicePoint typed by the derived ServiceInterface. If the
service candidate where the service component was derived
from requires other service candidates, appropriate
RequestPoints are added. The following figure shows the
service component for the Student Administration service
candidate. The service component provides one service and
thus includes one ServicePoint. To realize its functionality, ir
requires five other services that are added as RequestPoints.
Both the ServicePoint and the RequestPoints are named and
typed by the ServiceInterface that describes the service. The
internal behavior of the service component equals the
business process, thus it is not further depicted.

This systematic derivation is performed for all service

candidates. Afterwards, the analysis and revision phase
follows, similar to analysis and revision within the
identification phase. During the specification phase, further
quality indicators can be considered that were not of interest
during the identification phase. The quality indicators are
again taken from our previous work [2]. The service design
for the Student Administration is evaluated in the following
table.

TABLE IV. EVALUATION OF SERVICE DESIGNS

Quality Indicator SA PA FM FM2 ESP ESP2

Unique Categorization

Division of Business-
Related and Technical
Functionality

+ + + + + +

Division of Agnostic and
non-Agnostic
Functionality

+ + + + + +

Data Superiority 0 + + 0 + +

Usage of Common
Business Entities

+ + + + + +

Discoverability

Functional Naming of the
Service Interface

+ + + + + +

Functional Naming of the
Roles

+ + + + + +

Functional Naming of the
Operations

+ + + + + +

Functional Naming of the
Parameters

+ + + + + +

Functional Naming of the
Data Types

+ + + + + +

Naming Convention
Compliance regarding the
Service Interface

- - - - - -

Naming Convention
Compliance regarding the
Roles

+ + + + + +

Naming Convention
Compliance regarding the
Operations

- - - - - -

«ServiceInterface»

StudentAdministration

studentAdministrationRequester:
«interface» StudentAdministrationRequester

studentAdministration:
«interface» StudentAdministration

+

StudentAdministration

: studentAdministration : studentAdministrationRequester

GetRouteWithMap

«interface»
StudentAdministration

+ GetRouteWithMap(: GetRouteWithMapRequest) : GetRouteWithMapResponse

«interface»
StudentAdministrationRequester

«use»

«MessageType»

GetRouteWithMapRequest
«dataType»

Target

«MessageType»

GetRouteWithMapResponse
«dataType»

RouteWithMap

Figure 15. Derived service interface

«Participant»
Student

Administration
Component«ServicePoint»

studentAdministration:
StudentAdministration

«RequestPoint»
personnelAdministration:
PersonnelAdministration

«RequestPoint»
facilityManagement:
FacilityManagement

«RequestPoint»
facilityManagement2:
FacilityManagement2

«RequestPoint»
externalServiceProvider:
ExternalServiceProvider

«RequestPoint»
externalServiceProvider2:
ExternalServiceProvider2

Figure 16. Derived service component

152

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Naming Convention
Compliance regarding the
Parameters

+ + + + + +

Naming Convention
Compliance regarding the
Data Types

+ + + + + +

Information Extent + + + + + +

Loose Coupling

Compensation 0 0 0 0 0 0

Asynchronity + + + + + +

Complexity of Common
Data Types

+ + + + + +

Operation Abstraction + + + + + +

Data Type Abstraction + + + + + +

Autonomy

Dependencies - + + + + +

Overlapping Functionality + + + + + +

According to this table, most of the quality indicators are

already optimal due to the fact that the service designs were
derived from already revised service candidates. Since the
artifacts were generated from the service candidates that
came from the business processes, also the naming of the
artifacts already follows functional terms. Also most of the
naming conventions have already been considered during the
transfer of service candidates into service designs. Only the
operations still do not follow our naming conventions. They
should begin with a lowercased letter. This information
could be considered during the derivation of the service
designs too. But we consciously disregarded this convention
in order to illustrate that the naming of the artifacts is an
important aspect for the discoverability and even though
some naming conventions have been already considered
during the derivation of the service designs it should be
reviewed and evaluated afterwards. Another example of
naming conventions that cannot be fully regarded in an
automatic transformation is the language of the artifacts. If
the business has been analyzed in another language, such as
German, the service candidates and the derived service
designs are also in German. If the naming convention for the
design artifacts is English, a translation is necessary. The
domain model can contain several languages, so some
information can already be used for an automatic
transformation. However, mostly there is manual effort
required for possibly not all concepts within the domain
model are described in several languages. The quality
indicators help to remind the IT architect that naming
conventions, such as the correct language, have to be
considered. The naming of the service interfaces is also not
optimal. The reason is that a service interface should be
named after what it is doing and numerations, such External
Service Provider 2, should be avoided. A common naming
convention for services that manage a certain business entity
is to name this service interface after the managed business
entity. For example, if the service manages the business
entity room, a room service should be provided. Since all

service designs contain all necessary information, the
information extent is optimal. The asynchronity is optimal
too, for there are no long-running operations that should be
provided asynchronous. The complexity of common data
types requires that all common data types are simple data
types only. Since for each service design an own package has
been generated, the complex data types are in separated
packages and the service designs do not share any complex
data types. On the one hand this requires a transformation of
data types even if they are named equal, but on the other
hand this supports the loose coupling. Since the operations
hide the implementation and do not show any
implementation details and the data types are only business-
driven and not technical, the abstraction is also optimally
fulfilled. The table shows that due to the systemic derivation
of service designs from already revised and business-driven
service candidates a lot of quality indicators are already
optimally fulfilled. But the sum of quality indicators helps
the IT architect to ensure that he has not forgotten any
important aspect.

To revise the service designs, again the design flaws have
to be identified and afterwards action alternatives have to be
presented. The following table shows the weak points for the
quality indicators considered during the specification of the
service designs. At this, also the weak points that have been
used during the identification phase are presented again,
however they are adapted for the modeling elements within
service designs instead of service candidates.

TABLE V. WEAK POINTS IN SERVICE DESIGNS

Quality Indicator Weak Point

Division of
Business-Related
and Technical
Functionality

If at least the half of the operations provide
business-related functionality, then the
operations within the realized interface of the
service interface that provide technical
functionality represent the weak point, else the
operations that provide business-related
functionality.

Division of Agnostic
and non-Agnostic
Functionality

If at least the half of the operations provide
agnostic-related functionality, then the
operations within the realized interface of the
service interface that provide non-agnostic
functionality represent the weak point, else the
operations that provide agnostic functionality.

Data Superiority

The operations within the realized interface of
other service interfaces that manage business
entities that are also managed by own
operations represent the weak point.

Usage of Common
Business Entities

First, the biggest set of used and depending
business entities is determined. The operations
within the realized interface of the service
interface that use business entitites that are not
part of this set represent the weak point.

Functional Naming
of the Service
Interface

The name attribute of the service interface
represents the weak point.

Functional Naming
of the Roles

The name attribute of the not functionally
named roles represents the weak point.

Functional Naming
of the Operations

The name attribute of the not functionally
named operations represents the weak point.

153

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Functional Naming
of the Parameters

The name attribute of the not functionally
named parameters represents the weak point.

Functional Naming
of the Data Types

The name attribute of the not functionally
named data types represents the weak point.

Naming Convention
Compliance
Regarding the
Service Interface

The name attribute of the service interface
represents the weak point.

Naming Convention
Compliance
Regarding the Roles

The name attribute of the not functionally
named roles represents the weak point.

Naming Convention
Compliance
Regarding the
Operations

The name attribute of the not functionally
named operations represents the weak point.

Naming Convention
Compliance
Regarding the
Parameters

The name attribute of the not functionally
named parameters represents the weak point.

Naming Convention
Compliance
Regarding the Data
Types

The name attribute of the not functionally
named data types represents the weak point.

Information Extent The service interface represents the weak point.

Compensation

Operations within the realized interface of the
service interface that provide state-changing
functionality and do not have a compensating
operation represents the weak point.

Asynchronity

The communication modes of the
CallOperationActions within the interaction
protocol that correspond to operations with
long-running functionality and are not
asynchronous yet represent the weak point.

Complexity of
Common Data
Types

The data types that are complex and commonly
used represent the weak point.

Operation
Abstraction

The operations that are not abstract represent
the weak point.

Data Type
Abstraction

The data types that are not abstract represent the
weak point.

Dependencies
The Operations within the realized interface of
the service interface that require operations of
other services represent the weak point.

Overlapping
Functionality

The Operations within the realized interface of
the service interface with overlapping
functionality to operations of other services
represent the weak point.

According to this table, within our scenario, especially

the name attributes of the different artifacts are marked as
design flaws for they are responsible for the insufficient
naming. In order to remove these weak points, action
alternatives have to be identified in form of design decisions
that are applicable during a revision and enable the
improvement of the derived service designs. For service
designs the following design decisions can be identified.
They are again derived from existing design processes [3, 4,
5, 6, 7] and adapted for a revision of existing service designs.

TABLE VI. DESIGN DECISIONS DURING THE SPECIFICATION PHASE

Design Decision Description

Moving an
Operation

Similar to the design decision during the
identification phase, the IT architect has to
decide whether or not to move an operation
from one interface that is realized by a service
interface into an interface realized by another
service interface.

Renaming a Service
Interface

Especially for influencing the discoverability,
the IT architect can rename a service interface,
i.e. the name attribute is changed. In this case,
concrete action alternatives cannot be identified
for the set of possible renamings is unlimited.

Renaming a Role
Similarly to the decision before, this design
decision influences the name attribute of a role
within a service interface.

Renaming an
Operation

Whilst the naming of operation candidates was
not of interest, the naming of the operations
directly influences the discoverability. This
design decision changes the name attribute of
an operation.

Renaming a
Parameter

This design decision changes the name attribute
of a parameter that is used within an operation.

Renaming a Data
Type

The IT architect has to decide, whether or not to
rename a data type in order to increase the
understanding and thus the discoverability.

Changing the
Communication
Mode of an
Operation

The communication mode of an operation
within an interaction protocol determines,
whether the operation can be called
asynchronously or not. The IT architect can
change this communication mode subsequently.

Changing a Data
Type

The data types represent information that can be
used within parameters of operations. These
data types can be changed.

Changing Parameter
Types of an
Operation

The parameter types of an operation represent
the information that is exchanged between a
service consumer and a service provider when a
certain operation is called. The IT architect can
change this amount and kind of information.

In our scenario, especially the renaming of the operations
and of the service interfaces are identified as action
alternatives for they affect the name attributes of these
artifacts that have been identified as weak points. Finally, the
revised service designs can be created. Additionally, during
the revision, further details of the data types can be added,
such as detailed attributes. The following figure shows the
revised service interface for the student administration and
an excerpt of the used data types. The used KML data type
represents the Keyhole Markup Language (KML) [43] that
has been developed by Google for Google Earth. In the
meanwhile, KML is a wide-spread markup language for
geological data that has been standardized by the Open
Geospatial Consortium (OGC). The other service designs are
analyzed and revised equivalently. Also in these cases,
mostly the names of the artifacts are changed and details are
added to the data types for the service designs were derived
from already revised service candidates.

154

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The resulting service component for the Student
Administration, now named Campus Guide, is shown below.
The ServicePoints and RequestPoints have been renamed
after the newly named service interfaces. The internal
behavior, described as UML Activity, includes one partition
for each ServicePoint and RequestPoint. Each partition that
represents a RequestPoint contains CallOperationActions for
the operations provided by this external service. Also in this
case, the newly named operation names are used. Within the
partition that represents the ServicePoint, two
OpaqueActions are included. They represent internal
behavior that is performed by the service component itself
and is not called by external services. Since the
OpaqueActions were not part of the revision, they are still
named after the activities within the business process. The IT
architect has to decide whether to rename these
OpaqueActions. However, since they were not identified as
weak points, their naming does not influence one of the
considered quality attributes. Thus, a renaming would only
increase the consistency within the design artifacts.

D. Recursive Continuation

Till now, the design process focused on the interaction
between various pools. In a next step, the activities within a
pool are considered in order to increase the flexibility of the
service components and their implementation. This means
that the created service components are further decomposed
into internal service components by recursive continuing the
design process. This enables that functionality within the
service components can be easily provided for external
consumers or can easily be replaced by functionality that is
provided by external service providers.

For this purpose, instead of the invoked activities and
interaction between pools, the activities within one pool are
considered and with these activities the design process is
performed equivalently. First all activities within one pool
are collected within one service candidate that can be named
after the pool with the suffix Internal. Afterwards, the service
candidate is revised according to the quality attributes and
their quality indicators as described above. For our scenario,
the following figure shows the derived and revised internal
service candidates.

«ServiceInterface»

CampusGuide

campusGuideRequester:
«interface» CampusGuideRequester

campusGuide:
«interface» CampusGuide

+

CampusGuide

: campusGuide : campusGuideRequester

getRouteWithMap

«interface»
CampusGuide

+ getRouteWithMap(: GetRouteWithMapRequest) : GetRouteWithMapResponse

«interface»
CampusGuideRequester

«use»

«MessageType»

GetRouteWithMapRequest
«dataType»
Target

«dataType»
Employee

+ id : Integer

«dataType»
Room

+ id : Integer

«dataType»
Person

+ firstName : String
+ lastName : String

«MessageType»

GetRouteWithMapResponse

«dataType»
Route

«dataType»
Map

+ image : base64Binary

«dataType»
Kml

+ content : String

«dataType»
RouteWithMap

+ image : base64Binary

Figure 17. Revised service interface

«Participant»
Campus
Guide

Component«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination:
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map:
Map

+

: campus
Guide

: employee

getRoom

getRouteWithMap

: room

get
Coordinates

: position
Determination

determine
Position

: route
Determination

determine
Route

: map

Determine
Map Excerpt

get
Map

Merge Map
and Route

Figure 18. Revised service component

155

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Afterwards, for each internal service candidate a service

design is created and revised. The resulting service
components are assigned to the superior service component.
Since within a business process internal and external
functionality is composed, a composition component is
added to the superior service component. Within SoaML
these internal service components are connected using the
ServiceChannel element. A ServiceChannel can either be a
delegation of an external ServicePoint to an internal
ServicePoint respectively an internal RequestPoint to an
external RequestPoint, or an assembly of two internal service
components by connecting one ServicePoint with one
RequestPoint. The revised service component for the Student
Administration with its internal service component is
depicted in Figure 20. Since there is no further
decomposition necessary, the design process ends with this
recursive continuation. As result, service designs are created
that support the business requirements and fulfill certain
quality attributes.

IV. CONCLUSION AND OUTLOOK

In this article, we presented an approach for a quality-
oriented design of services. The approach enhances existing
design processes with a detailed description about how to
transfer artifacts of the business analysis phase into service
candidates and how to transfer these service candidates into
service designs. Additionally, an iterative analysis and
revision phase ensures the fulfillment of certain quality
attributes. Due to the subsequent analysis and revision, our
approach can be used in combination with other design
processes and allows also the revision of already existing
service designs. Due to the subsequent recursive continuation
of the design process, one of the frequent questions when to
use pools and when to use lanes when modeling business
processes with BPMN is also solved. The recursive
continuation results in the same service designs regardless of
whether pools or lanes have been used. The service designs
support the business requirements and fulfill a desired set of
quality attributes.

The detailed description of transformations of artifacts
enables the IT architect to comprehensibly derive service
designs from prior created artifacts of the business analysis.
Additionally, instead of only naming important quality
attributes, the design process also helps to ensure their
fulfillment. The usage of SoaML as language to model
service candidates and service designs enables the
integration of our approach into existing tool chains. SoaML
represents an emerging standard for modeling service-
oriented architectures. Its availability as XMI [42] enables
the usage in any UML-capable development tools, although
some vendors already provide built-in SoaML support.

To illustrate our approach, services of a service-oriented
campus guide system as it is developed at the Karlsruhe
Institute of Technology (KIT), the KITCampusGuide, have
been designed. The services for this scenario could be
derived comprehensibly and fulfill verifiably the quality
attributes of a unique categorization, loose coupling,
discoverability and autonomy. The system has its origin in
the Network Enabled Surveillance and Tracking (NEST)
system, developed at the Fraunhofer Institute of Optronics,
System Technologies and Image Exploitation [21, 22].
Currently, the approach is also applied for the domain
campus management in order to create a catalog of services
for universities and their administrative processes. These
services follow national and international specifications that
came up with the Bologna Process [31]. Additionally, the
approach is applied at the Personalized Environmental
Service Configuration and Delivery Orchestration
(PESCaDO) project [35, 36], a project co-funded by the
European Commission, in order to design the required
services with verifiably fulfilled quality attributes.

In parallel to this article, we work on a formalization of
the quality attributes and their quality indicators. Our goal is
to improve our guidelines for IT architects so that the quality
indicators can be measured exactly, either manually or
partially even automatically. The automatically evaluable
quality indicators are then formalized using the Object
Constraint Language (OCL) [39] in order to enable

«Capability»
Student Administration Internal

+ Determine Map Excerpt()
+ Merge Map and Route()

«Capability»
Student Administration Internal

+ Determine Map Excerpt()

«Capability»
Student Administration Internal 2

+ Merge Map and Route()
Figure 19. Internal service candidates

«Participant»
CampusGuideComponent

«ServicePoint»
campusGuide:
CampusGuide

«RequestPoint»
employee:
Employee

«RequestPoint»
room:
Room

«RequestPoint»
positionDetermination :
PositionDetermination

«RequestPoint»
routeDetermination:
RouteDetermination

«RequestPoint»
map :
Map

medc:
«Participant» MapExcerpt

Determination
Component

mrmc:
«Participant» MapRoute

MergerComponent

cgcc:
«Participant»

CampusGuide
Composition
Component

Figure 20. Internal service candidates

156

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

integration into existing development tools and thus realize a
tool support for the quality-oriented design of services.
Finally, we work on derivation rules to transfer design
attributes into implementation artifacts [21] using
technologies, such as the Service Component Architecture
(SCA) [40] and the Business Process Execution Language
(BPEL) [41]. While in both cases, already a lot of good work
has been published, verification and if necessary an
adaptation for SoaML and the semantic of service designs is
required. This enables the integration of the quality-oriented
design process into an entire development process.

REFERENCES
[1] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service

design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[2] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[3] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[4] G. Engels, A. Hess, B. Humm, O. Juwig, M. Lohmann, J.-P. Richter,
M. Voß, and J. Willkomm, Quasar Enteprise, dpunkt.verlag, 2008.
ISBN 978-3-89864-506-5.

[5] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: January 04, 2011]

[6] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[7] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: January 04, 2011]

[8] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[9] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[10] R. Reussner and W. Hasselbring, Handbuch der Software-
Architektur, dpunkt.verlag, 2006. ISBN 978-3898643726.

[11] N. Josuttis, SOA in der Praxis – System-Design für verteilte
Geschäftsprozesse, dpunkt.verlag, 2008. ISBN 978-3898644761.

[12] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Die soa-service-kategorienmatrix“, SOA-Spezial,
Software & Support Verlag, 2009.

[13] B. Maier, H. Normann, B. Trops, C. Utschig-Utschig, and T.
Winterberg, „Was macht einen guten public service aus?“, SOA-
Spezial, Software & Support Verlag, 2009.

[14] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[15] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[16] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[17] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[18] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0 Beta 1, 2009.

[19] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

[20] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[21] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[22] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[23] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[24] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[25] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: January 04, 2011]

[26] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: January 04, 2011]

[27] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: January 04, 2011]

[28] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: January 04, 2011]

[29] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[30] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[31] European Commission, “The bologna process - towards the european
higher education area”, http://ec.europa.eu/education/higher-
education/doc1290_en.htm, 2010. [accessed: January 04, 2011]

[32] M. Gebhart, J. Moßgraber, T. Usländer, and S. Abeck, „SoaML-
basierter entwurf eines dienstorientierten beobachtungssystems“, GI
Informatik 2010, Leipzig, Germany, October 2010, pp. 360-367.

[33] A. Bauer, S. Eckel, T. Emter, A. Laubenheimer, E. Monari, J.
Moßgraber, and F. Reinert, “N.E.S.T. – network enabled surveillance
and tracking”, Future Security 3rd Security Research Conference
Karlsruhe, 2008.

[34] J. Moßgraber, F. Reinert, and H. Vagts, “An architecture for a task-
oriented surveillance system”, 2009.

[35] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[36] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[37] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: January 04, 2011]

[38] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[39] OMG, “Object constraint language (OCL)”, Version 2.2, 2010.
[40] Open SOA (OSOA), “Service component architecture (SCA), sca

assembly model V1.00”, http://osoa.org/download/attachments/35/
SCA_AssemblyModel_V100.pdf, 2009. [accessed: January 04, 2011]

[41] OASIS, “Web services business process execution language
(WSBPEL)”, Version 2.0, 2007.

[42] OMG, “XML metadata interchange (XMI) specification”, Version
2.0, 2003.

[43] OGC, “Keyhole markup language (KML)”,
http://www.opengeospatial.org/standards/kml/, Version 2.2, 2008.
[accessed: January 04, 2011]

157

International Journal on Advances in Software, vol 4 no 1 & 2, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

