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Abstract—Dynamic performance stubs provide a framework
for the simulation of the performance behavior of software
modules and functions. Hence, they can be used as an exten-
sion to software performance engineering methodologies. The
methodology of dynamic performance stubs can be used for a
gain oriented performance improvement. It is also possible to
identify “hidden” bottlenecks and to prioritize optimization
possibilities. Nowadays, the processing power of CPUs is
mainly increased by adding more cores to the architecture.
To have benefits from this, new software is mostly designed
for parallel processing, especially, in large software projects.
As software performance optimizations can be difficult in
these environments, new methodologies have to be defined.
This paper evaluates a possibility to simulate the functional
behavior of software algorithms by the use of the simulated
software functionality. These can be used by the dynamic
performance stub framework, e.g., to build a CPU stub, to
replace the algorithm. Thus, it describes a methodology as well
as an implementation and evaluates both in an industrial case
study. Moreover, it presents an extension to the CPU stubs by
applying these stubs to simulate multi-threaded applications.
The extension is evaluated by a case study as well. We
show show that the functionality of software algorithms can
be replaced by software simulation functions. This stubbing
approach can be used to create dynamic performance stubs,
such as CPU stubs. Additionally, we show that the concept of
CPU stubs can be applied to multi-threaded applications.

Keywords-software performance optimization; CPU bound sys-
tems; simulated software functionality; stubs; multi-core; multi-
threaded

I. INTRODUCTION

CPU stubs [1], which are a subset of dynamic perfor-
mance stubs (DPS) have been introduced in [2]. They can
be used for “hidden bottleneck” detection, and a cost-benefit
analysis can be performed by demonstrating the level of
optimization potential. This leads to more gain-oriented
performance optimizations. These benefits are not addressed
in other software performance engineering methods (see [3]–
[7]). DPS extend these methods by simulating various levels
of system load. Hence, the problem of a missing cost-benefit
analysis can be bypassed. The DPS can be used within the
software development cycle of large software systems, e.g.,
in telecommunication systems.

Many system architectures achieve higher throughput by
using multiple cores. Hence, the application has to be able to
do parallel processing to fully utilize the available capacity
of the system. As multi-threaded and parallel processes
are difficult to optimize, new methodologies in the area of
software performance engineering have to be defined. The
methodology of DPS can be used to optimize CPU bound
processes by using CPU stubs.

A. Dynamic Performance Stubs

The idea behind DPS is a combination of performance
improvements [3]–[7] in already existing modules or func-
tions and the stubbing mechanism from software testing [8],
[9]. The performance behavior of the component under study
(CUS) will be determined and replaced by a DPS. This stub
can be used to simulate different performance behaviors,
which can be parameterized. Typically, the CUS is the part
of the software under test (SUT) that has been identified as
a potential performance bottleneck. The optimization expert
can use DPS to analyze the performance of the SUT. This
procedure relates to stubbing a single (“local”) software unit,
and a local stub has to be built. The DPS can also be used
to change the behavior of the complete system. A software
module has to be created, which interacts “globally” in the
sense of influencing the whole system instead of a single
software component. This stub will be called a “global stub”.
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Figure 1. Interactions of “Dynamic Performance Stubs”
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Figure 1 sketches the design and the interaction between
a real system on the left and the DPS on the right side.
The unfilled arrowhead indicates a replacement. Filled ar-
rowheads describe the extension of a unit by this feature
and the dashed block provides an additional functionality to
the DPS and will not really replace a software unit. In the
context of DPS, the system under test (SUT) is a software
module or function, which includes a software performance
bottleneck.

The framework of the DPS consists of the following parts,
which is presented in Figure 1:

• Simulated Software Functionality
The simulated software functionality (SSF) is used
to simulate the functional behavior of a CUS or a
software performance bottleneck. This can be achieved
by generating valid output values for dedicated in-
put values without executing the original functionality.
Another possibility is to simulate different states of
objects inside of the CUS. Hence, the application can
be executed without the original functionality as it is
realized by the SSF.

• Performance Simulation Functions
Performance simulation functions (PSF) provide the
ability to simulate the performance behavior of the
replaced CUS. They are divided into four categories,
as also in [3], [10]:

– CPU
– Memory
– I/O
– Network

As an example, the CPU PSF can be used to simulate
the processing behavior of the application and hence,
the CPU utilization of the process.

• Performance Measurement Functions (PMF)
To provide a basic set of evaluation possibilities the
performance measurement functions can be used. They
are mainly glue/wrapper functions for the measurement
functions already provided by the system.

• Calibration Functions (CF)
In order to provide trustworthy results, the stubs have
to be adjusted to a dedicated system. This can be done
using the calibration functions.

For more detailed information on DPS, the reader is
referred to [2].

CPU Stubs: CPU stubs, as a special subset of DPS, can
be used to handle CPU bound processes. These processes are
highly utilizing the CPU so that the CPU is the bottleneck.
Therefore, a general approach to parameterize the runtime
behavior and CPU usage has been achieved and a possible
implementation has been presented in [11]. Additionally, an
extension to multi-core and parallel processing applications
has been done in [1].

Memory Stubs: Memory stubs are separated into cache
memory- and main memory stubs.

• Cache Memory Stubs can be used to simulate the
data cache access behavior of software modules or
functions to improve suspected memory bottlenecks.
The algorithm, a validation as well as an evaluation by
means of a proof of concept for cache memory stubs
have been published in [12].

• Main memory stubs simulate the stack and heap be-
havior of software modules or functions. They are an
extension of the DPS framework to simulate the main
memory behavior to achieve a cost-benefit oriented
optimization. They are defined in [13].

B. Content of the Paper

In Section II, the problem of simulating the results of
software algorithms is addressed, by describing a novel
approach to the simulation of software functionality using
stubs. Starting with evaluating requirements concerning the
simulation functions, a methodology is presented. Addition-
ally, the concept of a possible implementation is depicted.
Both, the methodology as well as the implementation are
evaluated in an industrial case study to optimize a network
component of a long term evolution (LTE) telecommunica-
tion system. This section extents and completes the approach
of CPU stubs as published in [1].

In Section III, the paper shows an introduction to the CPU
stubs as presented in [1]. Here, the CPU PSF are presented
and a methodology for using CPU stubs to optimize CPU
bound systems in multi-core or parallel processing environ-
ments is given. The introduction as well as the methodology
depicts the concept of CPU stubs and have been published
in [1].

In Section IV, the CPU stubs are extended to simulate
the performance behavior of multi-threaded applications.
This extension is realized by defining objectives and by
presenting a novel approach for multi-threaded CPU PSF.
Additionally, the approach is validated by a case study.

Finally, related work for the DPS and for the SSF is
provided in Section V.

II. SIMULATED SOFTWARE FUNCTIONALITY

The SSF allows the replacement of an existing software
module or function by a stub, in order to do software per-
formance improvement studies. In the context of this paper,
the SSF is used to replace a software bottleneck (CUS)
with a DPS being able to simulate different performance
scenarios to estimate the benefit of potential performance
optimizations.

In the following, the requirements to the SSF and the
methodology is presented. A implementation of the SSF is
given. This section is concluded by an industrial case study.
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A. Requirements

In order to be able to replace a bottleneck with a DPS,
it is necessary to recreate the functionality of the software
module or function. Hence, the following requirements can
be defined and subdivided into: requirements on the system,
which have to be satisfied by the SUT and requirements on
the SSF, i.e., how the SSF has to behave:

1) Basic Requirements on the system:
a) Deterministic CUS Behavior

The software module or function has to have a
deterministic functional behavior. Any execution
of the function with the same input values re-
turns the same output values, e.g., deterministic
output values depending on the input values. The
performance behavior of the function has to be
deterministic, too.

b) Reproducible test execution
The used test environment and test scenarios
have to deliver reproducible results. This is a
common requirement to any test environment.

c) Automated test case execution
It is preferable if the test cases can be executed
automatically. This property significantly reduces
the effort for repeated executions of the tests.
Additionally, reproducible test scenarios can also
be used for performance measurements.

2) Requirements on the SSF:
a) Automatic generation of the serialization speci-

fication
The serialization specification is a description,
which provides the procedural method to seri-
alize the data types used in the SSF library.
This serialization specification shall be generated
automatically, because it removes additional ef-
fort for the user of the SSF and decreases the
amount of possible errors, e.g., writing a wrong
serialization specification. Hence, a serialization
functionality shall be provided as well as an
almost automatically serialization specification
shall be generated. These can be used to auto-
matically store the C++ objects.

b) Record and restore C++ data structures
It has to be possible to record and restore C++
data structures. Especially, it has to be possible
to record and restore classes including non-public
members, structures and lists. Moreover, the SSF
has to be able to work with “NULL”-pointers,
e.g., the “NULL”-pointers shall be stored in the
trace file and restored during the stubs execution.

c) Simulate the functional behavior
The SSF shall be able to restore the functionality
of the CUS. Moreover, it has to be able to restore
all recorded C++ data structures into the memory

of the SUT. Additionally, it shall be able to create
objects if they are not available in the system.

d) Simulate the functional behavior with appropri-
ate performance
The SSF has to be able to restore the functional-
ity in negligible time, which is at least faster than
the execution of the original software function.
This is necessary to reduce the runtime overhead
during the execution. Hence, the performance
parameters can be easily adjusted using the PSF.
This requirement mainly applies if the SSF is
used in the context of DPS performance mea-
surements. In this case, the requirement has to
be fulfilled.

Especially, the requirements to the system (Requirements
1a and 1b) as well as the Requirements 2b and 2c are
important. Not reaching them renders the SSF unusable.
Requirement 2d is mainly important in the context of DPS
as this requirement enables the performance adjustments,
which are necessary for the DPS’ approaches. This re-
quirement may not be that important if the SSF approach
is used in different scenarios. The Requirement 2a can
only be fulfilled partly as stated in Section II-C1. The
Requirement 1c is only suggested as it can significantly
remove the overhead for applying the DPS framework in
the performance evaluation study.

Moreover, there are some requirements to the C++ com-
piler [14]. The compiler shall be deterministic, e.g., the
compiler has to produce an identical memory layout of
two isomorphic classes. Whereas, this can not be strictly
guaranteed, it is very unlikely that a non-deterministic C++
compiler is standard-compliant [14]. The “g++” of the gnu
compiler collection (GCC) [15], which is used for the
evaluation in this paper, fulfills the requirements.

In the next subsection, the methodology for using the SSF
is presented.

B. Methodology

The DPS methodology, identifies potential performance
bottlenecks that are replaced by stubs to facilitate gain-
oriented performance improvements. The functionality of the
potential bottleneck (CUS) is recorded using the libSSF (see
Section II-C). The system’s behavior with respect to the CUS
is analyzed by replaying the functionality using the SSF with
varying performance measures.

An overview is presented in Figure 2. It describes the
overall process to replace the bottleneck by a DPS. There are
three different parts, which have to be done. First, a header
file is generated, which includes the serialization specifica-
tion. Second, the functional behavior of the bottleneck has
to be recorded and stored in a trace file. Finally, the trace
file can be used to simulate the functional behavior of the
bottleneck. The steps as provided in this methodology are
presented as circles including the step number.
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Figure 2. Overview of the Simulated Software Functionality

The methodology for the SSF approach consists of the
following steps:

1) Identify Serialization Objects:
The SSF is able to store and restore different states
of the traced objects. Thus, it can be used to simulate
the results of several algorithms. In some cases, it is
necessary to use parts of the original functionality to
improve the simulation results. Here, the content of
the object may be stored and restored before and after
executing the original software functions.

2) Create Serialization Description:
In this step, the serialization description of the iden-
tified objects has to be created. This is simply done
using the “GCC-XML” tool set [16].

3) Create Serialization Specification:
The serialization specification is created. It contains
a description to serialize and de-serialize the objects
which will be stubbed. The serialization objects (see
Step 1) and their description (see Step 2) are processed
by the ssfheadgen tool, which is a part of the libSSF
library, to generate a C++ header file that contains the
serialization specification. This specification has been
created automatically for many basic data types, as
explained in Section II-C1, but, can also be easily ex-
tended by the developer to support object serialization.
This header file will be included into the CUS in the
next step.

4) Record the state of the objects:
In this step, the CUS is adjusted to store the results
of the algorithm using the libSSF. Furthermore, the
test cases that utilize the functionality, which will be
stubbed (see Step 1), have to be executed and the state
of the results have to be recorded into a trace file.

5) Create Functional Software Behavior:
The original functionality, which is a part of the CUS,
is replaced by the SSF. This is detailed in Section II-C.

6) Test the instrumented CUS:
As the stub has been created in Step 5, the function-
ality of the stub has to be validated. The instrumented
CUS is validated against the previously recorded be-
havior of the CUS that contained the original function-

ality. As there is the potential of introducing functional
errors during the instrumentation, the instrumented
CUS is re-validated against the previously recorded
execution trace. If the validation passes, the stubs can
be used to do the performance study with the DPS
framework.

This section has shown how a stub can be created using
the SSF. The following section presents a possible imple-
mentation called libSSF.

C. Implementation

The implementation of the SSF is done in a library called
libSSF. The library can be included into any C++ source
code and allows for the storage of the content of C++ data
structures into a binary trace file. Moreover, the libSSF can
also be used to read from the trace file to reconstruct the
C++ data structures. Thus, the functional behavior of the
CUS is also recreated. For this reason, the source code of
the application will be parsed using the “GCC-XML” tool
set [16], which generates an XML description of a C++
program from GCC’s internal representation. Based upon
this serialization description, libSSF generates an internal
representation of the objects that will be stubbed. The
following functionalities are provided by the libSSF. These
are the general steps (see Figure 2):

1) Generate Header File
This file includes the serialization specification.

2) Record Functional Behavior
This functionality will be used to store the results of
the software functionality of the CUS.

3) Restore Functional Behavior
This functionality will be used to simulate the software
functionality of the CUS.

Following, the listed items are described in more detail.
1) Generate Header File (Serialization Specification):

A tool provided by the libSSF, called “ssfheadgen”, parses
the XML description of the “GCC-XML” tool. It extracts
the type information and generates a C++-header file, which
includes the internal representation of the objects that will
be replaced by the SSF.

This header file can be included into the C++ source code
of the CUS and contains the serialization specification of
the objects. Beside for the basic data structures, e.g., basic
data types or fixed size arrays, which have to be serialized
and de-serialized, the developer has to adjust the header file
to his needs. This has to be done manually as it is not
always possible to determine the size of data associated with
a pointer value.

Whenever possible, the header file already contains com-
ments and suggestions to assist the developer in serializing
the object, e.g., for pointers or arrays1. Moreover, the header
file includes the original names, as used in the CUS source

1In these cases a “stop criterion” has to be specified by the developer.
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1t empla te <> void S t u b f a c t o r y : : s e r i a l i z e T y p e ( c l a s s a r r a y c l a s s * s s f S a v e O b j ) {
2void * p r t = s s f S a v e O b j ;
3s t r u c t s s f S a v e a r r a y c l a s s * s s f O b j e c t = ( s s f S a v e a r r a y c l a s s * ) p t r ;
4t h i s−>s e r i a l i z e A r r a y ( s s f O b j e c t−>ac i , numberOfElements ) ;
5}

Listing 1. Example: Serialization of a Fixed Sized Integer Array inside of a C++ class

code, of the replaced objects, so that the developer can reuse
these names for convenience.

Listing 1 shows an example of the serialization of an array
of integers (“ac i”). The array is a private member of a class
(“struct array class”). This snippet is used to deserialize as
well as to serialize the data values of the object.

The “serializeType”-function from Line 1 will be called
indirectly inside of the CUS. The provided parameter spec-
ifies a C++ class which shall be serialized and stored. In
Line 2, a type cast of the object pointer to a void pointer is
done. This is necessary for being able to furthermore cast
the pointer to a “struct”, which reflects the C++ class. In this
case, the private or protected members of the provided class
(“ssfSaveObj”) can be accessed and, hence, stored. This is
done in Line 4, where, the private member, which is a fixed
size array in this example, will be copied into the trace file.

This example shows that private and protected members
can be serialized. Other serialization functions are available
to support the developer.

2) Record Functional Behavior (Binary Format): The
C++-header file, which has been generated by “ssfheadgen”,
is included into the CUS. And, the software tests, which
have been done to identify the serialization objects, have to
be repeated. Now, the information of the objects are stored
in a trace file. This recording of the data structures is done
using the function “saveStateOfParam”, which is included
into the CUS. This function is provided by the libSSF. The
declaration of the function can be seen in Listing 2.

t empla te <c l a s s TYPE> void s a v e S t a t e O f P a r a m (
c o n s t char *name , c o n s t char * type , TYPE
* d a t a V a r ) ;

Listing 2. Stores a Data Structure e.g. class

The following three parameters have to be passed to the
“saveStateOfParam”-function call:

1) “const char *name”: This is the name used to store
the object in the trace file, e.g., “conn”.

2) “const char *type”: This refers to the type and name
of the object to be stored, e.g., “class Connection”.

3) “TYPE *dataVar”: This is a pointer to the data which
will be stored, e.g., the value of the conn variable.

The three given examples in the list above can be inter-
preted as: Store the value of the conn variable, which has an
object type “class Connection” into the trace file using the

name “conn”. The function uses the parameters and stores
the data structure as well as additional information into a
binary trace file. The structure of a trace file entry is given
and described below:

• Test Run
This is an internal reference counter starting from zero.
The “test run” number can be used to summarize
different stored variables into a combined run, e.g., if
the value of a variable has to be stored before and
after some modification within a single execution of
the function.

• Size of Object Name (Byte)
The size of the object name is given in bytes including
a “NULL”-termination character.

• Name of the Object
The name of the object which has been stored. It is
usually the same name as the name of the object within
the original source code and can be used for referencing
the stored data.

• Size of the Object Type Name (Byte)
The size of the object type name is given in bytes
including a “NULL”-termination character.

• Name of the Object Type
The name of the object type, e.g., “class Connection”,
which means the data entry refers to a C++ class named
“Connection”. Here, object type refers to any C++ data
structure and can also be a basic data type such as an
integer.

• Additional Information
The “additional information” (addInfo), which is a field
of 8 bits, is used to determine whether a fully initialized
object has been stored or if a “NULL”-pointer has been
passed. This information is stored in the first bit flag.
The remaining bits of this field are unused. Hence, the
first bit of “additional information” field is set to “0”
if an initialized data structure has been stored. In this
case, the following two additional data fields are stored
in the trace file for this test run:

– Size of the Stored Data (Byte)
This is the size of the serialized data in bytes.

– Stored Data
These are the values of the data structure. The data
have been serialized in advance and are succes-
sively ordered in the trace file.

The information is stored in a binary format for performance
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reasons. A decoded as well as semicolon separated example
trace entry is given in Listing 3.

In this case, an object “conn” of the “class Connection”
type has been stored. The values of the serialized private
members are: “1”, “2”, “1” and “302845744”.

1 ; 5 ; conn ; 17 ; c l a s s C o n n e c t i o n ; 0 ;
14 ; 1 ; 2 ; 1 ; 302845744 ;

Listing 3. Example: Decoded and semicolon separated trace file entry

The libSSF provides an option to generate a trace file
decoder for a dedicated trace file. This has been implemented
to provide human-readable traces to the developer.

3) Restore Functional Behavior (Deserialization): The
recorded values have to be recreated into the memory of the
used C++ data structure. Hence, it is necessary to overwrite
the values already stored in the memory of the object. To
do this, three different cases have to be considered:

1) The object as well as trace data are available.
In this case, the existing attributes of the object have
to be overwritten as the object is already available in
the system.

2) The object does not exist but data are available.
The object has to be created and initialized using the
values of the trace file. Moreover, the pointer to the
object has to be returned to the system. This is possible
as the delivered memory pointer has to be “NULL”. In
this case, no memory is associated with the original
object. As there is no reference available, dangling
pointers can not occur.

3) The object does not exist and no data are available.
This case happens if an initialized object is not nec-
essary, e.g., if the return value of a search algorithm
does not find the item. I.e., the CUS returns a “NULL”
value. In this case, the object pointer passed to the
“loadStateOfParam”-function of the libSSF (see List-
ing 4) has to be “NULL”. Here, no memory will be
allocated.

A fourth case is that an initialized object has been passed
to the libSSF but no data are associated within this test run.
In this case, a “NULL” pointer would have been returned by
the libSSF, which will overwrite the original pointer value of
the object. This is not allowed as it would cause a memory
leak. Additionally, it is not possible to delete the associated
object data as this could lead to a double free error. Hence,
the developer has to care about this particular case, e.g.,
deleting the object and setting its pointer value to “NULL”
before the “restore” is function called.

The restore functionality of the libSSF is implemented by
the “loadStateOfParam”-function call. This function will be
used to replace the software functionality of the CUS. The
declaration of the function is given in Listing 4.

The parameters passed to the libSSF are as follows:

t empla te <c l a s s TYPE> TYPE* l o a d S t a t e O f P a r a m (
s t r i n g da taVar , TYPE * d s t ) ;

Listing 4. Restore Functionality of the libSSF

• “string dataVar”: This is the name of the object, which
will be deserialized. Here, the same name as specified
as the first parameter of Listing 2 is used, e.g., if “conn”
is passed to the “loadStateOfParam”-function, the with
conn associated data will be returned.

• “TYPE *dst”: This is a pointer to an object which
will be overwritten by the values read from the trace
file. Hence, it is implemented as a template any type
of the object can be deserialized and restored by the
libSSF, e.g., the “class Connection” with an instance
name “conn” can be used.

In the case that an object has to be created within the
libSSF, the pointer value of the newly allocated memory
will be returned to the CUS. Here, the original value of the
pointer will be overwritten so that the allocated memory can
be deleted inside of the original software.

The provided methodology and implementation will be
applied to a real world example which is presented in the
following section.

D. Case Study

The DPS framework has been used to optimize several
algorithms of a long term evolution (LTE [17]) telecommu-
nication system.

This section describes the application of the methodol-
ogy and the newly developed SSF within a performance
improvement study. The main contribution of this case study
is to show that the software functionality of the CUS can be
replaced by the SSF. This includes the following steps:

• The serialization specification is generated.
• The software functionality of the CUS can be recorded.
• The software functionality of the CUS can be replaced

by the SSF. In this case, the SUT shall be fully
functional for this particular test scenarios.

Last but not least, the case study provides performance
measurements to validate that the libSSF can be used in the
context of the DPS framework that will be used to evaluate
software performance optimization potentials.

1) Test Environment: The measurements have been done
in a test environment. The used platform is based on an Intel
Xeon CPU, which is an IA-64 architecture and includes OS
and memory.

The application has been built using the available build
system of the company. This uses the “g++” of “GCC”
(Version 3.4.3) for host test environment evaluations. The
“-Os” compiler option has been used, which is basically a
“-O2” but without optimization flags that increases the code
size.
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As the presented measurements have been done in a test
environment, the results can only be used for validation
purposes of the SSF but do not reflect the performance of
the telecommunication system.

The requirements to the software and test environment,
as specified in Section II-A, for using DPS are fully met.
These are, in particular, a deterministic CUS as well as an
automatic and reproducible test case execution environment.

2) Application of the Methodology: The SUT has a “Con-
nectionContainer” class which stores several connections of
the type “class Connection”. The function “get(connID)”
returns the connection specified by the connection identi-
fication (“connID”) which is an object of the “Connection”
class. Moreover, it returns “NULL” if the connection does
not exist in the “ConnectionContainer”. The connection class
has four private members as can be seen in Listing 5.

1 c l a s s C o n n e c t i o n
2 {
3 . . .
4 p r i v a t e :
5 TL3Connec t ionId m c o n n e c t i o n I d ;
6 u16 m st reamId ;
7 TUeContext Id m c o n t e x t I d ;
8 TAaSysComSicad m uecAddress ;
9 . . .

10 }

Listing 5. Excerpt of the Class “Connection”

Step 1: The “get(connID)” function has been identified
as bottleneck and, hence, the “Connection” class has been
chosen for serialization.

Steps 2 & 3: In the next step, the members of the
“Connection” class are serialized using the “GCC-XML”
tool set (Step 2). An example serialization output of the
ssfheadgen (Step 3) is shown in Listing 6.

1 name= ‘m c o n n e c t i o n I d ’ i d = 4096
2 t y p e = 1501
3 −> name= ‘ TL3Connect ionId ’ i d = 1501
4 t y p e = 1532
5 −> name= ‘ u32 ’ i d = 1532
6 t y p e = 73
7 −> name= ‘ u n s i g n e d i n t ’ i d = 73
8 t y p e =

Listing 6. Example of Serialized Class Member

Here, only the first member “m connectionId” is pre-
sented. The “GCC-XML” combined with the ssfheadgen tool
identified the “m connectionId” over four serialization steps
as an unsigned integer.

As of Step 3, the serialization specification is written into
a C++ header file. The first part of the file contains the
serialized object, which is presented in Listing 7. As can be
seen, the “Connection” class, which has been converted into

a data structure, consists of four “private” members, which
are integers.

1s t r u c t s s f S a v e C o n n e c t i o n {
2unsigned i n t m c o n n e c t i o n I d ;
3s h o r t unsigned i n t m streamId ;
4unsigned i n t m c o n t e x t I d ;
5unsigned i n t m uecAddress ;
6} ;

Listing 7. Serialized “Connection” Object

The second part, which is the serialization code, is also
included into the file. An extract is shown in Listing 8 for
this case study.

1t empla te <> void S t u b f a c t o r y : : s e r i a l i z e T y p e (
c l a s s C o n n e c t i o n * s s f S a v e O b j ) {

2void * p t r = s s f S a v e O b j ;
3s t r u c t s s f S a v e C o n n e c t i o n * s s f O b j e c t = (

s t r u c t s s f S a v e C o n n e c t i o n * ) p t r ;
4t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>

m c o n n e c t i o n I d ) ;
5t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m streamId ) ;
6t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m c o n t e x t I d )

;
7t h i s−>s e r i a l i z e T y p e (& s s f O b j e c t−>m uecAddress

) ;
8}

Listing 8. Serialization Specification of the “Connection” Object

Here, the “serializeType”-function in Line 1 is able to
serialize a object of the “Connection” class. It calls internally
several different “serialize”-functions (Lines 4 - 7), which
overload the function from Line 1. The “serialize”-functions
from Lines 4 - 7 call internally a “serializeAtom”-function,
which is able to store and restore basic data types. The values
of the variables are stored in their associated members of the
data structure (see Listing 7). The “type casts” in Lines 2
and 3 are necessary to access the private members of the
“Connection” class (see Section II-C1).

Step 4: Now as the setup has been finished, the
measurements have to be repeated to store the software
functionality of the CUS. The chosen test case is a functional
test case which evaluates different use case scenarios. We
only studied a small subset of the test case for the libSSF.
In our context the test case includes 40 times calling
the stubbed functionality (“get(connID)”-function). The test
case includes the following use cases: “create new object”,
“reuse existing object” and “delete and create new object”.
A decoded excerpt of the recorded trace file is shown in
Listing 9. Lines 4-7 of the listing show the recorded values
of the private members of the “Connection” class for the
second test run.

Steps 5 & 6: In the last two steps, the stub has to be
created using the restore functionality. Moreover, the proper
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1 t e s t r u n : 0 ; s i zeObjec tName : 5 ; objectName : conn ;
s i z e O b j e c t T y p e : 17 ; o b j e c t T y p e : c l a s s

C o n n e c t i o n ; a d d I n f o : 1 ;
2 t e s t r u n : 1 ; s i zeObjec tName : 5 ; objectName : conn ;

s i z e O b j e c t T y p e : 17 ; o b j e c t T y p e : c l a s s
C o n n e c t i o n ; a d d I n f o : 0 ;

3 s i z e O f D a t a : 14 ;
4 m c o n n e c t i o n I d : 1 ;
5 m s t r e a m I d : 2 ;
6 m c o n t e x t I d : 1 ;
7 m uecAddres s : 302845744 ;

Listing 9. Excerpt of a Decoded Trace File

working of the stub has to be validated.
The functionality, which will be replaced by the stub,

is removed from the CUS and replaced by the restore
functionality of the libSSF in order to simulate the original
functionality. Now, the test case, as used in Step 4, is exe-
cuted and the results are validated. In the test environment
the test case passed. In this case study, the libSSF was able
to simulate the functional behavior of the CUS.

3) Performance Measurements: The concept of the SSF
will be used within the DPS framework to simulate different
performance behaviors of a software bottleneck. Hence, the
time to restore the functional behavior of the CUS is critical.

A case study using the DPS for optimizing CPU bound
processes has been presented in [18]. The focus was to
optimize a CPU bottleneck. The case study in this section
uses the measurement results of [18], but, interprets the
results from a different point of view.

Here, the differences between the execution time of the
CUS and the execution time for the SSF have been evaluated.
In the case study of [18], a previous version of the libSSF
has been used. However, the results of [18] can still be used
for this evaluation as only smaller changes have been done.

The same test environment and software functionality,
as described in [18] has been used. A description of the
environment and software functionality can also be found
in Section II-D1. The chosen test case started with a single
database entry and ramped up to searching 400 database
entries. Each test case has been done five times and a statis-
tical evaluation was performed by evaluating the minimum,
average, maximum and the squared coefficient of variation
(SCV, see [19]). The time values have been recorded in
cycles using the time stamp counter (TSC, see [20]), which
has been read by inline assembler.

In Figure 3, the time behavior for searching an entry in
the database (y-axis) depending on the amount of database
entries (x-axis) is presented. The lower line (diamond) shows
the results for restoring the functional behavior of the search
algorithm by using the libSSF. The upper line (circle) depicts
the original behavior of the CUS.

The new evaluation pointed out the average time for
restoring the functional behavior of the “get(connID)” func-
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Figure 3. Compare the Times Between Original and Stubbed Software
Functionality

tion is 11 µs2, which is approximately 30800 cycles. The
SCV is 0.0135. This factor indicates that it takes approxi-
mately always 11 µs without significant variations to simu-
late the functionality independent of the amount of database
entries.

In contrast, the original functionality to identify the con-
nection identification number (“connID”) took a minimum
of 22µs if only a single entry was in the database and about
675µs if 400 entries have to be searched. The measured re-
sults show an exponential increase in time for an increasing
database size.

As can be seen, the SSF was even in the worst case
as twice as fast. Due to this, the identification of the
software optimization potential and the improvement of the
bottleneck’s time behavior were easily realized. Moreover,
the methodology of using CPU stubs has been applied to
the SUT in [18], successfully.

E. Discussion

The SSF can be used to store and recreate the functional
behavior of software modules or functions of C++ appli-
cations. This implemented by the possibility to store and
restore the values of C++ data types, e.g., data structures
or classes including their private and protected members.
Moreover, it is possible to use the SSF with applications
which use many different programming techniques, such
as virtual or abstract classes, inheritance or polymorphism.
The functionality is implemented by a library called libSSF
which can be included into the C++ source of the applica-
tion.

Advantages: Using the libSSF has several advantages
for the developer. The main topics are:

• Store and Restore the Software Functionality
The libSSF can be used to record and restore the states
of traced objects. Hence, it can be used to simulate

2The first message has been ignored to avoid side-effects that only occur
for the first message (“first message effect”).
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software functionalities and algorithms, e.g., search-,
sorting-, or calculation algorithms. Moreover, existing
objects can be modified to the needs of the developer.

• Mainly Automatic Header Generation
The header, which is generated by the ssfheadgen tool,
can be easily included into the source code of the CUS.
Here, only some small modifications have to be done.
Moreover, the ssfheadgen tool provides suggestions to
support the developer by this task. This enables the
developer to easily trace and evaluate the content of
C++ data types.

• Reuse Object Names
Data types can be stored into and read from the trace
file reusing the same names as in the original source
code. This significantly reduces the complexity to use
the libSSF within the CUS.

• Using Data Types Multiple Times
The same variables can be recorded multiple times,
even within one single execution of the CUS. More-
over, several different data types can be combined into
dedicated runs as well as many different runs can be
combined. This provides high flexibility for clustering
different runs and data types for a better abstract view
on the stubbed components.

• Readable Values of the Objects
The libSSF provides the possibility to decode the binary
trace files into human readable trace files. Hence, the
values of recorded data types can be used for evaluating
the outcome of algorithms and, hence, as additional
debugging possibility.

• Only Small Adjustments to the System
To simulate the software functionality, only smaller
adjustments to the CUS have to be done. For recording,
only the library has to be included as well as the
necessary function calls have to be added. For restor-
ing, additionally, the original functionality has to be
removed, e.g., by uncommenting.
Restrictions: As often, there is a trade off between

time and memory usage. If the library is used to restore
the functionality of the software it will read the whole trace
file into the memory during the initialization. Hence, it uses
a lot of memory. Moreover, if a data type has been often
recorded, each traced value is preloaded into the memory,
e.g., if an integer has been stored ten times the libSSF will
allocate ten times the size of the integer. This behavior has
been chosen as the main focus is on the execution time of the
restore functionality. It can be changed with some smaller
modifications to the library to only load the data when they
are needed. This leads to a longer execution time, of course.

Summary: As can be seen, the methodology of the
SSF as well as their implementation, realized by the libSSF,
can be used to record and restore the software functionality.
Moreover, the time measurements of the libSSF have shown
that it can be used in the context of the DPS framework.

This is an important contribution to the gain-oriented
performance improvement framework DPS, as it allows to
gauge the system-wide impact of a potential improvement
before investing in the actual optimization of the algorithms
that underly the functionality that has been simulated by the
DPS. This informs decision making as to what bottlenecks
should be prioritized and to what degree their optimization
has a system wide impact.

The requirements on the system, which are 1a, 1b and 1c,
as well as to the SSF (2b, 2c and 2d) as stated in Section II-A
have been fulfilled with the libSSF. Finally, the Requirement
2a has been fully fulfilled in this particular case study, but,
this can not be applied in a general way as explained in
Section II-C1. However, this does not lower the contribution
as the libSSF supports the possibility to manually adjust the
serialization functions. And, hence, provides a broad range
for applying the SSF to software systems.

III. CPU STUBS

This section introduces CPU stubs. They can be used to
simulate the CPU performance behavior of a bottleneck.
First, the CPU PSF are described. Afterwards, a method-
ology to apply the CPU stubs to multi-core and parallel
processing is presented.

A. CPU Performance Simulation Functions

The CPU PSF consist of two simulation elements: system
influencing- and system non-influencing CPU PSF:

• System influencing
This functionality simulates the process execution while
the process is running. Regarding the process states
[21], this can be seen as “Running”. In this case, the
CPU has to execute instructions. An implementation
can be done by executing a busy loop [11], which
executes the NOP instruction.

• System non-influencing
This functionality simulates the behavior of a process
that has been delayed for any reason, e.g., because of a
scheduling event or a waiting for I/O. This functionality
can be seen as “Blocked” or “Ready” regarding the
process states [21] and is simulated by delaying the
execution of the process, e.g., using a sleep function
call.

By using the system influencing and system non-influencing
CPU PSF any state, regarding the CPU, of a process can be
rebuilt.

B. Methodology

In this section, we revisit the methodology of using
CPU stubs for simulating the execution states running and
blocked/ready (see [21]) of individual processes that was
presented in [1], [11] and show how these can be used in
combination with the SSF that was presented in Section II.
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In the preceding section, we described a methodology
and an implementation of simulating the software function-
ality of a CUS in order to determine the potential gain
of optimization. Not all bottlenecks can be analyzed this
way. With the parallelization of processing tasks by modern
architectures and operating systems, concurrency issues and
analysis of individual CPU usage becomes increasingly
important. For this reason, we adapt our previous approach
for the simulation of CPU behavior to a multi-core setting
and show how the use of CPU stubs can complement the
analysis of CUS using SSF with respect to concurrency.

1) Determination of the CPU bottleneck
The SUT has to be defined and a suspected bottleneck
(CUS) has to be identified, which is done by common
software performance engineering (SPE) [22], [23],
e.g., profiling or tracing. Now, several performance
indicators have to be determined:

• tCUS : Time spent in the bottleneck (CUS).
• tSUT : Time spent in the software module or

function (SUT) from which the CUS is a part.
• tCUS

busy : Time spent in the CUS using the CPU. It
includes the user-mode time as well as the system-
mode time, see [21].

• tCUS
waiting: Time spent in the CUS waiting to be

scheduled, see also: process state “Ready” in [21].
• tCUS

blocked: Time spent in the CUS waiting for an
event, see also: process state “Blocked” in [21].

The measured values have to be deterministic within
several performance test runs.

2) Validate CPU Bottleneck
Here, a simple validation of the chosen CUS will be
done. The system influencing CPU PSF is inserted in
front of the CUS and the performance measurements
will be repeated increasing the time spent in the PSF
(tPSF ). The measured time of the SUT mainly follows
one of the diagrams given in Figure 4.
In Figure 4a the increase of the system influencing
CPU PSF leads to an arithmetically increasing amount
of time spent in the SUT. Therefore, the CUS seems
to be a CPU bottleneck. Hence, the next step can
processed.
In the other case, Figure 4b shows that an increase
in the execution time of the CUS does not increase
the time spent in the SUT for tPSF < tlimit. This
points out that the CUS is no bottleneck for the system.
Another potential CPU bottleneck has to be identified
(Step 1).
This step can be done to remove overhead as it
excludes the CUS from being mistaken as a CPU
bottleneck easily. This step is optional.

3) Study the Bottleneck Performance Behavior
The value tCUS

blocked, as determined in Step 1, will be
used to evaluate the CPU utilization of the CUS.

A value of tCUS
blocked = 0 means that there are no waiting

periods triggered by the CUS while executing. So, the
process will not be interrupted by the CPU except
there are external events, e.g., scheduling. In this case,
the methodology can be used as provided.
A value of tCUS

blocked > 0 means that the process
switches to the “Blocked” state. Here, the trace files
recorded in Step 1 have to be studied further, in order
to identify successive working and waiting periods of
the process. The following steps of this methodology
have to be done for every working period starting
from the biggest to the smallest working period. The
waiting period will be simulated with the system non-
influencing CPU PSF. The simulated waiting time will
normally be constant, if no further reduction caused by
optimizations of this time period can be expected.

4) Flat CPU Stub - Evaluate the Optimization Poten-
tial
Now, a flat CPU stub will be used to determine the
optimization potential. A flat CPU stub is a DPS,
which only simulates the functional behavior of the
CUS using the SSF. Hence, it only introduces small
overhead in the system and can be used to simulate the
ideal time behavior of the CUS. This can be used to
analyze the maximum performance gain of the SUT as
it is not the same as tCUS = 0, especially in multi-core
or parallel processing environments. As the final result
often depends on several in parallel working threads
or processes. Therefore, the following values have to
be measured:

• tSTUB
flat : Time spent in the flat CPU stub.

• tSUT
flat : Time spent in the SUT including the flat

CPU stub.

An indicator of the possible optimization amount can
be evaluated by calculating:

• tCUS
reduced = tCUS − tSTUB

flat

• tSUT
reduced = tSUT − tSUT

flat

tCUS
reduced is the time, which has been reduced in the

CUS. The tSUT
reduced value describes the total possible

optimization gain. If the CUS is executed more than
once in sequence, the maximum number of iterations
per CPU (iter) has to be evaluated. Hence, tCUS

reduced ∗
iter and tSUT

reduced has to be compared. It is possible to
use the factor iter because the same CUS is executed,
so each iteration takes the same amount of time. The
values tCUS and tSUT are taken from Step 1. Now, the
calculated values can be compared and the following
cases can be evaluated:

• tCUS
reduced = tSUT

reduced: This means that the SUT
directly depends on the CUS. Hence, there are no
system dependencies, i.e., “hidden bottlenecks”.
Additionally, no “over optimization”, as described
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in [24], can be done. The more time optimized in
the CUS the better it is. In this case, the next
step of this methodology is Step 7, i.e, optimize
as much as possible. However, in case of an
expected hardware bottleneck, Step 5 can be done.
This behavior is typically for batch or procedural
processing in single core environments.

• tCUS
reduced > tSUT

reduced: In this case, the possible opti-
mization amount is less than the time spent in the
CUS. Thus, there are system dependencies, which
have to be studied further and we can move on to
the next step. This behavior can mainly be seen
in multi-core and parallel processing systems. As
there might be parallel threads or processes, which
additionally delays the execution after the actual
bottleneck has been reduced. This is particularly
the case if a change over in the critical path has
happened (see [25]).

The case tCUS
reduced < tSUT

reduced does not has to be
considered. This would mean that the speed up of
the execution time in the SUT is more than has been
reduced in the CUS. Hence, the execution time of
tSUT − tCUS would has been decreased, but, the
software within this part of the SUT has not been
changed.
As it is only an indicator, the time tSUT

reduced delivers
no information about the amount of optimization,
which has to be done in the CUS, especially for
tCUS
reduced > tSUT

reduced.

5) Idle CPU Stub - Evaluate System Dependencies
Here, the flat CPU stub will be extended using the
system non-influencing CPU PSF. This is called an
idle CPU stub. The total simulated time is the to-
tal processing time of the CUS (tCUS

busy ). Hence, the
following equation holds tCUS

busy = tSTUB
idle . Where,

tSTUB
idle is the time spent in the idle CPU stub. Now,

the performance measurements will be redone and the
tSUT
idle value, which is the total execution time of the

SUT including the idle CPU stub, shall be recorded.
Dependencies between an idle CPU stub and the
system can be evaluated using the values: tSUT

idle and
tSUT . Thus, the total execution time of the original
SUT will be compared to the execution time of the
SUT using the idle CPU stub. The following cases
can be separated:

• tSUT
idle = tSUT :

This means that the total execution time of the
SUT has not changed due to the usage of the idle
CPU stub. Whereas, the idle CPU stub only uses
the CPU at the very first beginning and than hands
the CPU over to the system. However, the total
execution time of the SUT has not been changed.
Hence, the conclusion that no other process is
blocked by the CPU can be done. Therefore,
adding CPUs to the system does not provide a sig-
nificant performance improvement. Nevertheless,
as of Step 2, the CUS is the bottleneck.

• tSUT
idle < tSUT :

Here, the total execution time of the SUT de-
creases by using an idle CPU stub. Therefore,
further processes are at least partially available in
the “Ready” queue. In this case, these processes
can be executed earlier. Therefore, the total execu-
tion time decreases. An optimization of the CUS
as well as an additional CPU decreases the total
execution time.

The case that tSUT
idle > tSUT does not have to be

considered as it means that reducing the amount of
instructions would lead to a longer execution time.
This is not possible in typical CPU bound systems.
This step evaluates dependencies between running
processes in the system and the CUS. Moreover,
information about the influence of adding CPUs to the
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system can be achieved. However, the measurements
do not provide any information whether a faster CPU
will increase the total execution time. Albeit expected
that a faster CPU will increase the total execution
time. As the process is CPU bound, the amount of
instructions determines the total execution time. Using
a faster CPU means that each cycles and, hence, an
instruction, is executed faster.

6) Busy CPU Stub - Cost Estimation
The flat CPU stub will be extended with the system
influencing CPU PSF. Now, the performance mea-
surements will be repeated and the time spent in the
system influencing CPU PSF (tPSF ) will be varied
from zero to the total execution time of the CUS
(tCUS
busy ). Typically, the time spent in the PSF will be

increased by 10% of the total execution time for each
iteration. This can also be redone if a particalur time
slice, e.g., between 20% and 30%, identified a change
over in the critical path as explained in this step. The
following values have to be measured:

• tSTUB
busy : Time spent in the busy CPU stub.

• tSUT
busy : Time spent in the SUT including the busy

CPU stub.

Using these results, two different types of bottlenecks
can be distinguished:

• Total Bottleneck:
In this case, the measured values of the execution
time from the SUT is linearly increasing. Thus,
an optimization of the CUS will always result
in an improvement of the execution speed and,
therefore, decrease the latency. This result should
have been already achieved in Step 4.

• Limited Bottleneck:
If the processing of the SUT depends on other
functions respectively on their results, the graph
might look similarly as given in Figure 5. The
graph is split in two parts. In the first part,
tPSF ≤ tlimit, the time of the SUT is constant
at a minimum value (tSUT

min ). Within this area,
the chosen CUS is no bottleneck to the system
as an increasing in the amount of processing
(tPSF ) does not lead to an increased execution
time (tSUT ). At tlimit the behavior of the CUS
chances to a CPU bottleneck. As can be seen in
the figure, the time spent in the SUT increases
along the time spent in the system influencing
CPU PSF (tPSF ). This evaluation shows that an
optimization of the bottleneck can only decrease
the latency in the SUT to a given value (tSUT

min ).

This information can be used to identify “hidden”
bottlenecks, e.g., a “hidden” bottleneck appears at
tlimit of Figure 5. This limit is basically the maximum,

t
SUT

t
SUT
min

tSUT

tPSF

tlimit
t
STUB
busy

Figure 5. Limited Bottleneck

which can be achieved by an optimization of the CUS.
Hence, it can be compared to a changeover in the
critical path (see [25]). Additionally, the information
can be used for a cost-benefit analysis. Thus, a gain-
oriented improvement can be done.

7) Optimization of the Software
Now, the software module or function has to be
optimized. Hence, the results from the cost-benefit
analysis can be used for a software improvement re-
lated to the optimum between cost and effort. Finally,
the performance of the software component has to be
measured again. A new bottleneck has to be identified
(first step) if the results show that the performance
targets are not achieved yet.

A CPU bound process can be optimized by using the
described methodology. This is especially true for multi-
core systems and multi-threaded applications where the
bottleneck is single-threaded. Here, a changeover in the
critical path after an optimization can be identified before
doing the optimization itself.

C. Summary

In this section, we have presented the gain-oriented
performance optimization methodology that can be used
to optimize CPU bound bottlenecks. Increasingly, single-
threaded systems are parallelized and software functions that
constitute bottlenecks in the system use multiple threads that
can be executed over a number of CPUs.

The following section provides an extension of the CPU
stubs to simulate the performance behavior of multi-threaded
bottlenecks.

IV. MULTI-THREADED CPU PSF

As shown, using CPU stubs provide many possibilities
to simulate the performance behavior of a system. The
combination of SSF (see Section II) and PSF (see Section
III) enable the execution of several performance simulations
in order to determine the system’s performance gain that can
be achieved by its optimization.

To rebuild the system’s functional behavior, the SSF was
introduced in Section II. It is possible to generate the
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required functionality half-automated. However, the amount
of work that has to be done in order to be able to execute
the desired simulations can still be rather high. In some
cases, e.g., the generation of files, it can be more difficult to
rebuild the functional behavior of a small piece of code than
of larger software modules. In the “file” example above, it
would be easier to use the created file as a whole within the
SSF.

To be able to do this, the performance behavior of more
complex software modules has to be rebuilt by the CPU
PSF. For that the CPU PSF are extended to simulate the
performance behavior of components under study that are
even multi-threaded in this section.

A. Objectives

This section presents the main reasons for simulating a
system’s multi-threaded performance behavior using CPU
PSF:

• In some cases, it is necessary to rebuild the performance
behavior for more complex and even multi-threaded
software modules. As shown above, the construction of
the simulated software functions can be quite difficult
for small functions. For that the possibility to simulate
multi-threaded modules within the system and, thus,
simplify and fasten the use of CPU stubs can extend
the CPU stubs’ field of application.

• In addition to that the methodology presented in III-B
should be used in complex environments where the
identification of performance bottlenecks can really be
difficult. Here, CPU stubs can show their benefits when
investigating the impact of a multi-threaded component
onto the system’s performance.

As presented, it is necessary to extend the available
CPU stubs from [1] to be able to simulate the detailed
performance behavior of more complex software modules,
e.g., modules, which are multi-threaded. This extension is
described in the following subsections. Next, the approach
is evaluated.

B. Approach

To rebuild the performance behavior of complex, multi-
threaded software modules, a defined interface is introduced
to enable code generation. The data structured this way
can be used to generate code that can be executed for
the simulation. This interface uses four different actions to
describe the behavior of a multi-threaded application. They
can be separated into actions that are “specific for the CPU
stub’s performance simulation” and into actions that “model
the creation and termination of threads” within the system.

• Describe the threads’ performance behavior
– RUN The RUN action is used to describe situations

where CPU is used by the thread. This action is
initialized by the keyword ’run’ and followed by

a number presenting the duration of this action in
microseconds.

– SLEEP This action is used to simulate the time
while the thread does not use the CPU. This occurs
when the process is blocked due to system calls
or user interaction. The keyword for the SLEEP
action is ’sleep’ that is also followed by the time
in microseconds.
The blocked time, caused in the thread by waiting
for another thread to terminate, e.g., waiting for a
JOIN, is not simulated using the SLEEP action.
If the addressed thread is still running and did
not terminate until the call of the JOIN action,
the calling thread is automatically blocked by the
system. As this is the desired behavior for the
simulation, it will not be simulated with a SLEEP
action.
Moreover, the blocked times are sometimes very
short, e.g., a few microseconds. Thus, they can
not be simulated accurate enough. Therefore, these
short blocked time slices are not modeled via
SLEEP actions but included into the RUN actions.

• Describe the threads’ creation and interaction
– CREATE In order to simulate multi-threaded soft-

ware modules, it is necessary to create new threads.
This is done by using the CREATE action. Its
structure is ’create NUMBER’, where NUMBER
is used to identify the thread that has to be created.
This is needed to be able to start the correct PSF
for this thread.

– JOIN To synchronize the created threads, the JOIN
action is introduced. It consists of the keyword
’join’ and the NUMBER representing the thread
that has to be joined. As described in the SLEEP
action, a call of JOIN blocks the calling thread
until the addressed thread terminates. For that
reason, a call of the JOIN action can result in an
amount of time where the thread is blocked, even
if this is not specially modeled within the interface.

For each of the threads that are rebuilt, an own file to
describe its performance behavior has to be build in our
environment. For that the code generation will produce one
PSF for each thread. Those reference each other by using
CREATE and JOIN actions.

The next section presents one appropriate implementation
of the multi-threaded CPU PSF. Measurements are applied
to obtain the data needed for the described interface.

C. Implementation

In order to rebuild the original performance behavior of a
multi-threaded CUS and, therefore, to provide the data for
the previously described interface, some measurements have
to be done, to gather the needed amounts of execution time
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and the information about the splitting and joining threads
within the CUS.

1) Measurements: The Linux Trace Toolkit (LTTng) [26]
is applied to collect all the information by using the available
kernel markers. Based on scheduling events, the processes’
execution time can be calculated. The markers for process
creation and termination are used to determine the various
threads that are spawned during the execution of the CUS
and their respective timestamps.

2) Performance Simulation Actions: The PSF for the
RUN and SLEEP actions are build as shown in [11]. The
RUN action is generated as a system influencing CPU PSF,
whereas, the SLEEP action is simulated by a system non-
influencing CPU PSF. With the evaluation of the LTTng
traces, the combination of busy and idle times can be
simulated according to the original behavior.

3) Thread Behavior Actions: The actions CREATE and
JOIN are used to describe the behavior of the threads that
are simulated. In this approach, this is done by using POSIX
threads [27]. When creating a new thread, its corresponding
PSF is started. As described in the interface’s structure, the
JOIN action is used to synchronize the threads. This enables
the CPU stubs to recreate the same thread behavior as the
original software component does.

With the shown possibility to describe the performance
behavior of a multi-threaded CUS, a case study can be
performed to evaluate the approach’s usability and the fact
that multi-threaded performance behaviors can be rebuilt by
CPU PSF.

D. Case Study

In this case study, the presented approach to rebuild
complex performance behaviors of multi-threaded appli-
cations using CPU stubs should be validated. For that a
compiling process of the GNU compiler (GCC version 4.6.0)
is simulated.

1) Test Execution: The application runs on an Arch Linux
operating system (kernel version 2.6.30.9) patched with the
LTTng framework (version 0.160). The hardware is based
on an Intel Centrino Core 2 Duo CPU with 2.26 GHz and
has 4GB RAM. The calibration of the CPU PSF has been
realized as described in [11].

The test case chosen in this case study is the compile
process to create a binary file using the GNU compiler (GCC
version 4.6.0). In order to perform this case study a C-file
containing an implementation of a quicksort algorithm is
compiled. The compiled program is only of small size and
does not have any further influence on this case study. This
test case has been chosen as the GCC uses several threads
depending on each other to compile the application.

2) Execution: This case study is performed in four major
steps; record the data, generate the performance behavior,
simulate the performance behavior and validation. These
steps describe the process of creating the CPU PSF. The PSF

can be used within the methodology, as shown in Section
III-B, to simulate the performance behavior. E.g., the CPU
PSF of a single thread can easily be adjusted to create an
idle CPU stubs, which is Step 5 in the methodology for
using CPU stubs.

1) Record the Data
As a first step, the original performance data of the
GCC call is recorded using the LTTng framework.
This step corresponds to Step 1 of the methodology
shown in Section III-B.
Figure 6a shows the original performance behavior
of the used GCC call. The x-axis presents the time
in seconds. To get comparable results, the begin of
the execution is set to t0 = 0. The y-axis depicts the
PID and the PPID of the created threads. The drawn
bars present the performance behaviors of the single
threads. When the CPU is used by the thread, the bar
is gray, whereas, a white bar is used for the times
where the threads are blocked or waiting for I/O. The
other bars (black and colored) present other events that
occurred during the execution of the system, such as
paging and scheduling. As described in Section IV-B
the time slices of those events are too short to be
simulated accurate enough and, thus, are included into
the RUN action.
Regarding the PPID of each thread, Figure 6a also
shows the threads’ respective child threads and the
order they are built. It can be seen that the thread
with the PID 11986 (called Thread 11986) creates the
Threads 12004, 12735 and 12855. Thread 12855 itself
creates Thread 12857 before it joins back to its parent
(Thread 11986).

2) Generate the Performance Behavior
The data measured via LTTng has been transformed
to fit to the described structure. As shown in Figure
6a the different process states are identified and rebuilt
by performance behavior actions. The gray bars build
RUN actions, whereas, the white bars are rebuilt by
SLEEP actions. Additionally, the events that occurred
when creating and synchronizing the threads are de-
scribed by CREATE and JOIN actions.
Listing 10 shows an excerpt of the interface’s structure
for the first created thread (Thread 11986) (see Figure
6a). Line 1 shows a call of the SLEEP action, which
consumes 12780 microseconds. In Line 2 a call of
the RUN action is carried out. The creation of threads
is realized by CREATE actions as shown in Line
3. By the call of the JOIN action, e.g., in Line
7, the execution of the simulation blocks until the
corresponding thread joined back. In this example, the
numbers used for the creation and synchronization of
the threads are the PID of the original threads. Beside
the fact that this could be any number, it has been
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(a) Original Performance Behavior
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(b) Simulated Performance Behavior

Figure 6. Comparison of Original and Simulated Performance Behaviors of the GNU complier (GCC version 4.6.0)

chosen to be the PID of the thread for a simplified
debugging in more complex environments.

1 s l e e p 12780
2 run 54
3 c r e a t e 12004
4 run 3
5 s l e e p 11911
6 run 27
7 j o i n 12004
8 run 74
9 s l e e p 9495

10 . . .

Listing 10. Transformed Measured Data Used to Generate Simulation
Code

For each of the five threads that run during the
execution of the test, the code is generated as a
combination of system influencing CPU PSF, system
non-influencing CPU PSF and POSIX threads. Those
pieces of code can be combined and used as the
performance simulation code.

3) Simulate and Validate the Performance Behavior
of the CPU stub
After the CPU PSF have been built, the simulation
is executed. To be able to compare the results, the
measurements within the simulation were also done
using the LTTng framework.
Figure 6b shows the simulated performance behavior
of the system recorded by the LTTng framework. The
x-axis presents the time in seconds and the y-axis
depicts the PID and PPID of the executed threads.

As in Figure 6a, the gray bars present the busy times
and the white lines are used for the blocked times.
In Figure 6b, it can be seen that the scheduling events
(black and colored) are still triggered and thus are also
recorded while the simulation is running. But events
for paging that occurred during the original execution
do not appear within the simulation. This is due to the
PSF, as the CPU stubs shall only consume the CPU
and shall not influence further elements of the system,
e.g., the memory. Hence, it is the desired behavior that
no page faults occur.

4) Validation
Figure 6 shows the comparison of the original (Figure
6a) and the simulated (Figure 6b) performance behav-
ior of the GCC call. The evaluation of both graphs
depicts that the performance of the GNU compiler
call was rebuilt almost exact by the simulation. The
running and blocked states of the single threads can
be simulated accurately. The blocked times that occur
during this simulation are a combination of the used
SLEEP actions and the blocked time that occured due
to the JOIN actions.
Minor inaccuracies of the simulation originate from
the page faults that are not rebuilt by the simulation
and the non-deterministic occurrence of the scheduling
events. However, the performance behavior of the
threads fits the values measured within the original
execution of the system with high accuracy.

This simulation demonstrates that the CPU stubs can also be
used to simulate the performance behavior of big software
modules that may even be multi-threaded. This approach
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can also lead to a simplified construction of the software
functionality if the rebuild of a complex functional behavior
is easier compared to the one of small modules, e.g., when
generating whole files, as done by using the GNU compiler.

E. Summary

In this section, it has been shown that it is possible to
rebuild the performance behavior of complex and multi-
threaded software modules. An interface that can be used
to describe the performance behavior of the system is intro-
duced. Using this interface also simplifies the generation of
code to simulate different performance optimization levels
within the system by changing the performance parameters
of the running and waiting times within the input data.
Furthermore, the interface can be used in the previously
described methodology and can lead to a faster and easier
usage of CPU stubs. This uniform interface also increases
the portability of DPS as it can be easily extended by
code generators for further programming languages. Being
able to recreate a complex performance behavior offers
more possibilities when trying to detect the threads whose
performance is critical for the system’s performance.

The following section discusses the related work in the
various areas that are affected by this paper.

V. RELATED WORK

There are three major areas, which have to be considered
for related work: DPS, CPU stubs and SSF.

Dynamic Performance Stubs: There are two different
research scopes in simulation of the performance behavior.
In [28] it is explained how performance of inner loops
can be modeled at the instruction level and which effect
they have on the memory/cache performance. Although the
possibility of modeling software modules exists, the high
degree of granularity of this approach reduces the usability
for stubbing whole software functions/modules.

In [29] the usage of smart stubs for software analysis of
functions and modules which are partly not available yet is
described. Hence, the stubs simulate the budget regarding
storage and time resources, which have been estimated,
for the to-be-implemented software parts. Also, mainly a
management point of view for the non-existing software will
be taken.

The DPS in our approach will be used for stubbing already
implemented and measured software parts in order to find
the bounds of the performance improvement within that
part. This procedure helps to identify the real gain of the
performance improvement without really improving it and,
additionally, shows the next bottleneck. So the cost-benefit
analysis for improvement activities can be achieved in a
more realistic way, because a proper simulated result is
better than a simple estimation.

CPU stubs: The CPU executes the instructions of the
applications. The scheduler exists to decide which process
the CPU has to execute next (see [21], [30], [31]). It
maintains several queues about the states of all processes:
running, ready or blocked. If no process is either in the
running or ready state the idle process is executed by the
CPU.

From a process perspective, the process can be either ex-
ecuted by the CPU or is suspended. CPU stubs are targeting
to simulate the time (CPU) behavior of a bottleneck. Hence,
CPU stubs have to be able to switch the state. As only the
scheduler decides whether a process is in the running or
ready state, it is not possible to enforce a process to be in
the running state in non-real time systems acting from user
space side. Only the possibility to increase the chance to
be scheduled soon into the running state exists, e.g., using
priorities.

Hence, the CPU stubs have to simulate the remaining
states “running” and “ready/blocked”. The running state can
be realized by a “do-nothing loop” and a state change can
be initiated by delaying the process execution, e.g., using a
sleep function.

In [32], [33] a problem with simulating a dedicated
amount of time with do-nothing loops is described. De-
spite the problems seen, there are big differences in the
approaches. The procedure is targeting the area of bulk-
synchronous parallel jobs, which are realized as do-nothing
loops. The focus is to optimally utilize each of the included
processors. So the processes always try to run, ignoring
the amount of time needed for the operating system per
processor. As soon as the operating system has something
to do, the userspace application will be scheduled out and
the total execution time will be delayed.

Our system influencing CPU PSF, however, will be cali-
brated in an otherwise idle system with enough time for the
OS. As experimentally proved in [11], in our environment
the execution time of a process can be simulated with
a do-nothing loop, predictably in contrast to [32], [33].
Additionally, because of the fact that such a loop has a
defined number of instructions these loops can be used to
simulate the time behavior of processes.

Simulated Software Functionality: A key functionality
of the DPS is to record and to recreate functional behavior
using the SSF. The recording requires the serialization of
internal data-structures into a format from which they can
be recovered at a later point. This functionality has been
predominantly implemented in distributed systems where
objects and code are marshaled for exchange between peers.

Most closely related to our serialization approach is the
work in [14], [34] in which a “MPI Serializer” has been
introduced. The target of this project is the efficiently and
automated marshaling of C++ data structures. The tool
generates automatically marshaling and unmarshaling code
for the message passing interface (MPI), which is often used
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as communication interface in high performance computing
(HPC). The “MPI Serializer” is is based on the C++ serial-
ization possibility of the “GCC-XML” project [16], which
uses the gcc abstract semantic graph (ASG) scheme [35] to
determine the serialization specification.

To some extent, our approach is similar to [14], [34]
as both projects needs to serialize C++ data structures.
However, it differs in many details. E.g., it has been decided
to store and restore the functional behavior of software
modules, which will be replaced by a stub. This can be
used to remove a software bottleneck. In contrast, the focus
in [14], [34] is to provide marshaling code for the message
parsing interface.

However, both projects are based on the abstract semantic
graph scheme provided by the “GCC-XML” project.

In [36], a lightweight fact extractor is presented. It uti-
lizes XML tools, i.e., XPATH and XSLT, to extract static
information from the C++ source code files. The approach
is to transfer the source code into “srcML”, which is a XML
representation of the file. The fact extractor is mainly used
to parse and search the source code. This technique is often
used for reverse engineering, maintenance, testing or even
in general development of software systems. This approach
is based on “CPPX” [37], which is an open source C++ fact
extractor. The fact base, which is generated by “CPPX”,
can be used as input for software development tools, such
as integrated development environments (IDE). It enhances
these tools’ functionalities, for example by source code
visualization, object recovery, restructuring and refactoring.

As in [14], [34], the approach of [36] highly differs from
our approach, as it is not supposed to store and recreate
the functional behavior of software modules. [36] mainly
delivers a XML presentation of the extracted facts of the
source code.

VI. CONCLUSION AND FUTURE WORK

This paper evaluates our novel approach to the replay of
functional behavior of software algorithms by the SSF. This
functionality is used by CPU stubs, which are a subset of
the DPS framework. These CPU stubs consist of the CPU
PSF, which have been extended to simulate multi-threaded
applications.

In order to achieve these results, two distinct functionali-
ties have been combined: SSF and CPU PSF.

It has been shown that the functionality of software can be
replaced by the SSF almost automatically. A methodology to
use this functionality is given and a possible implementation
is provided. This is concluded by an industrial case study.

Moreover, CPU stubs can be used to simulate the per-
formance behavior of complex software modules. This can
simplify the creation of software simulation functions and
can be used to determine the impact of multi-threaded
components onto the system’s performance. The usability

of the introduced interface, to describe the multi-threaded
performance behavior, has been shown in a case study.

The following aspects concerning the SSF and CPU stubs
will be addressed in the future work:

• SSF
– Evaluate the memory influence of the libSSF and

identify improvement possibilities to reduce this
overhead.

– The libSSF will be extended to easily trace more
different data structures. Especially, it should be
improved to stub “STL lists”and “STL vectors”.

– By now, the libSSF is based on some workarounds.
Further possibilities to access private and protected
members of classes will be evaluated, e.g., by using
friend classes. Moreover, a redesign will be done.

• CPU Stubs
– Consideration of further events within the inter-

face, to rebuild the communication behavior of the
threads more accurate.

– Definition and evaluation of a methodology on the
creation of multi-threaded CPU PSF.

Additionally, the methodology of CPU stubs will be
evaluated by complex and multi-threaded case studies.

We have shown that CPU stubs can be used to simulate
the functional as well as performance behavior of a CUS.
This can be used to evaluate performance optimization
potential depending on the system. Hence, it is possible to
identify “hidden” bottlenecks as well as further improvement
possibilities. Moreover, a gain-oriented performance analysis
can be achieved.
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