
367

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Pattern-based Adaptation for Abstract
Applications in Pervasive Environments

Imen Ben Lahmar∗, Djamel Belaı̈d∗ and Hamid Mukhtar†
∗Institut Telecom; Telecom SudParis, CNRS UMR SAMOVAR, Evry, France

Email: {imen.ben lahmar, djamel.belaid}@it-sudparis.eu
†National University of Sciences and Technology, Islamabad, Pakistan

Email: hamid.mukhtar@seecs.edu.pk

Abstract—Using service-oriented architecture, applications can
be defined as an assembly of abstract components that are
mapped to a concrete level to fulfill their executions. However,
several problems may be detected during their mapping as well
as during their executions, which prevent them to be executed
successfully. Thus, there is a need to adapt them according to
the given contexts. In this article, we present some situational
contexts that may trigger the adaptation of applications at init
time or during their execution. Upon detection of certain changes
in context, the applications are adapted accordingly. For this
goal, we propose a set of adaptation patterns that provide an
extra-functional behavior with respect to the functional behavior
of the applications. These patterns are injected into abstract
applications if a relevant context is sensed to ensure their
mapping as well as their execution.

Keywords-Adaptation patterns, mismatches, abstract applica-
tions, component model.

I. INTRODUCTION

The proliferation of small devices and the increase in
number of services created by various vendors for such
devices have made Service-Oriented Architecture (SOA) a
primary choice for mobile software developers. One particular
approach for developing SOA-based applications is to use
component-based application development.

Using this approach, an application is defined as an assem-
bly of loosely-coupled components, requiring services from
and providing services to each other. Complex applications can
be crafted using an arbitrarily large number of software com-
ponents. Specifically, when developing business applications
using SOA, it becomes inevitable to implement the business
functionality by a mix of self-contained, reusable and loosely
connected components.

In such approach, it is possible to represent an application
by an assembly of abstract components (i.e., services), which
leads to automatic selection of services across various devices
in the environment. At the time of execution, the services
are mapped to concrete components, distributed across various
devices.

To illustrate our point of view, let’s consider a video player
application that provides the functionality of displaying video
to the user. The user is also able to control the playback of the
application. The application is represented by an assembly of
abstract components, which describe only the services required
or provided by the application namely, controlling, decoding

and displaying video. The application has to be mapped to the
concrete components to achieve its realization.

The complexities involved in designing and realizing such
applications have been identified and addressed by many
previous approaches [2] [6] [15].

While the existing approaches may assume that a mapping
from abstract to concrete application can be done effort-
lessly, many problems may arise at init time that prevent it
to be achieved successfully for example the heterogeneity
of interfaces of connections between devices. Furthermore,
applications in pervasive environments are challenged by the
dynamism of their execution environment due to, e.g., user
and device mobility, which make them subjects to unforeseen
failures.

These problems imply mismatches between the abstract
application and the concrete level occurring at init time or
during the execution of the application. That is, the application
cannot be executed in the given context or in the new context if
it changes. Therefore, applications have to be adapted in order
to carry out their mapping, and subsequently, their execution.

In literature, we distinguish two main adaptive techniques,
namely parametric and compositional mechanisms to adapt
applications in pervasive environment [14]. The parametriza-
tion techniques aim at adjusting internal or global parameters,
while the compositional adaptations allow the replacement
of components implementations or the modification of the
applications structure.

In our work, we are interested in the last category, i.e., the
structural adaptation, to overcome the mismatches between the
abstract application and the concrete level with respect to the
functional behavior of the application.

Therefore, in our previous work [4], we have proposed to
transform an abstract application to another one by injecting
adaptation patterns into the abstract application, which provide
an extra-functional behavior allowing the mapping and the
execution of the application. To facilitate the description of the
adaptation patterns, we have defined a generic adapter template
that encapsulates the main features of an adapter.

In this paper, we make the following novel contributions,
some of which extend our previous work [4]: 1) we identify
some situational contexts according to which the application
can be adapted and 2) we propose a set of adaptation patterns
that define the adaptation behavior of an application given a



368

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

certain context.
The rest of the article has been organized as follows.

Section II presents the adaptation context that may trigger
the adaptation of abstract applications. Section III describes
the principle of our structural adaptation approach and the
proposed set of adaptation patterns. In Section IV, we present
an example scenario through which we give an architectural
description of applications and patterns. In Section V, we
present some implementation details, whereas, in Section VI,
we provide an overview of existing related approaches as well
as their limitations. Finally, Section VII concludes this article
with some future directions.

II. ADAPTATION CONTEXTS

A. Classification of Mismatches

A generalized notion of context has been proposed in [1] as
any information that can be used to characterize the situation
of an entity (person, location, object, etc.). We consider
adaptation context as any piece of information that may trigger
the adaptation of the application.

We are interested in contexts that represent the mismatches
between the abstract descriptions of applications and the con-
crete level. These mismatches imply that the current abstract
description could not be realized in the given context, or in
the new context, if it has changed.

We have classified the mismatches level, where they occur,
into three categories: inter-components, intra-device and intra-
devices mismatches (see Figure 1). This categorization covers
not only the software mismatches but also the network and
hardware problems.

At the inter-components level, we consider the mismatches
that may arise at init time due to the non-satisfaction of the
non-functional requirements of the components. These latter
are system requirements which are not of a functional nature,
but contribute decisively to the applicability of the system [9]
like security, reliability, performance, etc. Thus, if they are not
ensured at the concrete level, this may prevent the abstract
application to be well mapped.

At this level, the mismatches may be also related to the
heterogeneity of signatures, protocols or semantic [3]. In the
present work, we do not focus on these mismatches as it has
been previously studied [12] [13] [19]. However, it is possible
to resolve them using our approach.

It is also possible to detect mismatches at intra-device level.
These mismatches denote that the desired characteristics of
devices, as specified by a service or a user, are not satisfied due
to their reduced capacities like using a lower battery power, a
slower CPU, etc. Thus, there is a need to adapt the abstract
application to consider these requirements.

In case of a distributed environment, there is also a need
to consider the mismatches occurring at inter-devices level.
These mismatches may be related to the use of heterogeneous
interfaces of connection, a lower bandwidth, etc. Thus, they
have an impact in the communication between devices.

Fig. 1. Categorization of Mismatches levels

B. Detection of Mismatches

The application resolution and execution is ensured by our
Middleware for Monitoring and Adaptation in heterogeneous
environments (MonAdapter). The architectural design of Mon-
Adapter is depicted in Figure 2.

Fig. 2. Middleware for Monitoring and Adaptation

The middleware consists of a taskResolver component that
maps the user task to the concrete level to identify components
provided by the available devices. To that end, it relies on the
device selection and component selection services to resolve
the user task by mapping it to the concrete components based
on the user preferences and some non-functional aspects [5].

A Mismatch Detector component is used to analyze the
abstract description of the application compared to the capa-
bilities of the selected devices, the user preferences and the
extra-functional requirements of the components. For this goal,
it relies on some monitor to capture the changes of the user
preferences and the execution environment (network status,
arrival and departure of devices or components, etc).

In case of the failure of the mapping or the application’s
execution due to the changes in the context or user preferences,
the Mismatch Detector evaluates the application composition
according to the adaptation policies provided by the Adapta-
tion Policy component. If a policy for adaptation exist for that
mismatch, the Application Composer is informed to adapt the
application accordingly.

III. STRUCTURAL ADAPTATION APPROACH

A. Principle of Our Approach

To overcome a captured mismatch between an abstract
application and the concrete level, there is a need to adapt the
abstract application to ensure its mapping and its execution.

Therefore, in our previous work [4], we have proposed a dy-
namic structural adaptation approach for abstract applications.



369

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

Fig. 3. Transforming abstract application using Adapter composite

Our approach consists of transforming an abstract application
to another one that allows its mapping and execution. The
transformation is ensured by injecting some extra-functional
adapters into the abstract application without modifying its
functional behavior.

For example, as shown in Figure 3, an adapter composite
is injected to adapt the communication between components
A and B. The adapter composite requires the service I of
the component A and exposes a service implementing the
interface I. This provided service will be used by the com-
ponent B, since it corresponds to its required service. Thus,
the abstract application is transformed by adding an extra-
functional adapter to achieve its mapping or its execution.

B. Adaptation Patterns

Fig. 4. Generic adapter template

As the basis for our approach, we have proposed to use
adaptation patterns as adapter composites, which provide
solutions for the detected mismatches between an abstract
application and a concrete level and can be used in different
contexts [4].

An adaptation pattern is defined following an adapter tem-
plate, which consists of an adaptive logic and extra-functional
components as shown in Figure 4. The extra-functional com-
ponent provides transformation services allowing, e.g., encryp-
tion, compression, etc. However, the adaptive logic component
encapsulates the adaptation logic and acts as an intermediate
between the abstract and the extra-functional components. This
component has a generated implementation as it depends to
the interfaces of communicated components.

Using this approach allows us to separate the extra-
functional logic from the business one, and hence, to add
or remove adaptation patterns dynamically from the abstract
application whenever there is a need.

In the following, we present a set of adaptation patterns that
are defined following the adapter template. For each pattern,
we present its description, the context in which, it will be used,
and where it will be used to overcome that mismatch.

The list of the adaptation patterns is not exhaustive. How-
ever, it is possible to define such other patterns following our
adapter template.

1) Encryption and Decryption patterns:
a) Description: we propose an encryption pattern that

intercepts the interaction between components to encrypt
messages transiting over a network in order to prevent the
disclosure of information to unauthorized components. To
use the original message, there is a need to restore it from
the encrypted one. For this purpose, we have composed the
encryption adapter with a decryption one that decrypts the
received messages before using it by the target component.

The encryption and decryption adapters are defined follow-
ing our adapter template. Each adapter consists of an adaptive
logic component and an extra-functional one as shown in the
Figure 5. The extra-functional component exposes a key prop-
erty and provides a service ensuring encryption or decryption
of a message following a symmetric key algorithm.

In case of a symmetric encryption and decryption, the
transmitter and the receiver sides use the same key to exchange
messages. However, if the extra-functional components imple-
ment an asymmetric algorithm, they use two different keys:
public and private key.

b) Adaptation context: The encryption and decryption
patterns will be injected at init time to ensure the security of
the transferred messages, which may be sensitive to disclose
as with credit card numbers and passwords.

The security requirement can be expressed explicitly
through the non-functional requirements of services. If the
concrete components do not ensure this requirement as speci-
fied in the abstract level, there is a need to adapt the application
in order to achieve its mapping.

For this purpose, the encryption and decryption patterns will
be used to overcome the non-satisfaction of the non-functional
requirements of services.

c) Where to use: The encryption and decryption patterns
are used in distributed manner; the transmitter device will
contain the encryption adapter to send encrypted messages,
while the decryption pattern is used by the receiver side to
restore the messages. For example, in Figure 5, an encryption
pattern is used by a device B in order to encrypt the messages
sent from a component B over the network. However, a
decryption pattern was handled in a device A to restore the
original message before using it by a component A.

2) Authentication and Integrity patterns:
a) Description: The authentication pattern is used to sign

the transferred message between two components in order to
ensure that a message has not been tampered with and that



370

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5. Encryption and Decryption adaptation patterns

Fig. 6. Authentication and Integrity adaptation patterns

it originated from a certain component. The extra-functional
component of the pattern generates a signature digest to add
it at the end of the message before sending this later over the
network.

In the receiver side, there is a need to validate the authen-
tication of the message’s signature to authorize component to
invoke the requested service. Therefore, we have composed
it with an integrity pattern that will prove the validity of a
the transmitted message before forwarding it to the intended
component.

The verification is done by comparing the received digest
with a calculated one. If the message digest of the message
matches the message digest from the signature, then integrity
is also assured. Otherwise, the message is tampered with
during its transfer. Thus, the extra-functional component of
the integrity component, in Figure 6, returns a boolean result
implying the validity of signed messages.

b) Adaptation context: An abstract component may spec-
ify at init time through its non-functional requirements the
need to validate the received messages. If the concrete com-
ponent does not ensure the authentication and the integrity
of messages, this implies a mismatch between the abstract
description and the concrete level.

c) Where to use: The authentication pattern is used by
the transmitter side to send signed messages. In the receiver

side, the integrity pattern will be used to check if the message
is kept intact during its transfer over the network. Figure 6
shows an authentication pattern that is used by device B to
send signed message from a component B to a component
A. However, an integrity pattern is used by the device A, to
validate the received message from the component B.

3) Splitting and Merging patterns:
a) Description: The splitting pattern is used to split a

message into chunks. The pattern consists of an adaptive logic
and an extra-functional component that returns a list of chunks
to send over the network as shown in Figure 7.

To respond to the component’s request, there is a need
to merge the chunks beforehand. Therefore, we propose to
compose the splitter pattern with a merger one to form the
message from the received chunks. Hence, the extra-functional
component of the merger pattern will construct messages from
the received chunks, which are forwarded by the adaptive logic
component to the intended component.

b) Adaptation context: The splitting and merging pat-
terns are used to overcome a problem related to a lower
network signal in order to have a decreased message delay.
This may have an impact certainly for the transfer of bigger
files or messages. In this case, the message is split into
chunks for a quick transfer over a network and then merged
to construct the original message.



371

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 7. Splitting and Merging adaptation patterns

Fig. 8. Retransmition adaptation pattern

c) Where to use: The splitting pattern will be used by the
transmitter device, while the merging pattern will be used by
the receiver device to fulfill the interaction between devices.
Thus, the component B in Figure 7 is able to send a message
or a file into chunks to the component A for a quick transfer
over a lower network signal.

4) Retransmission pattern:
a) Description: This pattern provides the functionality

of retransmitting a failed call to a remote component. Its
adaptive logic component, as shown in the Figure 8, attempts
to retransmit message whenever a component does not receive
a response to its calls. The component may use some error-
detection codes or acknowledgments to achieve reliable mes-
sage retransmission.

b) Adaptation context: The transmission in pervasive
environment may be subject to failures because of e.g. network
down. This can be captured by tracking the network work for
a period of time. If the statistics shows that the system is
not reliable, thus, the components’ messages could get lost
along the path. When it is not possible to deliver messages
to remote components, the system should attempt to respond
to the component request at the earliest possible opportunity
by trying to retransmit the messages. For this reason, we
propose a retransmission pattern that attempts to retransmit
the messages to render the application reliable at init time.

The retransmission pattern is used also during the execution
of the application, if the network is quick cut-off, to overcome
the loss of messages. Thus, once the network is repaired,
the retransmission pattern is established to retry the sending
of calls. To detect this adaptation context, the middleware
should monitor the status of the supported network, i.e., if
it is activated or not.

c) Where to use: To ensure a reliable communication
between devices, we propose to handle at init time a retrans-
mission pattern in the sender side. For example, Figure 8
shows a retransmission pattern that is used by a device B to
resend the failed call to a device A.

5) Compression and Decompression Patterns:

a) Description: The compression pattern is introduced
between two components communicating with each other over
a network in order to send compressed messages. However, in
the receiver device, there is a need to decompress the message
in order to be used by the target component. Therefore, we
propose to compose the compression pattern with a decom-
pression one to decompress the data before using it by the
target component.

Each adapter consists of an adaptive logic component that
relies on a non-functional component to compress or decom-
press message, as shown in Figure 9.



372

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 9. Compression and Decompression adaptation patterns

Fig. 10. Caching adaptation pattern

b) Adaptation Context: The compression and decom-
pression patterns are introduced in response to a trigger
generated by fluctuation in network QoS. For example, two
components exchanging data may be adapted by using the
compressor and decompressor adapters if the network latency
or the throughput falls below a certain threshold. By using
this adapter composite between the components, all the data
will be compressed before transmission over network, allowing
efficient transfer of data.

c) Where to use: We propose to use the compression
pattern by the sender device in order to send compressed
messages over network. However, the decompression pattern
should be handled in the receiver side to decompress messages
before using it as shown in Figure 9.

6) Caching Pattern:
a) Description: The caching pattern enables the applica-

tion to cache messages in rapid memory. Figure 10 shows
the main features of the caching pattern. It consists of an
adaptive logic component that will first check the cache to
see for example if the response of the component request can
be found there. Failing to find the response in the cache, the
adaptive caching component will forward the call to the target
component. Once it receives the response, it will forward it to
the caller component after storing it in the cache.

Thus, the caching service provides mainly methods for

retrieving, updating and setting message in the cache. We
assume also that the cache is already created else, the caching
service should be able also to create a cache in a device.

b) Adaptation context: The caching pattern can be used
during the execution of the application to avoid the congestion
of a network by storing the responses to the services’ requests.
Therefore, the system should monitor the latency of the used
network to identify if there is not a jitter. Otherwise, a caching
pattern will be injected during the execution application to
avoid the congestion for a further uses.

Moreover, some component may express through their non-
functional requirements the need to have a decreased response
time, for example the response time of service I is less than
50 ms. If the concrete component does not consider this
requirement, there is a need to inject a caching pattern at
init time in order to decrease the response time during the
execution of an application.

c) Where to use: The caching pattern will be used either
by the sender or the receiver side where the message will
be stored. For example, in Figure 10, the pattern is used to
decrease the response time to the requests of the component
B by caching the call to service I in a cache of the device B.

7) Proxy Pattern:
a) Description: The proxy pattern allows components to

access to services offered by others components. Figure 11



373

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 11. Proxy adaptation pattern

shows a description of the proxy pattern following the adapter
template. As it can be seen, the proxy pattern represents a
specific case of the adapter template as it contains only an
adaptive logic component that forwards the call of the service
I to the component A.

b) Adaptation Context: The proxy pattern is useful to
overcome the network factor related to the heterogeneity of
network interfaces. For example, if two devices were selected
to map an abstract application and they support two different
connection interfaces, e.g., Bluetooth and Wifi, thus, the map-
ping will fail. Therefore, we propose to introduce the proxy
pattern to act as an intermediate between the communicating
components.

c) Where to use: To intermediate the communication
between devices, we propose to generate the proxy in a third
device. Thus, the components A and B, as shown in Figure
11, can communicate together via the proxy generated in a
device C.

IV. EXAMPLE SCENARIO USING ADAPTATION PATTERNS

Fig. 12. Video Player application

Referring back to the video player application described
in the introductory section, Figure 12 shows an abstract
description of the Video player application that consists of
three components: a VideoDecoder component, a DisplayVideo
component and a Controller Component. The Controller com-
ponent sends a command to the VideoDecoder component to
decode a stored video. The VideoDecoder component decodes
a video into appropriate format. Once the video is decoded,
it is passed to the DisplayVideo component to play it. This is

done using the service provided by the DisplayVideo com-
ponent through an appropriate programming interface. The
description of an application can be done with the help of an
Architecture Description Language (ADL). For this purpose,
we have used Service Component Architecture (SCA) [18] to
describe abstract applications.

SCA provides a programming model for building applica-
tions and systems based on a Service Oriented Architecture.
The main idea behind SCA is to be able to build distributed
applications, which are independent of particular technology,
protocol, and implementation. SCA applications are deployed
as composites. An SCA composite describes an assembly
of heterogeneous components, which offer functionality as
services and require functionality from other components in
the form of references. Along with services and references, a
component can also define one or more properties.

Figure 13 shows an SCA description of the VideoPlayer
application shown previously in Figure 12. It provide Dis-
playVideoService and consists of the controller, videoDecoder
and DisplayVideo abstract components.

Using SCA, it is also possible to specify the services’
requirements abstractly and the components’ implementations
provide the corresponding concrete policies [17]. Abstract
resource requirements can be specified by using @requires
attribute, while the @policySets attribute is used to specify
the concrete resources. The policies are applied to implemen-
tation and contain the requirements that should be fulfilled
before selecting the components to which the policy sets are
attached.

For example, the controller component requires that its
messages sent to the DecodingVideoService, should be au-
thenticated. Therefore, its reference is marked with an intent
”authentication” (line 4 in Figure 13). However, the Decod-
ingVideoService is marked with the ”‘integrity”’ intent to
check the validity of the messages received from the controller
component (line 7 in Figure 13). Figure 14 shows a description
of the authentication abstract intent that is applied to the
component binding.



374

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1<composite name="VideoPlayer">
2 <service name="DisplayVideoService" promote="DisplayVideoComponent/DisplayVideoService" />
3 <component name="ControllerComponent">
4 <reference name=" DecodingVideoService" target="VideoDecoderComponent" requires="authentication"/>
5 </component>
6 <component name="VideoDecoderComponent">
7 <service name="DecodingVideoService" requires="integrity">
8 <interface.java interface="eu.tsp.iaria-example.VideoDecoderInterface" >
9 </service>
10 <reference name="DisplayVideoService" target="DisplayVideoComponent "/>
11 </component>
12 <component name="DisplayVideoComponent">
13 <service name="DisplayVideoService">
14 <interface.java interface="eu.tsp.iaria-example.DisplayVideoInterface" />
15 </service>
16 </component>
17 </composite>

Fig. 13. SCA description of the Video Player Application

<intent name="authentication" constrains="sca:binding">
<description>
Communication through this binding must be authenticated.
</description>
</intent>

Fig. 14. SCA policy intent of an authentication requirement

The resolution of the abstract description of the video player
application into respective concrete components is required
for the realization of the task. We assume that the execution
environment consists of three devices: a Smartphone (SP), a
flat-screen (FS) and a laptop device (LP).

Following the matching algorithm [16], the application
composer of the middleware has identified a Controller and
the VideoDecoder components in SP and a DisplayVideo
component in FS. Thus, the LP device is eliminated.

However, the concrete components of the videoDecoder and
the controller services do not support the policies related to
the authentication and integrity intents as specified in Figure
13. Thus, there is a mismatch between the given abstract
description of the video player application and the concrete
level.

To resolve this mismatch, we propose to inject the au-
thentication and integrity patterns into the abstract application
as shown in Figure 15. Thus, the controller component is
able to send authenticated commands to the VideoDecoder
component. These commands will be validated at first by
the integrity pattern before forwarding it to the videoDecoder
component. As a result, the application is transformed, as
shown in figure 15, to contain the authentication, and the
integrity patterns in addition to its own components.

Figure 16 represents the SCA description of the integrity
pattern. It consists of an adaptive logic component representing
the integrity intent. To this end, we have extended the SCA
description by the @type attribute (line 6) to specify what is

the intent represented by the adaptive logic component if it is
either a proxy or a splitting or a compression patterns.

Moreover, the implementation of the adaptive logic compo-
nent should be generated dynamically since this component
depends to the decodingVideoService of the videoDecoder
component (line 9). For this purpose, we have extended
SCA by a new attribute @generated that specifies if the
implementation is generated or not (line 6). Furthermore,
the adaptive logic component relies on the integrity extra-
functional component to check the validity of the received
message before forwarding it to the VideoDecoder component.

In another case, we assume that during the execution of the
application, the bandwidth of the supported network becomes
weak. This may have an impact on the quality of video
that requires a high QoS. Towards this change of context,
we propose to adapt the abstract video player application by
splitting the frame into chunks and then compress them for a
quick transfer.

For this purpose, we have composed together the splitting,
compression, decompression and merging patterns, as shown
in Figure 15 for a quick transfer of messages with a lower
bandwidth. The splitter adapter will split a frame sent from
the VideoDecoder component to the DisplayVideo one into
chunks. These latter will be compressed before their transfer
over the network. Once the chunks are received by a device,
there is a need at first to decompress them and then to merge
them before forwarding it to the DisplayVideo component.
Hence, the abstract application is adapted by injecting a
composite of adapters to overcome a mismatch triggered by a
low bandwidth.

V. IMPLEMENTATION

In order to validate our approach, we have implemented a
prototype in Java. To that end, we have used SCA [18] to
describe applications in abstract way and then map them to
the concrete components.

The open source software JAVA programming ASSISTant
(Javassist) library [11] is used to generate the byte codes of the



375

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 15. Adaptation of the Video Player application

adaptive logic component of the adaptation patterns. Indeed,
it enables Java programs to define a new class at runtime and
to modify a class file when the Java Virtual Machine (JVM)
loads it.

Moreover, the java API java.lang.reflect is used to obtain
reflective information about classes and objects. This infor-
mation is used by the Javassist library to allow the adaptive
logic component to implement the required service.

VI. RELATED WORK

A lot of work has been devoted to structural adaptation of
component-based applications due to mismatches captured at
the concrete level. In the following, we detail some of the
existing approaches as well as their limitations.

Spalazzese and Inverardi [19] considers a mediator concept
to cope with the heterogeneity of the application-layer proto-
cols. The approach first abstracts the behavioral description
of the mismatching protocols highlighting some structural
characteristics. This is done by using ontology. Then, it checks
the possibility for the two protocols to communicate. If the two
protocols are not complementary, the framework should find
out the suitable mediating connector using some basic media-
tors connectors patterns. However, these mediators connectors
are limited to the protocol level. Moreover, the mediators are
specified only by the framework and their concrete realizations
remain a challenge for the authors.

In the same context, Fuentes et al. propose to use aspectual
connectors that provide support to describe and to weave
aspects to components [8]. However, these connectors are
described at design time, which limits the possibility to extend
applications with new aspects. Moreover, the specification of
connector template relies on the used aspects as well as the
functional behavior of application.

In [13], Li and al. tackle the behavioral mismatches and
propose to use the mediation patterns. They categorize the
mismatching levels and focus their work on signature and
protocol mediations using six basic patterns. The identification
of pattern is done following some rules predefined by the
designer.

The major drawback of this approach is that is limited to
the behavioral mismatches, thus, they do not consider the
mismatches related to hardware, network characteristics of
devices. Moreover, the generation of the mediator pattern is
done by pseudo codes predefined by the designer. However, in
our work, the adaptive logic component of the adaptation pat-
tern is generated dynamically by specifying only it’s required,
provided interfaces and the extra-functional service.

Other related work in this area [7][12] have also investi-
gated matching of Web service interfaces by providing a clas-
sification of common mismatches between service interfaces
and business protocols, and introducing mismatch patterns.
These patterns are used to formalize the recurring problems



376

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 <composite name="IntegrityAdapter">
2 <service name = "DecodingVideoService" promote= "AdaptiveLogicComponent/DecodingVideoService" >
3 <component name="AdaptiveLogicComponent" >
4 <service name="DecodingVideoService">
5 <interface.java interface="eu.tsp.iaria-example.VideoDecoderInterface" />
6 <implementation.java type ="Integrity" generated="True" />
7 </service>
8 <reference name="IntegrityComponent"/>
9 <reference name=" DecodingVideoService" target="VideoDecoderComponent" />
10 </component>
11 <component name="IntegrityComponent">
12 <service name="IntegrityService">
13 <interface.java interface="eu.tsp.iaria-example.IntegrityInterface" />
14 </service>
15 </component>
16 <composite>

Fig. 16. SCA description of the integrity pattern

related to the interactions between services. The mismatch
patterns include a template of adaptation logic that resolves the
detected mismatch. Developers can instantiate the proposed
template to develop adapters. For this purpose, they have to
specify the different transformation functions.

We can identify two important limitations compared to
our approach. First, the mismatch patterns are limited to the
interfaces and protocols mismatches. Second, the specification
of adapters supplies some pseudo code predefined by the
designer. However, in our approach, we are able to specify
dynamically the different components of a used pattern; by
generating the implementation of its adaptive logic component
and mapping the extra-functional one following our matching
algorithm

In [10], Cao et al. propose an approach to component
adaptation dealing with non-functional mismatches. Their
adaptation framework includes extra-functional adapters which
mediate the mismatching behaviors between the client and
server. Therefore, they propose to use adapters presented that
provide extra-functional interfaces customized by the user.

Compared to our approach, the specification of adapters
is done with the help of the user, whereas in our work,
the adapters are specified using our template. Moreover, the
specified adapters depend to the adapted application. Hence,
it can be used on other context. However, our patterns may be
used by any applications as their description is independent of
the functional behavior of the application.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have identified some situational contexts
at init time and during the execution of the application,
according to which the application can be adapted. These
contexts represent mismatches between an abstract application
and the concrete level and they may arise at inter-components,
intra-device or inter-devices levels.

Towards these mismatches, we have proposed a set of
adaptation patterns that are injected into an abstract application
to ensure its mapping or its execution. These adapters provide
an extra-functional behavior with respect to the functional

behavior of the application. The list of the adaptation patterns
is not exhaustive. However, it is possible to define such other
patterns following our adapter template.

We are looking forward to identify rules for the use of
adaptation pattern describing where and when the adapter will
be used.

REFERENCES

[1] Gregory D. Abowd, Anind K. Dey, Peter J. Brown, Nigel Davies, Mark
Smith, and Pete Steggles. Towards a better understanding of context and
context-awareness. In the 1st international symposium on Handheld and
Ubiquitous Computing, HUC’ 99, pages 304–307, Karlsruhe, Germany,
1999.

[2] Christian Becker, Marcus Handte, Gregor Schiele, and Kurt Rothermel.
Pcom - a component system for pervasive computing. In Proceedings
of the Second IEEE International Conference on Pervasive Computing
and Communications, PerCom’04, page 67, Orlando, FL, USA, 2004.

[3] Steffen Becker, Antonio Brogi, Sven Overhage, Er Romanovsky, and
Massimo Tivoli. Towards an engineering approach to component
adaptation. In Springer-Verlang, LNCS, page 2006. Springer, 2006.

[4] Imen Ben Lahmar, Djamel Belaı̈d, and Hamid Mukhtar. Adapting
abstract component applications using adaptation patterns. In Pro-
ceedings of the Second International Conference on Adaptive and Self-
adaptive Systems and Applications, ADAPTIVE, pages 170–175, Lisbon
Portugal, 2010.

[5] Imen Ben Lahmar, Djamel Belaı̈d, Hamid Mukhtar, and Sami Chaud-
hary. Automatic task resolution and adaptation in pervasive environ-
ments. In Proceedings of the Second International Conference on
Adaptive and Intelligent Systems, ICAIS, pages 131–144, Klagenfurt,
Austria, 2011.

[6] Sonia Ben Mokhtar, Nikolaos Georgantas, and Valérie Issarny. Cocoa:
Conversation-based service composition in pervasive computing envi-
ronments with qos support. Journal Of System and Software, vol 80, no
12:1941–1955, 2007.

[7] Boualem Benatallah, Fabio Casati, Daniela Grigori, H. R. Motahari
Nezhad, and Farouk Toumani. Developing adapters for web services
integration. In Proceedings of the International Conference on Advanced
Information Systems Engineering, CAiSE, pages 415–429, Porto, Por-
tugal, 2005.

[8] Lidia Fuentes, Nadia Gámez, Mónica Pinto, and Juan A. Valenzuela.
Using connectors to model crosscutting influences in software archi-
tectures. In The First European Conference on Software Architecture,
ECSA’07, pages 292–295, Madrid, Spain, 2007.

[9] Matthias Galster and Eva Bucherer. A taxonomy for identifying and
specifying non-functional requirements in service-oriented development.
In IEEE Congress on Services, SERVICES ’08, pages 345–352, Hon-
olulu, Hawaii, USA, 2008.



377

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[10] Jingang Xie Guorong Cao, Qingping Tan. A new approach to compo-
nent adaptation dealing with extra-functional mismatches. In Interna-
tional Conference on Information Engineering and Computer Science,
Wuhan,China, 2009.

[11] JAVA programming Assistant. http://www.csg.is.titech.ac.jp/ chiba/javassist/.
[12] Woralak Kongdenfha, Hamid Reza Motahari-Nezhad, Boualem Bena-

tallah, Fabio Casati, and Regis Saint-Paul. Mismatch patterns and
adaptation aspects: A foundation for rapid development of web service
adapters. IEEE Transactions on Services Computing, pages 94–107,
2009.

[13] Xitong Li, Yushun Fan, Stuart Madnick, and Quan Z. Sheng. A pattern-
based approach to protocol mediation for web services composition.
Information and Software Technology (IST), 52:304–323, March 2010.

[14] Philip K. McKinley, Seyed Masoud Sadjadi, Eric P. Kasten, and
Betty H.C. Cheng. Composing adaptive software. Journal of IEEE
Computer, 37:56–64, 2004.

[15] Hamid Mukhtar, Djamel Belaı̈d, and Guy Bernard. A graph-based
approach for ad hoc task composition considering user preferences and
device capabilities. In Workshop on Service Discovery and Composition
in Ubiquitous and Pervasive Environments, New Orleans, LA, USA, dec
2007.

[16] Hamid Mukhtar, Djamel Belaı̈d, and Guy Bernard. User preferences-
based automatic device selection for multimedia user tasks in pervasive
environments. In the 5th International Conference on Networking and
Services, ICNS’ 09, pages 43–48, Valencia, Spain, 2009.

[17] Open SOA Collaboration. Sca policy framework v1.00 specifications.
http://www.osoa.org/, 2007.

[18] Open SOA Collaboration. Service component architecture (sca): Sca
assembly model v1.00 specifications. http://www.osoa.org/, 2007.

[19] Romina Spalazzese and Paola Inverardi. Mediating connector patterns
for components interoperability. In The fourth European Conference
on Software Architecture, ECSA’10, pages 335–343, Copenhagen, Den-
mark, 2010.


