
378

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the Quality of Relational Database Schemas
in Open-source Software

Fabien Coelho, Alexandre Aillos, Samuel Pilot, and Shamil Valeev
CRI, Mathématiques et Systèmes, MINES ParisTech,

35, rue Saint Honoré, 77305 Fontainebleau cedex, France.
fabien.coelho@mines-paristech.fr, firstname.lastname@mines-paris.org

Abstract—The relational schemas of 512 open-source projects
storing their data in MySQL or PostgreSQL databases are inves-
tigated by querying the standard information schema, looking for
overall design issues. The set of SQL queries used in our research
is released as the Salix free software. As it is fully relational and
relies on standards, it may be installed in any compliant database
to help improve schemas. Our research shows that the overall
quality of the surveyed schemas is poor: a majority of projects
have at least one table without any primary key or unique
constraint to identify a tuple; data security features such as
referential integrity or transactional back-ends are hardly used;
projects that advertise supporting both databases often have
missing tables or attributes. PostgreSQL projects appear to be
of higher quality than MySQL projects, and have been updated
more recently, suggesting a more active maintenance. This is even
better for projects with PostgreSQL-only support. However, the
quality difference between both databases management systems
is mostly due to MySQL-specific issues. An overall predictor
of bad database quality is that a project chooses MySQL or
PHP, while good design is found with PostgreSQL and Java.
The few declared constraints allow to detect latent bugs, that are
worth fixing: more declarations would certainly help unveil more
bugs. Our survey also suggests that some features of MySQL and
PostgreSQL are particularly error-prone. This first survey on the
quality of relational schemas in open-source software provides a
unique insight in the data engineering practice of these projects.

Keywords-open-source software; database quality survey; au-
tomatic schema analysis; relational model; SQL.

I. INTRODUCTION

This paper is an extended version of A Field Analysis of
Relational Database Schemas in Open-source Software [1]
presented at DBKDA 2011. Compared to this initial version,
512 schemas are surveyed instead of 407, which enhances
the accuracy of the statistical validation of our analyses; the
maintenance status of the surveyed projects was collected
again as of January 2012; comments have been updated and
added to reflect the new data; more detailed tables are provided
about the results; the bibliography is much more thorough,
with over 50 new references; an appendix describes the advices
available with our schema analyzer; the paper page count,
excluding the appendix, is increased from 7 to 10 pages.

In the beginning of the computer age, software was freely
available, and money was derived from hardware only [2].
Then in the 70s it was unbundled and sold separately in
closed proprietary form. Stallman initiated the free software
movement, in 1983 with the GNU Project [3], and later the

Free Software Foundation [4], which is now quite large [5][6]
and expanding [7] (Predicts 2010) to implement his principle
of sharing software. Such free software is distributed under
a variety of licenses [8], which discuss copyright and lia-
bility. The common ground is that it must be available as
source code to allow its study, change and improvement as
opposed to compiled or obfuscated, hence the expression open
source [9][10][11], This induces many technical, economical,
legal, and philosophical issues. Open-source software (OSS)
is a subject of academic studies [12] in psychology, sociology,
economics, or software engineering, including quantitative
surveys. Developers’ motivation [13][14][15][16][17], but also
organization [18][19][20][21][22][23][24][25][26] and pro-
files [27][28][29] are investigated, as well as user communities
[30]; Existing economic frameworks [31] are used to analyze
the phenomenon, as well as the influence of public poli-
cies [32]. Research focusing on software engineering issues
can also be found. The development of the Apache web server
popular [33] is compared to non-OSS projects [34] and its
user assistance is analyzed [35]. Quantitative studies exist
about code quality in OSS [36][37][38][39][40] and its dual,
static analysis to uncover bugs [41][42]. Database surveys
are available about market shares [43], or server exposure
security issues [44]. This study is the first survey on the quality
of relational database schemas in OSS. It provides a unique
insight in the data engineering practice of these projects.

Codd’s relational model [45] is an extension of the set
theory to relations (tables) with attributes (columns) in which
tuple elements are stored (rows). Elements are identified by
keys, which can be used by tuples to reference one another be-
tween relations. The relational model is sound, as all questions
(in the model) have corresponding practical answers and vice
versa: the tuple relational calculus describes questions, and
the mathematically equivalent relational algebra provides their
answers. It is efficiently implemented by many commercial
and open-source software such as Oracle, DB2 or SQLite.
The Structured Query Language (SQL [46]) is available with
most relational database systems, although the detailed syntax
often differs in subtle and incompatible ways. The standard-
ization effort also includes the information schema [47], which
provides metadata about the schemas of databases through
relations.

The underlying assumption of our study is that applications
store precious transactional user data, thus should be kept con-
sistent, non redundant, and easy to understand. We think that

379

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

database features such as key declarations, referential integrity
and transaction support help achieve these goals. In order to
evaluate the use of database features in open-source software,
and to detect possible design or implementation errors, we
have developed a tool to analyze automatically the database
structure of an application by querying its information schema
and generating a report, and we have applied it to 512 open-
source projects. The notion of the quality of a database schema
design is quite elusive, as shown in Burkett’s overview [48],
with a lot of focus on qualitative assessments. Key criteria such
as understandability, simplicity, expressiveness, maintainabil-
ity or evolvability are hard to transform into basic objective
metrics. A review process has been proposed to evaluate the
quality of relational schemas [49], at the price of mostly man-
ual investigations by field experts. Some quality focus on the
conceptual schema and compare alternative models [50][51]
by recognizing patterns. Following MacCabe’s metric to mea-
sure automatically program complexities [52][53][54], several
metrics address data models [55][56] or database schemata
either in the relational [57][58] or object relational [59]
models, including experimental validations [60]. These metrics
rely on information not necessarily available from the database
concrete schemas. Moreover, such approach help compare
two schemas that model the same application domain, but
are less useful when used about unrelated schemas. We have
rather followed the dual and pragmatic approach [61], which
is not to try to do an absolute and definite measure of the
schema, but rather to uncover issues based on static analyses.
Thus, the measure is relative to the analyses performed and
results change when more are added. Static analysis on user
application codes (not simply the schema) could also be used
to help uncover hidden constraints in a schema (for instance,
a join between two tables suggests a possible foreign key) and
to use them to improve data quality [62], but this is beyond
our simple approach.

The remainder of this paper is organized as follows: Sec-
tion II presents the methodology used in this study. We de-
scribe our tool, our rating strategy and the statistical validation
used on the assertions derived from our analyses; Section III
lists the projects by category and technology, and discusses
similarities and differences depending on whether they run on
MySQL or PostgreSQL; Section IV describes the results of
our survey, with quite a poor overall quality of projects, as
very few database schemas do not raise error-rated advices;
Section V gives our conclusive thoughts.

II. METHODOLOGY

Our Salix automatic analyzer [63], is based on the informa-
tion schema provided by standard databases. It is open-source,
and its schema itself is included in this survey. In this Section,
we discuss the queries, then describe the available advices,
before presenting the statistical validation used.

A. Information schema queries

Our analyses are performed automatically by SQL queries
on the databases metadata using the standard information
schema. This relational schema stores information about the

databases structure, including catalogs, schemas, tables, at-
tributes, types, constraints, roles, permissions, etc. The set
of SQL queries used for this study are released as the
Salix free software. It is based on pg-advisor [64], a
PostgreSQL-specific proof of concept prototype developed in
2004. Some checks are inspired by Currier [65], Baron [66]
and Berkus [67] or similar to Boehm [68]. Note that the
aim is quite different from tools which focus on advising
database administrators, for instance about index creation [69].
Salix creates specific tables for each advice by querying
the information schema, and then aggregates the results in
summary tables in a dedicated schema. It is fully relational in
its conception [70]; there is no programming other than SQL
queries, but a small shell driver which creates the advices,
shows or reports them in some detail to the interested user, and
finally drops them out of the database. Because of performance
issues when querying heavily metadata relations, the tool relies
on tables which are materialized views, although using views
directly would have been a preferred option if possible. The
development of Salix uncovered multiple issues with both
implementations of the information schema.

B. Advice classification and project grading

The 47 issues reported by our SQL queries from the stan-
dard information schema are named advices, as the user is free
to ignore them. Although the performed checks are basic and
syntactic, we think that they reflect the quality of the schemas.
For instance, style advices help with understandability, and
consistency advices help with maintainability. A detailed list
of advices currently implemented in our tool is available [71].
Each advice has a category (19 design, 13 style, 6 consistency,
4 version, 5 system), a severity (7 errors, 21 warnings, 14
notices, 5 informations), and a level (1 raised per database,
10 per schema, 27 per relation, 7 per attribute, 2 per role).
The severity classification is arbitrary and must be evaluated
critically by the recipient: most of them should be dealt with,
but in some cases they may be justifiable. For instance, having
a mix of MySQL back-end engines is considered inconsistent
and tagged as an error, although it may be necessary to do
so because some features (e.g. full-text indexes) are only
available with some back-ends. Moreover, detected errors do
not imply that the application is not fully functional from a
user perspective.

The 19 design advices focus on detecting design errors from
the information available in the metadata. Obviously, semantic
error, say an attribute is in the wrong relation, cannot be
guessed without understanding the application and thus are out
of reach of our automatic analysis. We rather focus on primary
and foreign key declarations, or warn if they are missing. The
rate of non-null attributes is also checked, with the underlying
assumption from our experience that most data are mandatory
in a relation. We also check the number of attributes so as to
detect a possible insufficient conception effort.

The 13 style advices focus on relation and attribute names.
Whether a name is significant in the context cannot be
checked, so we simply look at their length. Short names
are discouraged as they would rather be used as aliases in

380

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

queries, with the exception of id and pk which are accepted
as attributes. We also check that the same name does not
represent differently typed data, to avoid confusing the user.

The 6 consistency advices checks for type and schema
consistency in a project, such as type mismatches between
a foreign key and the referenced key. As databases may also
implements some of these checks, it is possible that some cases
cannot be triggered.

The 4 version advices focus on database-specific checks,
such as capabilities and transaction support, as well as ho-
mogeneous choices of back-end engines in a project. This
category could also check the actual version of a database
used looking for known bugs or obsolescence. Only MySQL-
specific version advices are currently implemented.

Finally, the 5 system advices, some of which PostgreSQL-
specific, check for weak passwords, and key and index issues.

These advices aim at helping the schema developer to
improve its relational design. We also use them in our survey
to grade projects with a mark from 0 to 10, computed by
removing points each time an advice is raised, taking more
points if the severity is high, and flooring the result to avoid
negative grades. The grading process is normalized using the
number of possible occurrences, so that larger projects do not
receive lower marks just because of the likelihood of having
more issues for their size. Also, points are not removed twice
for the same issue: for instance, if a project does not have a
single foreign key, the same issue will not be raised again on
every tables. Advices not relevant to our open-source database
schema survey, e.g., weak password checks, were deactivated.

C. Survey statistical validation
The data collected suggest the influence of some parameters

on others. These results deal with general facts about the
projects (say foreign keys are more often used with Post-
greSQL) or about their grading (say MySQL projects get lower
marks). In order to determine significant influences, we ap-
plied Pearson’s chi-square tests [72] to compute probabilistic
degrees of certainty. Beware that these statistical validations
hold for our data set only. It is possible that some unwanted
bias in the project selection process makes statements that are
in reality false appear true, and vice versa. We followed a
one project one vote principle in our analyses, so that these
validations do not take into account the projects sizes or
popularity. Also, our software, as all software, may include
bugs with unexpected consequences. Each checked assertion
is labeled with an expression indicating the degree of certainty
of the influence of one parameter on an other:

very sure The probability is 1% or less to get a result as or
more remote from the average. Thus we conclude that there
is an influence, with a very high degree of certainty.

rather sure The probability of getting such a result is
between 1% and 5% (the usual statistical threshold). Thus
there is an influence, with a high degree of certainty.

marginally sure The probability is between 5% and 25%:
such a result may have been obtained even if there is no
influence. The statement must be taken with a pinch of salt.

not sure The probability is over 25%, or there is not enough
available data to compute it. The test cannot assert that there

is a significant influence. Obviously, no such assertion was
included in this survey.

The rational for choosing Pearson’s chi-square test is that it
does not make any assumption about the distribution of values.
However, it is crude, and possibly interesting and somehow
true results may not be validated. Moreover, the test requires
a minimal population, which is not easily reached on our
small data set especially when criteria are crossed. Finally, it
needs to define distinct populations: for grades or sizes, these
populations are cut at the median value in order to perform
the test on balanced partitions.

We also computed a correlation matrix to look for possible
inter-parameter influence. The result suggested that the param-
eters are pretty independent beyond the obvious links (say the
use of a non-transactional back-end is correlated with isolated
tables), and did no help uncover significant new facts.

III. PROJECTS

We discuss the projects considered in this study, grouped
by categories, technologies, sizes and release dates. We first
present how projects were selected, and then an overview.

A. Project selection

We have downloaded 512 open-source projects starting in
the first semester of 2008, adding to our comparison about
every project that uses either MySQL [73] or PostgreSQL [74]
that we could find and install with reasonable time and effort.
The database schemas included in this study are derived from
a dump of the database after installation, or from the creation
statements when found in the sources. These projects were
discovered from various sources: lists and comparisons of
software on Wikipedia (Software lists about: photo galleries,
content management systems, Internet forums, reference man-
agement, issue tracking systems, wikis, social networking,
church management, student information systems, accounting,
weblog, Internet relay chat, health-care, genealogy, etc.) and
other sites; package dependencies from Linux distributions
such as Debian [75] or Ubuntu [76] requiring databases;
security advisories mentioning SQL [77]; searches on Source-
Forge [78] which use SQL databases.

Some projects were fixed manually because of various
issues, such as: the handling of double-dash comments by
MySQL, attribute names (e.g., out) rejected by MySQL, bad
foreign key declarations or other incompatibilities detected
when the projects were forced to use the InnoDB back-end
instead of MyISAM, or even some PostgreSQL table defini-
tions including a MySQL specific syntax that were clearly
never tested. A particular pitfall of PostgreSQL is that by
default syntax errors in statements from an SQL script are
ignored and the interpreter simply jumps to the next statement.
When installing a project, the flow of warnings often hides
these errors. Turning off this feature requires modifying the
script, as no command option disables it. More than a dozen
PostgreSQL projects contained this kind of issues, which
resulted in missing tables or ignored constraint declarations.

381

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Project Total MySQL PgSQL Both Tables Atts/table
category nb % nb % nb % nb % avg med avg med

CMS 83 16.2 71 18.4 1 3.3 11 11.5 36.6 23 6.6 6.7
System 48 9.4 26 6.7 1 3.3 21 21.9 25.2 9 10.9 7.1
Project 28 5.5 15 3.9 5 16.7 8 8.3 25.4 19 6.9 7.0
Blog 27 5.3 22 5.7 0 0.0 5 5.2 26.8 21 6.9 6.8
Market 22 4.3 21 5.4 0 0.0 1 1.0 53.0 28 7.6 7.2
Forum 19 3.7 17 4.4 0 0.0 2 2.1 23.1 19 8.3 8.6
Accounting 18 3.5 11 2.8 6 20.0 1 1.0 87.8 45 8.8 8.8
Game 16 3.1 16 4.1 0 0.0 0 0.0 26.4 22 6.6 6.9
Mail 16 3.1 8 2.1 1 3.3 7 7.3 10.1 6 5.4 5.0
IRC 13 2.5 6 1.6 1 3.3 6 6.3 14.3 15 6.8 5.8
Homepage 12 2.3 11 2.8 0 0.0 1 1.0 5.1 4 7.0 7.0
Healthcare 11 2.1 6 1.6 2 6.7 3 3.1 89.5 71 11.5 9.5
Phone 11 2.1 5 1.3 2 6.7 4 4.2 18.2 9 14.6 9.0
Address 10 2.0 10 2.6 0 0.0 0 0.0 7.7 7 7.7 7.9
Genealogy 10 2.0 8 2.1 1 3.3 1 1.0 16.4 12 8.4 8.6
Photo 10 2.0 9 2.3 0 0.0 1 1.0 20.2 16 7.1 7.3
Community 9 1.8 7 1.8 0 0.0 2 2.1 17.3 12 8.1 8.0
Music 9 1.8 8 2.1 1 3.3 0 0.0 16.7 8 5.0 6.0
P2P 9 1.8 8 2.1 0 0.0 1 1.0 11.9 7 7.0 8.0
Reference 9 1.8 8 2.1 0 0.0 1 1.0 15.8 16 11.7 8.0
Wiki 9 1.8 7 1.8 1 3.3 1 1.0 15.7 9 5.6 5.7
Calendar 8 1.6 7 1.8 1 3.3 0 0.0 11.1 8 6.1 6.8
Advert 7 1.4 7 1.8 0 0.0 0 0.0 4.0 2 9.0 8.4
Search 6 1.2 6 1.6 0 0.0 0 0.0 18.0 20 6.0 6.0
Student 6 1.2 6 1.6 0 0.0 0 0.0 35.5 28 6.5 6.7
Teaching 6 1.2 3 0.8 1 3.3 2 2.1 13.5 5 4.9 5.3
Conference 5 1.0 4 1.0 1 3.3 0 0.0 73.8 32 6.8 6.2
FAQ 5 1.0 3 0.8 0 0.0 2 2.1 25.0 30 6.6 5.3
Library 5 1.0 4 1.0 1 3.3 0 0.0 63.8 72 7.2 7.3
Survey 5 1.0 3 0.8 0 0.0 2 2.1 25.0 18 6.4 6.4

TABLE I
MAIN CATEGORIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

Project Total MySQL PgSQL Both Tables Atts/table
technology nb % nb % nb % nb % avg med avg med
PHP 399 77.9 335 86.8 8 26.7 56 58.3 29.3 16 7.4 7.2
C 38 7.4 12 3.1 5 16.7 21 21.9 21.3 9 11.5 8.3
Java 22 4.3 8 2.1 6 20.0 8 8.3 67.5 23 9.3 8.2
Perl 21 4.1 10 2.6 5 16.7 6 6.3 44.0 29 6.7 6.7
SQL 8 1.6 6 1.6 1 3.3 1 1.0 27.3 11 4.9 5.0
C++ 7 1.4 5 1.3 1 3.3 1 1.0 11.4 6 15.3 6.0
Python 7 1.4 4 1.0 2 6.7 1 1.0 42.9 17 6.5 6.2
Ruby 7 1.4 4 1.0 2 6.7 1 1.0 49.5 16 7.4 6.7

TABLE II
MAIN TECHNOLOGIES OF PROJECTS, WITH COUNTS, DATABASE SUPPORT AND SIZES

B. Overview of projects

We have studied the relational schemas of 512 (see appendix
for the full list) open-source projects based on databases: 482
of these run with MySQL, 126 with PostgreSQL, including 96
on both. A project supporting PostgreSQL is very likely to sup-
port also MySQL (76%), although the reverse is not true (only
19%) (very sure), outlining the relative popularity of these
tools. Only 30 projects are PostgreSQL specific. Although
there is no deliberate bias in the selection process described in
the previous section, where we aimed at completeness, some
implicit bias remain nevertheless: for instance, as we can speak
mostly English and French, we found mostly international
projects advertised in these tongues; Table I shows main
project categories, from the personal mundane (game, home-
page) to the professional serious (health-care, accounting,

system). Table II shows the same for project technologies.
Projects in rare categories or using rare technologies do not
appear in these cut-off tables. The result is heavily slanted to-
wards PHP web applications (77%), which seems to reflect the
current trend of open-source programming as far as the number
of projects is concerned, without indication of popularity or
quality. The ratio of PHP projects increases from PostgreSQL
only support (26%) to both database support (58%) (very sure)
to MySQL only support (86%) (very sure): PHP users tend to
choose specifically MySQL, possibly because of traditional
LAMP (Linux, Apache, MySQL, PHP) setups advertised with
PHP programming. For instance, a search on the Amazon
website in January 2012 returns 18 times more results with
PHP MySQL compared to PHP PostgreSQL.

The survey covers 18993 tables (MySQL 13494, Post-

382

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Advice Lvl. Cat. Sev. MySQL PostgreSQL
Proj % Adv % Proj % Adv %

Schema without any FK sch. design error 425 88 425 88 70 55 70 55
Tables without PK nor Unique table design error 262 54 1521 11 76 60 1010 18
FK type mismatch table consist. error 2 0 17 0 10 7 153 2
Backend engine inconsistency sch. version error 30 6 30 6 0 0 0 0
FK length mismatch table consist. error 4 0 6 0 2 1 10 0
Integer PK but no other key table design warn 437 90 7470 55 106 84 2509 45
Homonymous heterogeneous attributes att. style warn 296 61 2294 2 76 60 573 1
Unsafe backend engine used in schema sch. version warn 433 89 433 89 0 0 0 0
Attribute count per table over 40 table design warn 98 20 220 1 25 19 91 1
Isolated Tables table design warn 30 6 979 7 40 31 1300 23
Tables without PK but with Unique table design warn 117 24 405 3 15 11 40 0
Unique nullable attributes att. design warn 73 15 261 0 23 18 172 0
Nullable attribute rate over 80% sch. design warn 34 7 34 7 25 19 25 19
Redundant indexes table system warn 0 0 0 0 23 18 196 3
Attribute name length too short att. style warn 27 5 91 0 16 12 51 0
Large PK referenced by a FK table design warn 10 2 118 0 19 15 216 3
Table name length too short table style warn 16 3 23 0 7 5 17 0
Composite Foreign Key table design warn 5 1 19 0 8 6 26 0
FK not referencing a PK table design warn 2 0 16 0 7 5 23 0
Redundant FK table system warn 1 0 1 0 2 1 6 0
Non-integer Primary Key table design note 268 55 2261 16 81 64 1729 31
MySQL is used base version note 482 100 482 100 0 0 0 0
Attribute count per table over 20 table design note 230 47 684 5 60 47 421 7
Tables with Composite PK table design note 196 40 1781 13 63 50 703 12
Attribute name length quite short att. style note 201 41 748 0 49 38 244 0
Attribute named after its table att. style note 139 28 3114 2 42 33 5033 9
Table without index table system note 0 0 0 0 60 47 719 13
Nullable attribute rate in 50-80% sch. design note 76 15 76 15 33 26 33 26
Table name length quite short table style note 70 14 102 0 28 22 52 0
Table with a single attribute table design note 74 15 419 3 26 20 91 1
Mixed attribute name styles table style note 115 23 1007 7 1 0 37 0
Mixed table name styles sch. style note 51 10 261 54 8 6 22 17
Attribute name length short att. style info 326 67 2911 2 81 64 1047 2
Unsafe backend engine used on table table version info 433 89 10423 77 0 0 0 0
Nullable attribute rate in 20-50% sch. design info 137 28 137 28 41 32 41 32
Table name length short table style info 136 28 258 1 38 30 81 1

TABLE III
LIST OF RAISED ADVICES AND DETAILED COUNTS ABOUT THE 512 PROJECTS

greSQL 5499) containing 166906 attributes (MySQL 114561,
PostgreSQL 52345). The project sizes average at 31.2 tables,
median 16 (from 1 to 607), with 2 to 10979 attributes.
MySQL projects average at 28 tables, median 15 (from 1
to 466), with 238 attributes (from 2 to 9725), while Post-
greSQL projects average 44 tables, median 18 (from 1 to
607), with 415 attributes (from 5 to 10979 attributes). The
largest MySQL project is OSCARMCMASTER, and the largest
PostgreSQL project is ADEMPIERE. Detailed table counts raise
from projects with MySQL only support (average 26.4, me-
dian 15), to both databases (average 34.0, median 17) or
PostgreSQL only (average 75.5, median 30.5). MySQL-only
projects are smaller than other projects (marginally sure):
more ambitious projects seem to use feature-full but maybe
less easy to administrate PostgreSQL. However obvious this
assertion would seem, the statistical validation is weak because
of the small number of projects with PostgreSQL. MySQL
projects that use the InnoDB back-end are much larger that
their MyISAM counterpart (very sure) and are comparable
to projects based on PostgreSQL, with 53 tables on average.
The number of attributes per table is comparable although

smaller for MySQL (average 8.5 – median 7.0) with respect
to PostgreSQL (average 9.5 – median 6.0).

The per-category tables and attributes-per-table counts
shows that accounting, health-care and market projects seem
more ambitious than other categories (marginally sure). The
per-technology analysis counts suggests that Perl, Python and
Java projects are larger than those based on other technologies
(marginally sure).

These projects are mostly recent, at least according to
their status at an arbitrary common reference date chosen as
March 31, 2009: 310 (60%) were updated in the last year,
including 179 (34%) in the last six months, and the others are
either obsolete or stable. The rate of recently updated projects
raises from MySQL-only projects (55%) to projects with
both support (73%) (very sure) or with PostgreSQL support
at (76%) (very sure), but there is no significant difference
on the recent maintenance figures between projects that are
PostgreSQL-only and projects with both databases support.

New data about the status of projects were collected on
January 9, 2012. We could not find 69 projects in this new
survey (61 MySQL-only, 1 PostgreSQL-only and 7 with
both support). Moreover, 153 projects are stale, that is not

383

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

updated between the 2009 and 2012 data (128 MySQL-only,
6 PostgreSQL-only and 19 with both support). Nearly half
of the MySQL projects are stale or lost, while it is only one
quarter of the PostgreSQL projects. MySQL-only projects are
more often lost or stale than others in 2012 (very sure), and
it is still true for MySQL projects compared to PostgreSQL-
only projects (rather sure). More generally, on these new data,
MySQL-only projects are less maintained than others (very
sure), and it is still true compared to projects with both support
(very sure) and compared to projects with PostgreSQL-only
support (rather sure). There are about six months (180 days)
between the median update date of MySQL-only projects and
PostgreSQL-only projects. Even if we ignore lost and stale
projects to focus on projects that were indeed updated in
the 2012 data, PostgreSQL-only projects were more recently
updated than others (rather sure). Yet again, there is no
significant update status difference between projects with
PostgreSQL support and projects that support both databases
on the 2012 data. To conclude, the maintenance of PostgreSQL
projects seems more intense: projects that include PostgreSQL
support were updated more recently both in 2009 and in 2012.

IV. SURVEY RESULTS

We now analyze the open-source projects of our survey
by commenting actual results on MySQL and PostgreSQL,
before comparing them. Table III summarizes the advices
raised for MySQL and PostgreSQL applications. The first four
columns give the advice title, level, category and severity. Then
four columns for each database list the results. The first two
columns hold the number of projects (i.e. schema) tagged and
the overall rate. The last two columns give the actual number
of advices and rate, which varies depending on the level. A
per-project aggregate is also available online [71].

A. Primary keys

A majority of MySQL projects (262 – 54%) have at
least one table without neither a primary key nor a unique
constraint, and this is even worse with PostgreSQL projects
(76 – 60%). The certainty of the observation (rather sure) on
MySQL-only vs PostgreSQL-only is low because of the small
number of projects using the later. As 11% of all MySQL
tables and 18% of all PostgreSQL tables do not have any
key, the view of relations as sets is hindered as tuples are not
identified, and data may be replicated without noticing.

A further analysis gives some more insight. For MySQL,
41% of tables without key do have some KEY option for
indexes, but without the UNIQUE or PRIMARY keyword that
makes it a key. Having KEY not always declaring a key
was clearly a bad design choice. A little 5% of tables
without key have an auto increment attribute, which suggest
uniqueness in practice, but is not enforced. Also, the missing
key declaration often seems to be composite. Some tables
without key declarations are intended as one tuple only, say
to check for the version of the schema or configuration of
the application. Similarly, 28% of PostgreSQL tables without
key have an index declared. Moreover, 22% have a SERIAL

(auto incremented) attribute: Many designers seem to assume

wrongly that SERIAL implies a key. A comment found in
the SQLGREY project source suggests that some keys are not
declared because of MySQL key size limits.

A simple integer primary key is provided on 61% of
tables, with a significantly decreasing rate from MySQL-only
(65%) to both database support (62%) (rather sure) down to
PostgreSQL-only support (39%) (very sure). If these primary
keys were non-semantic numbers to identify tuples, one would
expect at least one other key declared on each table to identify
the underlying semantic key. However it is not the case: most
(85%) of these tables do not have any other key. When a
non simple primary key is available, it is either based on
another type or a composite key. The composite keys are
hardly referenced, but as the foreign keys are rarely declared
one cannot be sure, as shown in the next section.

B. Referential integrity

Foreign keys are important for ensuring data consistency
in relational databases. They are supported by PostgreSQL,
and by MySQL but with some back-end engines only. In
particular, the default MyISAM back-end does not support
foreign keys, and this feature was deemed noxious in previous
documentations: Version 3.23 includes a Reasons NOT to Use
Foreign Keys constraints Section arguing that they are only
useful to display diagrams, hard to implement and terrible for
performance. Foreign key constraints are introduced with the
InnoDB engine starting with MySQL 3.23.44 in January 2001.
Although the constraints are ignored by the default MyISAM
engine, the syntax is parsed, and triggers the creation of
indexes. Version 5.1 documentation has a Foreign Keys Section
praising the feature, as it offers benefits, although it slows
down the application. Caveats describe the inconsistencies that
may result from not using transactions and referential integrity.
From a pedagogical perspective, this is a progress.

Foreign key constraints have long been a missing or avoided
feature in MySQL and this seems to have retained momentum
in many projects, as it is not supported by the default engine:
few MySQL projects (57 – 11% of all projects, but 72% of
those with InnoDB) use foreign key constraints. The foreign
key usage rate is slightly higher (20%) when considering
projects supporting both databases (marginally sure).

Among MySQL projects, 403 (83%) use only the default
MyISAM back-end engine, thus do not have any foreign key
checks enabled. In the remainder, 49 (10%) use only InnoDB,
and 30 (6%) use a combination of both. More projects (21 –
21%) rely on InnoDB among those supporting both MySQL
and PostgreSQL (marginally sure). A third of InnoDB projects
(30 – 37%) are not consistent in their engine choice: 34% of
tables use MyISAM among the 79 InnoDB projects. A legiti-
mate reason for using MyISAM tables in an InnoDB project is
that full-text indexes are only available with the former engine.
However, this only applies to 11 tables in 6 projects, all other
1441 MyISAM tables in InnoDB projects are not justified by
this. A project may decide to store transient data in an unsafe
engine (e.g., memory) for performance reason. However, this
case is rare, as it represents only 15 tables in 8 projects. About
26% of tables use MyISAM as a default implicit choice in

384

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

InnoDB projects, similar to 28% when considering all MySQL
projects. Some engine inconsistencies seems due to forgotten
declarations falling back to the default MyISAM engine.

We have forced the InnoDB back-end engine for all MySQL
projects: 22 additional projects declare 92 new foreign key
constraints previously ignored. These new foreign keys are
very partial, targeting only some tables. They allow to uncover
about two dozen issues, either because the foreign key declara-
tion were failing (say from type errors detected by MySQL) or
thanks to analyses from our tool. Additional checks based on
foreign keys cannot be raised on schemas that do not declare
any of them. Thus isolated tables warnings must be compared
to the number of projects that do use referential constraints: 30
– 52% of these seem to have forgotten at least some foreign
keys, and it is actually the case by checking some of these
projects manually.

The foreign key usage is better with PostgreSQL projects,
although it is still a minority (56 projects – 44%). This rate
is close to the foreign key usage of MySQL projects when
considering InnoDB projects only. It gives a better opportunity
for additional advices to be checked. The foreign key usage
rate raises significantly to 74% when considering PostgreSQL-
only projects vs dual support projects (very sure).

On the very few projects with partial foreign key declara-
tions, several of these declaration reveal latent bugs, including
type mismatch, typically CHAR targeting a VARCHAR or vice
versa, or different integers, and type length mismatch, usually
non matching VARCHAR sizes. We found 23 such bugs out
of the small 1979 declared MySQL attribute constraints, and
163 among the 4424 PostgreSQL constraints. The rate is
greater for PostgreSQL, possibly helped by the use of SERIAL
which may be considered as a primary key by developers
without being declared as such. There are also 153 important
warnings related to foreign keys raised for MySQL, and 265
for PostgreSQL. If this error ratio is extrapolated to the number
of tables, hundreds of additional latent bugs could be detected
using the missing referential constraints.

C. Miscellaneous issues

More issues were found about style, attribute constraints
and by comparing projects with dual database support.

There is 13669 noticeable style issues raised from our
analyses (7640 for MySQL, 6029 for PostgreSQL), relating
to table or attribute names, including a number of one-letter
attribute names or two-letters table names. The id attribute
name is used in the SLASH project with up to 6 different types,
mixing various integers and fixed or variable length text types.
In PHPETITION, a date attribute has types DATE, DATETIME or
VARCHAR. 81% of MySQL projects and 78% of PostgreSQL
have such style issues.

Many projects do not bother with NOT NULL attribute
declarations: 110 MySQL projects (22%) and 58 PostgreSQL
projects (46%) have over half of their attributes null-able. This
does not reflect the overall use of constraints: for MySQL,
the average number of key-related constraints per table is
1.07 (from BOARDPLUS 0.00 to JWHOISSERVER 3.57), while for
PostgreSQL it is 1.24 (from ANDROMEDA 0.00 to ADEMPIERE

4.25). Project ANDROMEDA is astonishing: there is not a single
constraint declared (no primary key, no foreign key, no unique,
no not null) on the 180 tables, although there are a number of
non-unique indexes and of sequences.

It is interesting to compare the schemas of the 96 projects
available with both databases. This dual support must not
be taken at face value: PostgreSQL support is often an
afterthought and is not necessarily functional, including project
such as ELGG, TAGADASH, QUICKTEAM or TIKIWIKI where some
PostgreSQL table declarations use an incompatible MySQL
syntax; 38 (39%) projects have missing tables or attributes
between the MySQL and PostgreSQL versions: 398 tables and
191 individual attributes are missing or misspelled one side or
another. Among the missing tables, 73 look like some kind
of sequence, and thus might be possibly legitimate, although
why the auto increment feature was not satisfactory is unclear.
At the minimum, the functionalities are not the same between
the MySQL and PostgreSQL versions of these projects.

D. Overall quality
We have computed a synthetic project quality evaluation

ranging from 10 (good) to 0 (bad) by removing points based
on advice severity (error, warning, notice), level (schema,
table, attribute) and project size. The MySQL projects quality
average is 4.4± 1.4 (from 9.5 JWHOISSERVER to 0.0 MANTIS),
significantly lower than PostgreSQL 5.4 ± 1.8 (from 9.4
COMICS to 0.0 NURPAWIKI) (very sure). This does not come
as a surprise: most MySQL projects choose the default data-
unsafe MyISAM engine, hence incur a penalty. Also, the
multiplicity of MySQL back-ends allows the user to mix them
unintentionally, what is not possible with PostgreSQL. When
all MySQL-specific advices are removed, the quality measure
is about the same for both databases. However, as PostgreSQL
schemas provide more information about referential integrity
constraints, they are also penalized as more advices can
be raised based on the provided additional information. For
projects which support both databases, the grade’s correlation
is significant and positive (0.55), which is logical as the same
style warnings are triggered on both sides.

Table IV shows the projects per quality decile. The
PostgreSQL-only project quality is more spread than MySQL
projects (very sure). Table V compares the quality of projects
according to size, with small up to 9, medium up to 29, and
large otherwise. The quality is quite evenly distributed among
sizes, which suggests that our effort to devise a size-neutral
grading succeeded. Table VI compares quality based on the
project categories. The number of projects in each category is
too small to draw deep conclusions. Table VII addresses the
technology used in the project: Java and Python lead while C,
PHP and Ruby are near bottom. PHP projects take less care of
their relational design (rather sure), but this may be explained
by the fact that MySQL is used more often in these projects,
and that an unsafe engine is selected more often (very sure).
Yet again, the very small count of projects with some of the
technologies do not allow to draw deep conclusion about them.
Finally, Table VIII and Table IX show that quality evaluation
does not change much depending whether projects are updated
more often.

385

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 0

 25

 50

 75

 100

 125

 150

 175

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 25

 50

 75

 100

 125

 150

 175

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

MySQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality

 0

 5

 10

 15

 20

 25

 30

 35

 0 1 2 3 4 5 6 7 8 9 10
 0

 25

 50

 75

 100

n
u

m
b

e
r

o
f

p
ro

je
c
ts

c
u

m
u

la
ti
v
e

 %

PostgreSQL quality
TABLE IV

QUALITY PER DECILE

MySQL projects
Size nb % avg σ min med max

small 181 38 4.7 ± 1.4 0.0 4.5 9.5
medium 164 34 4.2 ± 1.3 0.0 4.3 8.7
large 137 28 4.3 ± 1.4 0.0 4.4 8.2

PostgreSQL projects
Size nb % avg σ min med max

small 44 35 5.3 ± 2.0 0.0 5.3 9.4
medium 37 29 5.5 ± 1.5 2.0 5.3 9.3
large 45 36 5.3 ± 2.0 0.0 5.7 8.1

TABLE V
QUALITY PER SIZE

MySQL projects
Category nb % avg σ min med max

irc 12 2 5.1 ± 1.3 2.0 5.4 7.0
mail 15 3 4.4 ± 1.7 1.7 4.7 8.4
project 23 5 4.3 ± 1.4 0.0 4.6 6.2
system 47 10 4.5 ± 1.4 0.0 4.5 9.5
game 16 3 4.4 ± 2.0 0.9 4.5 9.1
blog 27 6 4.4 ± 0.9 2.5 4.5 7.2
forum 19 4 4.3 ± 0.9 2.4 4.4 5.7
cms 82 17 4.2 ± 1.1 0.0 4.3 8.3
homepage 12 2 4.1 ± 0.9 3.0 4.1 5.9
market 22 5 4.0 ± 1.4 1.8 4.0 8.2
accounting 12 2 4.4 ± 1.9 1.9 3.6 7.5

PostgreSQL projects
Category nb % avg σ min med max

teaching 3 2 7.9 ± 2.2 5.3 8.9 9.4
blog 5 4 6.6 ± 1.1 5.3 6.4 8.2
accounting 7 6 5.9 ± 2.0 2.0 6.4 7.8
cms 12 10 6.1 ± 1.3 4.0 5.9 8.1
irc 7 6 5.4 ± 1.7 2.0 5.6 7.4
phone 6 5 5.2 ± 1.5 3.1 5.3 7.4
project 13 10 5.4 ± 1.6 2.2 5.2 9.3
system 22 17 5.0 ± 2.1 1.6 5.1 9.0
mail 8 6 4.9 ± 1.6 3.0 4.8 7.5
healthcare 5 4 3.2 ± 2.7 0.0 3.3 6.6

TABLE VI
QUALITY PER PROJECT MAIN CATEGORIES

MySQL projects
Techno. nb % avg σ min med max
python 5 1 5.9 ± 2.0 3.7 6.2 8.2
sql 7 1 4.0 ± 2.5 0.0 5.3 5.9
java 16 3 4.8 ± 2.8 0.0 5.2 9.5
c++ 6 1 4.8 ± 1.2 3.3 4.5 7.0
c 33 7 4.6 ± 1.4 2.0 4.4 8.4
php 391 81 4.4 ± 1.2 0.0 4.4 9.1
perl 16 3 3.9 ± 2.1 0.0 4.3 8.7
ruby 5 1 4.5 ± 0.9 3.7 4.2 5.6

PostgreSQL projects
Techno. nb % avg σ min med max
python 3 2 7.0 ± 0.6 6.6 6.8 7.7
java 14 11 6.1 ± 2.4 0.0 6.8 9.3
c++ 2 2 6.7 ± 1.0 6.0 6.7 7.4
perl 11 9 6.0 ± 1.9 2.0 6.1 8.9
sql 2 2 5.8 ± 5.1 2.2 5.8 9.4
php 64 51 5.2 ± 1.6 0.0 5.4 8.2
ruby 3 2 5.1 ± 1.2 4.0 5.0 6.3
c 26 21 4.8 ± 1.9 1.6 5.0 9.0

TABLE VII
QUALITY PER PROJECT MAIN TECHNOLOGIES

MySQL projects
Date nb % avg σ min med max

recent 162 34 4.3 ± 1.3 0.0 4.4 8.6
older 320 66 4.4 ± 1.4 0.0 4.4 9.5

PostgreSQL projects
Date nb % avg σ min med max

recent 59 47 5.3 ± 1.6 0.0 5.3 9.3
older 67 53 5.4 ± 2.0 0.0 5.6 9.4

TABLE VIII
QUALITY PER PROJECT UPDATE IN MARCH 2009

MySQL projects
Date nb % avg σ min med max

recent 112 23 4.3 ± 1.3 0.0 4.5 7.8
older 155 32 4.4 ± 1.5 0.0 4.5 9.5
stale 147 30 4.5 ± 1.4 0.9 4.4 9.1
lost 68 14 4.2 ± 1.0 0.0 4.2 6.3

PostgreSQL projects
Date nb % avg σ min med max

recent 41 33 5.7 ± 1.4 0.0 5.6 7.7
older 52 41 5.2 ± 1.9 0.0 5.3 9.3
stale 25 20 5.1 ± 2.2 0.7 5.3 9.4
lost 8 6 5.5 ± 2.3 2.0 5.5 9.0

TABLE IX
QUALITY PER PROJECT UPDATE IN JANUARY 2012

386

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION

This is the first survey on the quality of relational schemas
in open-source software. The overall quality results are worse
than envisioned at the beginning of the study. Although we
did not expect a lot of perfect projects, having so few key
declarations and referential integrity constraints came as a
surprise. We must acknowledge that our assumption that data
are precious, and that the database should help preserve its
consistency by enforcing integrity constraints and implement-
ing transactions, is not shared by most open-source projects,
especially when based on MySQL and PHP. This is illustrated
by bug report 15441 [79] about missing keys on tables in
MEDIAWIKI, the software behind Wikipedia: it had no effect on
the software after more than three years, although it triggered
some discussions at the beginning of 2012.

We can only speculate about the actual reasons that explain
the poor quality of the surveyed schemas in open-source
projects. One way to investigate further these issues would be
to collect data about and from the people who designed the
relational schemas of these projects. For instance, if MySQL or
PHP users are found less savvy about software development,
that could account for a lower quality and maintenance of
the corresponding projects. Some interesting questions could
be investigated: What are their educational and professional
background? Did they receive any formal education about
computer programming in general? About relational database
design in particular? Do they consider database design as an
important issue? How are they perceiving the actual quality of
their schemas, and the quality of their software? When did they
started database design? For MySQL, what database engines
do they use? Did the initial policy of discouraging foreign key
usage influence them? We attempted to conduct such a survey
by contacting some people by e-mail and encouraging them to
fill a web form online. The return ratio of this survey attempt
was null. This establishes the fact that schema designers in
open-source software do not wish to answer such questions,
with a very high degree of accuracy.

Another relevant question is whether our results would be
different if we studied closed-source projects developed by
payed professionals, possibly using non open-source database
technologies from Oracle or Microsoft. However, accessing
such data at a level compatible with statistical validation seems
very difficult. If we were to believe some of our experience,
the results could end up being quite similar, especially when
considering PHP/MySQL projects.

It is interesting to note that the first author contributed
both to the best PostgreSQL project (COMICS), and to one of
the worst MySQL project (SLXBBL), which is Salix executed
on its own schema. This deserves an explanation: COMICS

is a small database used for teaching SQL. The normalized
schema emphasizes clarity and cleanliness with a pedagogic
goal in mind. Even so, the two raised warnings deserve to
be fixed, although one would require an additional attribute.
SLXBBL tables generate a lot of errors, because they are
views materialized for performance issues. Also, they rely on
MyISAM because some SQL create table statements must be
compatible with both MySQL and PostgreSQL to ease the tool

portability. Nevertheless, the comparison of schemas allowed
to find one bug: an attribute had a different name, possibly
because of a bad copy-paste.

Acknowledgement

We are indebted to Pierre Jouvelot for helping with the title
and proof reading. We also thank the anonymous reviewers
for their helpful remarks that we tried to address for the better
of the paper.

REFERENCES

[1] F. Coelho, A. Aillos, S. Pilot, and S. Valeev, “A Field Analysis of Rela-
tional Database Schemas in Open-source Software,” in DBKDA: 3rd Int.
Conf. on Advances in Databases, Knowledge, and Data Applications,
IARIA, Ed., no. ISBN:978-1-61208-002-4, St Marteen, The Netherlands
Antilles, Jan. 2011, pp. 9–15.

[2] J. M. Gonzales-Barahona, P. Heras Quiros, and T. Bollinger, “A brief
history of free software and open source,” IEEE Software, pp. 32–33,
Jan. 1999.

[3] R. Stallman, “GNU Project announcement,” http://www.gnu.org/gnu/
initial-announcement.html (2012-01-06), Sep. 1983.

[4] ——, “FSF: Free Software Foundation,” Oct. 1985, www.fsf.org, (2012-
01-06).

[5] A. Deshpande and D. Riehle, “The Total Growth of Open Source,” in
4th Conf. on Open Source Systems (OSS). Springer Verlag, 2008, pp.
197–209.

[6] L. F. Wurster, “As Number of Business Processes Using Open-Source
Software Increases, Companies Must Adopt and Enforce an OSS Policy,”
Gartner Inc, Sep. 2008, iD Number: G00160997.

[7] D. C. Plummer, B. Gammage, K. Harris-Ferrante, and J. Lopez, “Pre-
dicts 2010: Revised Expectations for IT Demand, Supply and Oversight,”
Gartner, Inc, Dec. 2009, iD Number: G00173560.

[8] “Open Source Licences,” http://opensource.org (2012-01-06), Feb. 1998.
[9] K. Crowston, H. Annabi, and J. Howison, “Defining open source

software project success,” in 24th Int. Conf. on Information Systems
(ICIS), 2003, pp. 327–340.

[10] S. Görling, “A critical approach to open source software,” http://flosshub.
org/196 (2012-01-06), 2003.

[11] C. Gacek, T. Lawrie, and B. Arief, “The many meanings of open source,”
IEEE Software, vol. 21, pp. 34–40, 2004.

[12] E. von Hippel, B. Mako Hill, and K. Lakhani, “Free and opensource
software research community,” http://opensource.mit.edu, now offline,
Nov. 2001.

[13] A. Hars, “Working for free? motivations for participating in open-source
projects,” Int. J. of Electronic Commerce, vol. 6, pp. 25–39, 2002, also
IEEE 34th Hawaii Int. Conf. on System Sciences 2001.

[14] G. Hertel, S. Niedner, and S. Herrmann, “Motivation of software devel-
opers in open source projects: An internet-based survey of contributors
to the linux kernel,” Research Policy, vol. 32, pp. 1159–1177, 2003.

[15] I. horn Hann, J. Roberts, S. Slaughter, and R. Fielding, “An empirical
analysis of economic returns to open source participation (unpublished
working paper),” 2004.

[16] A. Bonaccorsi and C. Rossi, “Altruistic individuals, selfish firms? the
structure of motivation in open source software,” Santa Anna School of
Advanced Studies. Institute for Informatics and Telematics, Tech. Rep.,
Jan. 2004, Fist Monday, http://firstmonday.org/ (2012-01-06).

[17] K. J. Stewart and S. Gosain, “The impacts of ideology on effectiveness
in open source software development teams (working paper),” MIS
Quarterly, vol. 30, pp. 291–314, 2005.

[18] J. E. Cook, “Open source development: An arthurian legend. making
sense of the bazaar,” in Proceedings of the 1st Workshop on Open Source
Software, 2001.

[19] M. S. Elliott and W. Scacchi, “Mobilization of software developers: The
free software movement,” 2006.

[20] ——, “Free software: A case study of software development in a virtual
organizational culture,” in a Virtual Organizational Culture, Working
Paper, Institute for Software Research, Tech. Rep., 2003.

[21] M. S. Elliott, “Free software developers as an occupational community:
Resolving conflicts and fostering,” in Collaboration, Proc. ACM Int.
Conf. Supporting Group Work, 2003, pp. 21–30.

[22] K. Healy and A. Schussman, “The ecology of open-source software
development,” Dept of Sociology, Univ. of Arizona, Tech. Rep., 2003.

387

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[23] K. Crowston and H. Annabi, “Effective work practices for software
engineering: Free/libre open source software development,” in in Proc.
of WISER. ACM Press, 2004, pp. 18–26.

[24] W. Seidel and C. Niedermeier, “Open source software: Leveraging
software quality in the industrial context,” OSSIE, 2003.

[25] W. Scacchi, J. Feller, B. Fitzgerald, S. Hissam, and K. Lakhani,
“Understanding Free/Open Source Software Development Processes,”
Software Process: Improvement and Practice, vol. 11, no. 2, pp. 95–
105, May 2006.

[26] J. D. Herbsleb, A. Mockus, T. A. Finholt, and R. E. Grinter, “An
empirical study of global software development: Distance and speed,” in
In 23nd Int. Conf. on Software Engineering. IEEE Computer Society,
2001, pp. 81–90.

[27] B. J. Dempsey, D. Weiss, P. Jones, and J. Greenberg, “A quantitative
profile of a community of open source linux developers,” University of
North Carolina at Chapel Hill, Tech. Rep., 1999.

[28] R. A. Ghosh, R. Glott, B. Krieger, and G. Robles, “Free/libre and open
source software: Survey and study, floss, part 4: Survey of developers,”
Int. Institute of Infonomics, University of Maastricht, The Netherlands,
Tech. Rep., Jun. 2002.

[29] D. M. Nichols and M. B. Twidale, “The usability of open source
software,” First Monday, vol. 8, 2003.

[30] Eclipse Foundation, “The open source developer report, 2010 eclipse
community survey,” Tech. Rep., Jun. 2010.

[31] J. Lerner and J. Tirole, “The economics of technology sharing: open
source and beyond. working paper 10956. retrieved jun 7, 2005 http:
//www.nber.org/papers/w10956,” J. of Economic Perspectives, vol. 19,
pp. 99–120, 2004.

[32] K. M. Schmidt and M. Schnitzer, “Public subsidies for open source?
some economic policy,” 2002, cEPR Discussion Paper 3793.

[33] Netcraft Ltd, “Web Server Survey,” http://news.netcraft.com/ (2012-01-
06), 2012, running since 1995.

[34] A. Mockus, R. T. Fielding, and J. Herbsleb, “Two case studies of open
source software development: Apache and mozilla,” ACM Transactions
on Software Engineering and Methodology, vol. 11, pp. 309–346, 2002.

[35] K. R. Lakhani, “How open source software works: ”free” user-to-user
assistance,” Research Policy, pp. 923–943, 2000.

[36] B. Mishra, A. Prasad, and S. Raghunathan, “Quality and Profits Under
Open Source Versus Closed Source,” in ICIS, no. 32, 2002.

[37] I. Stamelos, L. Angelis, A. Oikonomou, and G. L. Bleris, “Code quality
analysis in open-source software development,” Information Systems J.,
2nd Special Issue on Open-Source, vol. 12, no. 1, pp. 43–60, Feb. 2002,
blackwell Science.

[38] E. Capra, C. Francalanci, and F. Merlo, “En Empirical Study on the
Relationship among Software Design Quality, Development Effort and
Governance in Open Source Projects,” IEEE Software Engineering,
vol. 34, no. 6, pp. 765–782, nov-dec 2008.

[39] R. Gobeille, “The FOSSology Project,” in Working Conf. on Mining
Software Repositories, no. 5, Leipzig, Germany, May 2008.

[40] G. Concas, M. Marchesi, A. Murgia, R. Tonelli, and I. Turnu, “On
the distribution of bugs in the eclipse system,” IEEE Transactions on
Software Engineering, vol. 99, no. PrePrints, 2011.

[41] Coverty, “Coverty scan open source report,” Coverty, White Paper, 2009.
[42] Veracode, Inc, “State of security report,” White paper, Mar. 2010.
[43] C. Graham, D. Sommer, and B. Sood, “Market Share: Relational

Database Management Systems by Operating System, Worldwide,
2006,” Gartner, Inc, Jun. 2007, iD Number: G00149469.

[44] D. Litchfield, “The Database Exposure Survey 2007,” NGSSoftware
Insight Security Research (NISR), Nov. 2007.

[45] E. F. Codd, “A relational model for large shared databanks,” Communi-
cations of the ACM, vol. 13, no. 6, pp. 377–387, Jun. 1970.

[46] ISO/IEC, “Information technology - database languages - SQL,” 2003,
standard 9075.

[47] ISO/IEC, Ed., 9075-11:2003: Information and Definition Schemas
(SQL/Schemata). ISO/IEC, 2003.

[48] W. C. Burkett, “Database Schema Design Quality Principles,” http:
//www.intergate.com/∼wcb/DbSchemaQuality.pdf, (2012-01-08), Dec.
1997.

[49] O. Herden, “Measuring Quality of Database Schemas by Reviewing –
Concept, Criteria and Tool,” in 5th Int. ECOOP Workshop on Quanti-
tative Approaches in Object-Oriented Software Engineering (QAOOSE
2001), Budapest, Hungary, Jun. 2001.

[50] J. Lemaitre and J.-L. Hainaut, “Transformation-based Framework for
the Evaluation and Improvement of Database Schemas,” in Int. Conf.
on Advanced Information Systems Engineering (CAiSE), Hammamet,
Tunisia, Jun. 2010.

[51] ——, “Quality Evaluation and Improvement Framework for Database
Schemas Using Defect Taxonomies,” in Int. Conf. on Advanced Infor-
mation Systems Engineering (CAiSE), London, United Kingdom, Jun.
2011.

[52] T. J. MacCabe, “A Complexity Measure,” IEEE Software Engineering,
vol. SE-2, no. 4, pp. 308–320, Dec. 1976.

[53] M. H. Halstead, Elements of Software Science. New York, USA:
Elsevier, 1977, no. ISBN:0444002057.

[54] H. F. Li and W. K. Cheung, “An empirical study of software metrics,”
IEEE Transactions on Software Engineering, 1987.

[55] M. Piattini, M. Genero, C. Calero, and G. Alarcos, “Data model metrics,”
in In Handbook of Software Engineering and Knowledge Engineering:
Emerging Technologies, World Scientific, 2002.

[56] M. Genero, “A survey of Metrics for UML Class Diagrams,” J. of Object
Technology, vol. 4, pp. 59–92, Nov. 2005.

[57] H. M. Sneed and O. Foshag, “Measuring legacy database structures,” in
European Software Measurement Conf. (FESMA’98), Hooft and Peeters,
Eds., 1998.

[58] M. Piattini, C. Calero, and M. Genero, “Table Oriented Metrics for
Relational Databases,” Software Quality J., vol. 9, no. 2, pp. 79–97,
2001.

[59] A. L. Baroni, C. Calero, F. Ruiz, and F. Brito e Abreu, “Formalizing
object-relational structural metrics,” in Conf. of APSI, Lisbon, no. 5,
Nov. 2004.

[60] C. Calero, M. Piattini, and M. Genero, “Empirical validation of refer-
encial integrity metrics,” Information and Software Technology, vol. 43,
no. 15, pp. 949–957, Dec. 2001.

[61] A. Bessey, K. Block, B. Chelf, A. Chou, B. Fulton, S. Hallem, C. Henri-
Gros, A. Kamsky, S. McPeak, and D. Engler, “A Few Billion Lines of
Code Later: Using Static Analysis to Find Bugs in the Real World,”
Communication of the ACM, vol. 53, no. 2, pp. 66–75, Feb. 2010.

[62] A. Cleve, J. Lemaitre, J.-L. Hainaut, C. Mouchet, and J. Henrard, “The
role of implicit schema constructs in data quality,” in Workshop on
Management of Uncertain Data (MUD), Auckland, New Zealand, Aug.
2008, pp. 33–40.

[63] A. Aillos, S. Pilot, S. Valeev, and F. Coelho, “Salix Babylonica: advices
about database relational schemas,” Software from http://coelho.net/
salix/ (2012-01-06), Aug. 2008, version 1.0.0 on 2012-01-27.

[64] F. Coelho, “PG-Advisor: proof of concept SQL script,” Mailed to
pgsql-hackers, Mar. 2004.

[65] J. Currier, “SchemaSpy: Graphical database schema metadata browser,”
Source Forge, Aug. 2005, (2012-01-06).

[66] B. Schwartz and D. Nichter, “Maatkit,” Google Code, 2007, see
duplicate-key-checker and schema-advisor. Part of the Percona Toolkit
as of 2012-01-06 (http://www.percona.com/software/percona-toolkit/).

[67] J. Berkus, “Ten ways to wreck your database,” O’Reilly Webcast, Jul.
2009, (2012-01-06).

[68] A. M. Boehm, M. Wetzka, A. Sickmann, and D. Seipel, “A Tool for
Analyzing and Tuning Relational Database Applications: SQL Query
Analyzer and Schema EnHancer (SQUASH),” in Workshop über Grund-
lagen von Datenbanken, Jun. 2006, pp. 45–49.

[69] G. Singh, “PostgreSQL Adviser,” Software at http://git.postgresql.org/
gitweb/pg adviser.git (2012-01-06), Jul. 2007.

[70] E. F. Codd, “Is Your DBMS Really Relational? Does Your DBMS Run
By The Rules?” ComputerWorld, Oct. 1985.

[71] F. Coelho, “Database quality survey projects and results,” Jan. 2012,
detailed list of projects surveyed in On the Quality of Relational
Database Schemas in Open Source Software, report A/478/CRI.
[Online]. Available: http://www.coelho.net/salix/projects.html

[72] K. Pearson, “On the Criterion that a Given System of Deviations from
the Probable in the Case of a Correlated System of Variables is such
that it Can Reasonably Be Supposed to have Arisen from Random
Sampling,” Philosophical magazine, vol. 5, no. 50, pp. 157–175, Jul-
Dec 1900, Taylor & Francis Ed, London.

[73] MySQL AB, “MySQL – Relational Database Management System,”
http://mysql.com/ (2012-01-06), May 1995.

[74] PostgreSQL Global Development Group, “PostgreSQL – Object-
Relational Database Management System,” http://postgresql.org/ (2012-
01-06), Aug. 1996, based on the Postgres, which started in 1986.

[75] “Debian,” http://debian.org/ (2012-01-06), Aug. 1993.
[76] Canonical Ltd, “Ubuntu,” http://ubuntu.com/ (2012-01-06), Oct. 2004.
[77] SecurityFocus, “Security advisories,” http://securityfocus.com/ (2012-

01-06), Jan. 1999.
[78] “Source Forge,” http://sourceforge.net/ (2012-01-06), 1999.
[79] F. Coelho, “MediaWiki bug 15441,” https://bugzilla.wikimedia.org/

show bug.cgi?id=15441 (2012-01-06), Sep. 2008.

388

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

APPENDIX
LIST OF ADVICES

1) Schema without any FK schema design error
Why use a relational database if data are not related at all?
Well, that might happen...

2) No attribute in table table design error
There must be something in a table.

3) Tables without PK nor Unique table design error
All tuples must be uniquely defined to be consistant with the
set theory. There is no unique subset of attribute which can be
promoted as a PK.

4) Nullable attribute rate over 80% schema design warning
Warning: Most of the time, attributes should be NOT NULL.
Too high a rate of nullable attribute may reveal that some fields
are lacking a NOT NULL.

5) Attribute count per table over 40 table design warning
Having so many attributes in the same table may reveal the
need for additional relations.

6) Composite Foreign Key table design warning
As for primary keys, simple foreign keys are usually better
design, and make updates easier.

7) FK not referencing a PK table design warning
A Foreign Key should rather reference a Primary Key.

8) Integer PK but no other key table design warning
A simple integer primary key suggests that some other key
must exist in the table.

9) Isolated Tables table design warning
In a database design, tables are usually linked together.

10) Large PK referenced by a FK table design warning
Having large primary keys referenced by a foreign key may
reveal data duplication, as the primary key is likely to contain
relevant information.

11) Tables without PK but with Unique table design warning
All tables should have a primary key to be consistant with
the set theory. A unique constraint may be promoted as the
primary key.

12) Attribute has a pseudo ’NULL’ text default
attribute design warning

Possibly the NULL value was intended instead of the ’NULL’
text.

13) Unique nullable attributes attribute design warning
A unique nullable attribute may be a bad design if NULL does
not have a particular semantic.

14) Nullable attribute rate in 50-80% schema design notice
Notice: Most of the time, attributes should be NOT NULL. Too
high a rate of nullable attribute may reveal that some fields are
lacking a NOT NULL.

15) Attribute count per table over 20 table design notice
Having many attributes in the same table may suggest the need
for additional relations.

16) Non-integer Primary Key table design notice
Having integer primary keys without specific application se-
mantics make updates easier.

17) Table with a single attribute table design notice
Possibly some more attributes are needed to have a semantic.

18) Tables with Composite PK table design notice
A simple primary key, without specific semantics, is usually a
better design, and references through foreign keys are simpler.

19) Nullable attribute rate in 20-50%
schema design information

Information: Most of the time, attributes should be NOT
NULL. Too high a rate of nullable attribute may reveal that
some fields are lacking a NOT NULL.

20) FK length mismatch table consistency error
A Foreign Key should have matching referencing and refer-
enced type sizes.

21) FK type mismatch table consistency error
A Foreign Key should have matching referencing and refer-

enced types.
22) Destination table and FK in different schemas

table consistency warning
A constraint and its destination table are usually in the same
schema.

23) Source table and constraint in different schemas
table consistency warning

A constraint and its source table should be in the same schema.
24) Table and index in different schemas

table consistency warning
An index and its table should be in the same schema.

25) Tables linked but in different schemas table consistency
notice
Linked tables are usually in the same schema.

26) Backend engine inconsistency schema version error
Different backends are used in the same database. It may be
legitimate to do so if a particular feature of one backend is
needed, for instance full text indexes.

27) Unsafe backend engine used in schema
schema version warning

An unsafe backend (e.g. MyISAM) used at least once lacks
referential integrity, transaction support, and is not crash safe.

28) MySQL is used database version notice
MySQL lacks important features of the SQL standard, includ-
ing missing set operators.

29) Unsafe backend engine used on table
table version information

An unsafe backend (e.g. MyISAM) lacks referential integrity,
transaction support, and is not crash safe.

30) Schema name length too short schema style warning
A schema name with less than 3 characters is really too short.

31) Table name length too short table style warning
A table name with less than 2 characters is really too short.

32) Attribute name length too short attribute style warning
An attribute name with 1 character is really too short.

33) Homonymous heterogeneous attributes
attribute style warning

Better avoid using the same attribute name with different types
on different tables in the same application, as it may confuse
the developer.

34) Mixed table name styles schema style notice
Better use homogeneous table names.

35) Schema name length quite short schema style notice
A schema name with 4 characters is quite short.

36) Mixed attribute name styles table style notice
Better use homogeneous attribute names.

37) Table name length quite short table style notice
A table name with 3 characters is quite short.

38) Attribute name length quite short attribute style notice
An attribute name of 2 characters is quite short (but ”id” and
”pk”).

39) Attribute named after its table attribute style notice
An attribute contains the name of its table, which is redundant.

40) Schema name length short schema style information
A schema name with 5 characters is short.

41) Table name length short table style information
A table name with 4 characters is short.

42) Attribute name length short attribute style information
An attribute name with 3 characters is short.

43) SuperUser with weak password user system error
SuperUser with empty or username password.

44) Redundant FK table system warning
Redundant Foreign Keys are costly to maintain.

45) Redundant indexes table system warning
Redundant indexes are costly to maintain.

46) User with weak password user system warning
User with empty or username password.

47) Table without index table system notice
Not a single index on a table.

