
479

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Rainbow Table Optimization for Password Recovery

Vrizlynn L. L. Thing, Hwei-Ming Ying

Cryptography & Security Department
Institute for Infocomm Research, Singapore

{vriz,hmying}@i2r.a-star.edu.sg

Abstract—As users become increasingly aware of the need
to adopt strong password, it also brings challenges to digital
forensics investigators due to the password protection of potential
evidence data. In this paper, we discuss existing password
recovery methods and present a design of a time-memory trade-
off pre-computed table coupled with a new sorting algorithm.
We also propose 2 new storage methods and evaluated their
performance based on storage conservation and success rate
improvement. Considering both alpha-numeric passwords and
passwords consisting of any printable ASCII character, we show
that we are able to optimize the rainbow table performance
through an improvement of up to 26.13% in terms of password
recovery success rate, and an improvement of up to 28.57% in
terms of storage conservation, compared to the original rainbow
tables.

Keywords - Digital forensics, password recovery, rainbow table
optimization, time-memory trade-off, cryptanalysis.

I. INTRODUCTION

In computer and information security, the use of passwords
is essential for users to protect their data and to ensure a
secured access to their systems/machines. However, in digital
forensics, the use of password protection presents a challenge
for investigators while conducting examinations. As mentioned
in [3], compelling a suspect to surrender his password would
force him to produce evidence that could be used to in-
criminate him, thereby violating his Fifth Amendment right
against self-incrimination. Therefore, this presents a need for
the authorities to have the capability to access a suspect’s data
without expecting his assistance. While there exist methods to
decode hashes to reveal passwords used to protect potential
evidence, lengthier passwords with larger characters sets have
been encouraged to thwart password recovery. Awareness of
the need to use stronger passwords and active adoption have
rendered many existing password recovery tools inefficient or
even ineffective.

The more common methods of password recovery tech-
niques are guessing, dictionary, brute force and more recently,
using rainbow tables. The guessing method is attempting
to crack passwords by trying “easy-to-remember”, common
passwords or passwords based on a user’s personal information
(or a fuzzy index of words on the user’s storage media). A
statistical analysis of 28,000 passwords recently stolen from a
popular U.S. website revealed that 16% of the users took a first
name as a password and 14% relied on “easy-to-remember”
keyboard combinations [4]. Therefore, the guessing method

can be quite effective in some cases where users are willing
to compromise security for the sake of convenience.

The dictionary attack method composes of loading a file of
dictionary words into a password cracking tool to search for
a match of their hash values with the stored one. Examples of
password cracking tools include Cain and Abel [5], John the
Ripper [6] and LCP [7].

In the brute force cryptanalysis attack, every possible com-
bination of the password characters is attempted to perform a
match comparison. It is an extremely time consuming process
but the password will be recovered eventually if a long enough
time is given. Cain and Abel, John the Ripper as well as LCP
are able to conduct brute force attacks.

In [8-11], the authors studied on the recovery of passwords
or encryption keys based on the collision of hashes in specific
hashing algorithms. These methods are mainly used to research
on the weakness of hashing algorithms. They are too high in
complexity and time consuming to be used for performing
password recovery during forensics investigations. The meth-
ods are also applicable to specific hashing algorithms only.

In [12], Hellman introduced a method, which involves a
trade-off between the computation time and storage space
needed to recover the plaintext from its hash value. It can
be applied to retrieve Windows login passwords encrypted
into LM or NTLM hashes [13], as well as passwords in
applications using these hashing algorithms. Passwords en-
crypted with hashing algorithms such as MD5 [14], SHA-
2 [15] and RIPEMD-160 [16] are also susceptible to this
recovery method. In addition, this method is applicable to
many searching tasks including the knapsack and discrete
logarithm problems.

In [17], Oechslin proposed a faster cryptanalytical time-
memory trade-off method, which is an improvement over
Hellman’s method. Since then, this method has been widely
used and implemented in many popular password recovery
tools. The pre-computed tables that are generated in this
method are known as the rainbow tables.

In [18], Narayanan and Shmatikov proposed using standard
Markov modeling techniques from natural language process-
ing to reduce the password space to be searched, combined
with the application of the time-memory trade-off method to
analyse the vulnerability of human-memorable passwords. It
was shown that 67.6% of the passwords can be successfully
recovered using a 2x109 search space. However, the limitation
of this method is that the passwords were assumed to be

480

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

human-memorable character-sequence passwords.
In this paper, we present a new design of an enhanced

rainbow table [1,2] by proposing a novel time-memory trade-
off pre-computed table structure and a rainbow table sorting
algorithm. Maintaining the core functionality of the rainbow
tables, we optimized the storage space requirement while
achieving the same success rate and search speed.

The rest of the paper is organized as follow. In Section 2,
we present a discussion on the existing time-memory trade-
off password recovery methods. We then give an overview of
our enhanced rainbow table design in Section 3. We describe
the design of our sorting algorithm in Section 4. Analysis and
evaluation are presented in Section 5. The description of the
2 new proposed storage methods is provided in Section 5 due
to the importance of their considerations during evaluations.
Conclusions follow in Section 6.

II. ANALYSIS OF EXISTING WORK

The idea of a general time-memory tradeoff was first
proposed by Hellman in 1980 [12]. In the context of password
recovery, we describe the Hellman algorithm as follows.

We let X be the plaintext password and Y be the cor-
responding stored hash value of X. Given Y, we need to
find X, which satisfies h(X) = Y, where h is a known hash
function. However, finding X = h−1(Y) is feasibly impossible
since hashes are computed using one-way functions, where
the reversal function, h−1, is unknown. Hellman suggested
taking the plaintext values and applying alternate hashing and
reducing, to generate a pre-computed table.

For example, the corresponding 128-bit hash value for a 7-
character password (composed from a character set of English
alphabets), is obtained by performing the password hashing
function on the password. With a reduction function such
as H mod 267, where H is the hash value converted to its
decimal form, the resulting values are distributed in a best-
effort uniform manner. For example, if we start with the
initial plaintext value of ”abcdefg” and upon hashing, we get
a binary output of 0000000....000010000000....01, which is
64 ‘0’s and a ‘1’ followed by 62 ‘0’s and a ‘1’. H = 263 +
1 = 9223372036854775809. The reduction function will then
convert this value to ”3665127553”, which corresponds to a
plaintext representation “lwmkgij”, computed from (11(266)
+ 22(265) + 12(264) + 10(253) + 6(262) + 8(261) + 9(260).
After a pre-defined number of rounds of hashing and reducing
(making up a chain), only the initial and final plaintext values
are stored. Therefore, only the “head” and “tail” of a chain
are stored in the table. Using different initial plaintexts, the
hashing and reducing operations are repeated, to generate a
larger table (of increasing rows or chains). A larger table will
theoretically contain more pre-computed values (i.e., disre-
garding hash collisions), thereby increasing the success rate of
password recovery, while taking up more storage space. The
pre-defined number of rounds of hashing and reducing will
also increase the success rate by increasing the length of the
“virtual” chain, while bringing about a higher computational
overhead.

To recover a plaintext from a given hash, a reduction

operation is performed on the hash and a search for a match
of the computed plaintext with the final value in the table is
conducted. If a match is not found, the hashing and reducing
operations are performed on the computed plaintext to arrive
at a new plaintext so that another round of search to be made.
The maximum number of rounds of hashing, reducing and
searching operations is determined by the chain length. If the
hash value is found in a particular chain, the values in the chain
are then worked out by performing the hashing and reducing
functions to arrive at the plaintext giving the specific hash
value. Unfortunately, there is a likelihood that chains with
different initial values may merge due to collisions. These
merges will reduce the number of distinct hash values in the
chains and therefore, diminish the rate of successful recovery.
The success rate can be increased by using multiple tables with
each table using a different reduction function. If we let P(t)
be the success rate of using t tables, then P(t) = 1 - (1 - P(1))t,
which is an increasing function of t since P(1) is between 0 and
1. Hence, introducing more tables increase the success rate but
also cause an increase in both the computational complexity
and storage space.

In [19], Rivest suggested a method of using distinguished
points as end points for chains. Distinguished points are keys,
which satisfy a given criteria, e.g., the first or last q bits are
all 0. In this method, the chains are not generated with a fixed
length but they terminate upon reaching pre-defined distin-
guished points. This method decreases the number of memory
lookups compared to Hellman’s method and is capable of loop
detection. If a distinguished point is not obtained after a large
finite number of operations, the chain is suspected to contain
a loop and is discarded. Therefore, the generated chains are
free of loops. One limitation is that the chains will merge if
there is a collision within the same table. The variable lengths
of the chains will also result in an increase in the number
of false alarms. Additional computations are also required to
determine if a false alarm has occurred.

In 2003, Oechslin proposed a new table structure [17] to
reduce the probability of merging occurrences. These rainbow
chains use multiple reduction functions such that there will
only be merges if the collisions occur at the same positions
in both chains. An experiment was carried out and presented
in Oechslin’s paper. It showed that given a set of parameters,
which is constant in both scenarios, the measured coverage in
a single rainbow table is 78.8% compared to the 75.8% from
the classical tables of Hellman with distinguished points. In
addition, the number of calculations needed to perform the
search is reduced as well.

In the following sections, we present our enhanced rainbow
table [2] with a novel sorting algorithm [1], and propose 2
new storage methods, so that password lookup in the stored
tables can be optimized.

III. ENHANCED RAINBOW TABLE

In this section, we present a new design of a time-memory
trade-off precomputed table structure.

In this design, the same reduction functions as in the
rainbow table method are used. The novelty lies in the

481

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

chains generation technique. Instead of taking a large set of
plaintexts as our initial values, we systematically choose a
much smaller unique set. We choose a plaintext and compute
its corresponding hash value by applying the password hash
algorithm. We let the resulting hash value written in decimal
digits be H. Following that, we compute (H+1) mod 2j , (H+2)
mod 2j ,......, (H+k) mod 2j for a variable k, where j is the
number of bits of the hash output value. For example, in
MD5 hash, j = 128. These hash values are then noted as the
branches of the above chosen initial plaintext. We then proceed
by applying alternate hashing and reducing operations to all
these branches. We call this resulting extended chain, a block.
The final values of the plaintexts are then stored with this 1
initial plaintext value. We perform the same operations for the
other plaintexts. These sets of initial and final values make up
the new pre-computed table.

To recover a password given a hash, we apply reducing and
hashing operations alternatively until we obtain a plaintext that
corresponds to one of the stored final values, as in the rainbow
table method. After which, we generate the corresponding
branch (e.g., if k = 99 and chain id = 212, the initial value
is the initial plaintext in the third block and the branch id is
12), till the value of the password hash is reached.

A. Differences and Similarities in the designs

We identify and list the differences and similarities between
the design of our new method and the rainbow table method
as follow:

• Both use n reduction functions.
• Instead of storing the initial and final values as a pair

as in the rainbow table, the initial value is stored with
multiple output plaintexts after a series of hashing and
reducing operations. This results in a large amount of
storage conservation in the new method.

• The hashes H, (H+1) mod 2j , (H+2) mod 2j ,...... , (H+k)
mod 2j are calculated in order to generate subsequent
hashes, resulting in the uniqueness of the values in the
1st column of hashes in the new method. The uniqueness
of the hash values is guaranteed unless the total number
of hashes is greater than 2j . This situation is not likely
to happen as it assumes an extremely large table, which
fully stores all the possible pre-computed values.

• In this new design, the recovery of some passwords in
the 1st column is not possible as they are not stored in
the first place. However, we have shown in our analysis
and evaluation [2] that the effect is neglible.

IV. SORTING ALGORITHM

The main drawback of the proposed enhanced rainbow table
is that each password search will incur a significant amount
of time complexity. The reason is that the passwords cannot
be sorted in the usual alphabetical order now, since in doing
so, the information of its corresponding initial hash value will
be lost. The lookup will then have to rely on checking every
single stored password in the table. Therefore, we propose a
sorting algorithm so that password lookup in the stored tables
can be optimized.

We require a sorting of the “tail” passwords to achieve a
fast lookup. Therefore, we introduce special characters that
cannot be found on the keyboard (i.e., non-printable ASCII
characters). There are altogether 161 such characters and we
assume that these non-printable ASCII characters do not form
any of the character set of the passwords. We insert a number
of these special characters into the passwords that we store.
The manner in which these special characters are inserted
will provide the information on the original position of the
passwords in the rainbow table after the table has been re-
arranged in alphabetical order. The consequence is that this
will incur more storage space but we will illustrate later that
the increase in storage space is minimal and is also lesser
than the original rainbow table’s storage requirement. The
advantage of this sorting algorithm is that the passwords can
now be sorted and thus a password lookup can be optimized.

A. Algorithm Design

Definition of notations:
Y = total number of special characters available
w = number of special characters in password
m = length of password
x = special character in password (labelled x1, x2,.....),
1≤ xi≤ Y
p = location of a special character within password (labelled
p0, p1,.....), 0≤ pi≤ m, where xi is placed at location pi−1

within a password(
n
r

)
= n!

(n−r)!r!

From here on, position refers to the original position
of a password in the rainbow table, while placement or
location of a special character refers to its location in a
password.

Password Position Computation
As an example, let 0000000 denote a 7-character password.

The 161 non-printable ASCII characters are used as special
characters x1, x2,........, x161, and are represented by numeric
values from 1 to 161, respectively. The 8 possible locations
of the special characters in a password are represented as
underlines in 0 0 0 0 0 0 0 . Each location can hold more
than one special character.

For example, 0000000 does not carry any special character
and is at position 0. In 0000000x1, x1 is the first (scanning
from rightmost) special character in the password, as denoted
by its subscript value of 1. The position of this password
depends on the numeric value represented by the special
character, x1. Therefore, the position is from 1 to 161
depending on which of the 161 special characters is used
(i.e., 0000000x1 is at position 1 if x1 = 1, and at position
161 if x1 = 161). Continuing in this manner, 000000x10 is
at position 162 if x1 = 1, and at position 322 if x1 = 161.
Therefore, x10000000 is at position 1128 if x1 = 1, and at
position 1288 if x1 = 161.

Ater covering all the locations for special characters in the
password by using only 1 character but without completing

482

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the allocation of special characters for all the passwords in
the password space, we can increase the number of allocated
special characters in the password, one at a time. For the
insertion of 2 characters, 0000000x2x1 is at position 1289 if
x1=x2=1. 0000000x2x1 is at position 1290 if x2 = 1 and x1

= 2. 0000000x2x1 is at position 1291 if x2 = 1 and x1 = 3.
Continuing in this manner, 0000000x2x1 is at position 27209
if x2 = x1 = 161, 000000x20x1 is at position 27210 if x2 =
x1 = 1, and so on.

We derive the following formulas for the computation of
the original position of a password in the rainbow table.

w=1: Original position of password
Yp0 + x1

w=2: Original position of password
Yx2 + x1 + Y2

(
p1+1

2

)
+ Y2p0 + Ym

w=3: Original position of password
Y2x3 + Yx2 + x1 + Y3

(
p2+2

3

)
+ Y3

(
p1+1

2

)
+ Y3p0 +

Y2
(
m+1
2

)
+ Y2m + Ym

w=4: Original position of password
Y3x4 + Y2x3 + Yx2 + x1 + Y4

(
p3+3

4

)
+ Y4

(
p2+2

3

)
+ Y4

(
p1+1

2

)
+ Y4p0 + Y3

(
m+2
3

)
+ Y3

(
m+1
2

)
+ Y3m + Y2

(
m+1
2

)
+ Y2m

+ Ym

For a general w, the original position is given by∑w−1
i=0 (Y ixi+1 + Yw

(
pi+i
i+1

)
) +

∑w−2
i=0

∑i
j=0Yi+1

(
m+j
j+1

)
V. ANALYSIS

In this section, we present an analysis of the proposed
enhanced rainbow table and its sorting algorithm. First, we
analyse the maximum number of special characters required
to sort tables of different sizes and password lengths, as well
as demonstrate the storage conservation achieved. Next, we
analyse the improvement in success rate of password recovery
in the event of storage limitation. The 2 new storage methods
are proposed and the impact on the storage conservation and
success rate are demonstrated in this section.

A. Storage Conservation Analysis

Number of positions that can be assigned without using
any special character
= 1

Number of positions that can be assigned using 1 special
character
= Y(m+1)

Number of positions that can be assigned using 2 special
characters
= Y2[m+1+

(
m+1
2

)
]

Number of positions that can be assigned using 3 special
characters
= Y3[m+1+ 2

(
m+1
2

)
+
(
m+1
3

)
]

Number of positions that can be assigned using 4 special
characters
= Y4[m+1+ 3

(
m+1
2

)
+ 3

(
m+1
3

)
+
(
m+1
4

)
]

For w≥1, the number of positions that can be assigned
using exactly w special characters
= Yw

∑w−1
i=0

(
w−1
i

)(
m+1
i+1

)
Total number of positions that can be identified using
at most w special characters (inclusive of positions that can
be identified for number of special characters smaller than w)
=
∑w

i=0

∑i
j=0Yi

(
m+j−1

j

)
Table I shows the number of positions that can be assigned
given a pre-defined Y, m and w.

TABLE I: Total Number of Positions in Enhanced Rainbow
Table

Y m w Total Number of Positions
161 7 1 1,289
161 7 2 934,445
161 7 3 501,728,165
161 7 4 222,228,147,695
161 7 5 85,897,316,654,087
161 7 6 29,972,224,023,967,164
161 8 1 1,450
161 8 2 1,167,895
161 8 3 689,759,260
161 8 4 333,279,388,555
161 8 5 139,555,298,211,442
161 8 6 52,440,627,036,009,328
161 9 1 1,611
161 9 2 1,427,266
161 9 3 919,549,086
161 9 4 481,326,791,401
161 9 5 217,048,911,627,003
161 9 6 87,385,501,807,956,800
161 10 1 1,772
161 10 2 1,712,558
161 10 3 1,195,270,924
161 10 4 673,765,410,165
161 10 5 325,525,142,663,568
161 10 6 139,795,049,776,791,264

Let s be the total number of passwords to be stored
in a rainbow table. Therefore, the total storage space
required by the original rainbow table is (2 * m * s)
bytes. In the enhanced rainbow table method, for s <∑w

i=0

∑i
j=0Yi

(
m+j−1

j

)
, at most w special characters are

needed to be inserted to each password to identify its position.
However, due to the use of special characters, the passwords
to be stored are no longer of constant length. We propose
two new methods to the storage of the passwords with their
inserted special characters. In method 1, the passwords are
still stored side by side as in the original rainbow table
method. Retrieval of passwords for checking is performed at
a specific fixed length. The w used in method 1 must be a
fixed length too. The total number of positions that can be
identified is reduced as they do not include positions that can

483

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

be identified for number of special characters smaller than w.
The total number of positions in storage method 1 is shown
in Table II.

TABLE II: Total Number of Positions in Storage Method 1
(side by side)

Y m w Total Number of Positions
161 7 1 1,288
161 7 2 933,156
161 7 3 500,793,720
161 7 4 221,726,419,530
161 7 5 85,675,088,506,392
161 7 6 29,886,326,707,313,076
161 8 1 1,449
161 8 2 1,166,445
161 8 3 688,591,365
161 8 4 332,589,629,295
161 8 5 139,222,018,822,887
161 8 6 52,301,071,737,797,880
161 9 1 1,610
161 9 2 1,425,655
161 9 3 918,121,820
161 9 4 480,407,242,315
161 9 5 216,567,584,835,602
161 9 6 87,168,452,896,329,808
161 10 1 1,771
161 10 2 1,710,786
161 10 3 1,193,558,366
161 10 4 672,570,139,241
161 10 5 324,851,377,253,403
161 10 6 139,469,524,634,127,680

In storage method 2, we propose storing the passwords
line by line. Therefore, a special character has to be used for
delimitation purpose. A good choice would be the line feed
character. Y is then reduced to 160. The w used in method 2
can be of a variable length. The total number of positions that
can be identified still includes positions that can be identified
for number of special characters smaller than w. The total
number of positions in storage method 2 is shown in Table III.

In storage method 1, the total storage space needed =
(m+w)(s)

In storage method 2, the total storage space needed
=
∑w−1

i=1

∑i−1
j=0Yi(m+i+1)

(
i−1
j

)(
m+1
j+1

)
+ (m+w+1)[s + 1 -∑w−1

i=0

∑i
j=0Yi

(
m+j−1

j

)
]

We consider two main scenarios in the performance
evaluation based on storage space. In the first scenario, any
alpha-numeric characters can be used in the passwords. There
would be 62 characters in total. In the second scenario, we
increase the password character set to include all printable
ASCII characters, which will consist of 95 characters.

TABLE III: Total Number of Positions in Storage Method 2
(line by line)

Y m w Total Number of Positions
160 7 1 1,281
160 7 2 922,881
160 7 3 492,442,881
160 7 4 216,761,242,881
160 7 5 83,263,980,442,881
160 7 6 28,872,966,636,442,880
160 8 1 1,441
160 8 2 1,153,441
160 8 3 676,993,441
160 8 4 325,080,193,441
160 8 5 135,276,811,393,441
160 8 6 50,517,256,459,393,440
160 9 1 1,601
160 9 2 1,409,601
160 9 3 902,529,601
160 9 4 469,484,929,601
160 9 5 210,394,400,129,601
160 9 6 84,180,360,480,129,600
160 10 1 1,761
160 10 2 1,691,361
160 10 3 1,173,147,361
160 10 4 657,188,507,361
160 10 5 315,544,561,307,361
160 10 6 134,667,490,289,307,360

Scenario 1: Alpha-numeric character set in passwords

We consider the cases where the passwords are 7, 8,
9 and 10 characters in length. Table IV shows the required
number of special characters, w, to store all the passwords
when the number of hashing and reduction functions (i.e.,
virtual columns) in the rainbow table are 30,000.

TABLE IV: Required w for Alpha-Numberic Passwords in
Both Storage Methods when virtual columns are 30,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 117,387,154 3 3
8 7,278,003,520 4 4
9 451,236,218,209 4 4
10 27,976,645,528,945 5 5

Table V shows the required number of special characters,
w, to store all the passwords when the virtual columns in the
rainbow table are 100,000.

Table VI shows the storage requirement to store all
the passwords when the virtual columns in the rainbow table
are 30,000, while Table VII shows the storage requirement
when the virtual columns are 100,000. In the case when the
number of virtual columns in the rainbow table is set to
30,000, the improvement in terms of storage conservation
of method 1 over the original rainbow table was 28.57%,

484

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE V: Required w for Alpha-Numberic Passwords in
Both Storage Methods when virtual columns are 100,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 35,216,147 3 3
8 2,183,401,056 4 4
9 135,370,865,463 4 4
10 8,392,993,658,684 5 5

25%, 27.78%, and 25% for password length of 7, 8, 9 and
10, respectively. Comparing method 1 over method 2, the
improvement in terms of storage conservation was 9.03%,
7.03%, 7.13%, and 6.11% for password length of 7, 8, 9 and
10, respectively.

In the case when the number of virtual columns in the
rainbow table is set to 100,000, the improvement in terms of
storage conservation of method 1 over the original rainbow
table was 28.57%, 25%, 27.78%, and 25% for password
length of 7, 8, 9 and 10, respectively. Comparing method
1 over method 2, the improvement in terms of storage
conservation was 8.87%, 5.43%, 7.10%, and 5.79% for
password length of 7, 8, 9 and 10, respectively.

TABLE VI: Storage Requirement for Alpha-Numberic Pass-
words when virtual columns is 30,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7
1,643,420,156B

1.53GB
0.0015TB

1,173,871,540B
1.09GB

0.0011TB

1,290,334,534B
1.20GB

0.0012TB

8

116,448,
056,320B
108.45GB
0.1059TB

87,336,
042,240B
81.34GB
0.0794TB

93,935,
897,440B
87.48GB
0.0854TB

9

8,122,251,
927,762B

7,564.44GB
7.39TB

5,866,
070,836,717B
5,463.20GB

5.34TB

6,316,403,
114,126B

5,882.61GB
5.74TB

10

559,532,910,
578,900B

521,105.63GB
508.89TB

419,649,682,
934,175B

390,829.22GB
381.67TB

446,967,965,
115,280B

416,271.36GB
406.51TB

Scenario 2: All printable ASCII character set in passwords

We consider the cases where the passwords are 7, 8,
and 9 characters in length. Table VIII shows the required
number of special characters, w, to store all the passwords
when the number of hashing and reduction functions (i.e.,
virtual columns) in the rainbow table are 30,000.

Table IX shows the required number of special characters,
w, to store all the passwords when the virtual columns in the
rainbow table are 100,000.

TABLE VII: Storage Requirement for Alpha-Numberic Pass-
words when virtual columns is 100,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7
493,026,058B

0.46GB
0.00045TB

352,161,470B
0.33GB

0.00032TB

386,453,457B
0.36GB

0.00035TB

8

34,934,
416,896B
32.54GB
0.0318TB

26,200,
812,672B
24.40GB
0.0238TB

27,706,
065,408B
25.80GB
0.0252TB

9

2,436,675,
578,334B

2,269.33GB
2.22TB

1,759,821,
251,019B

1,638.96GB
1.60TB

1,894,288,
175,682B

1764.19GB
1.72TB

10

167,859,873,
173,680B

156,331.69GB
152.67TB

125,894,904,
880,260B

117,248.77GB
114.50TB

133,629,535,
191,104B

124,452.20GB
121.54TB

TABLE VIII: Required w for All Printable ASCII Character
Passwords in Both Storage Methods when virtual columns are
30,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 2,327,790,987 4 4
8 221,140,143,764 4 4
9 21,008,313,657,487 5 5

TABLE IX: Required w for All Printable ASCII Character
Passwords in Both Storage Methods when virtual columns are
100,000

Password
Length

Total
Password
Space (s)

w in
Method 1

w in
Method 2

7 698,337,297 4 4
8 66,342,043,129 4 4
9 6,302,494,097,247 5 5

Table X shows the storage requirement to store all
the passwords when the virtual columns in the rainbow table
are 30,000, while Table XI shows the storage requirement
when the virtual columns are 100,000. In the case when the
number of virtual columns in the rainbow table is set to
30,000, the improvement in terms of storage conservation of
method 1 over the original rainbow table was 21.43%, 25%,
and 22.22% for password length of 7, 8 and 9, respectively.
Comparing method 1 over method 2, the improvement in
terms of storage conservation was 6.69%, 7.67%, and 6.53%
for password length of 7, 8 and 9, respectively.

In the case when the number of virtual columns in the
rainbow table is set to 100,000, the improvement in terms of
storage conservation of method 1 over the original rainbow
table was 21.43%, 25%, and 22.22% for password length of
7, 8 and 9, respectively. Comparing method 1 over method

485

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2, the improvement in terms of storage conservation was
2.60%, 7.62%, and 6.20% for password length of 7, 8 and 9,
respectively.

TABLE X: Storage Requirement for All Printable ASCII
Character Passwords when virtual columns is 30,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7

32,589,
073,818B
30.35GB
0.0296TB

25,605,
700,857B
23.85GB
0.0233TB

27,440,
124,804B
25.56GB
0.0250TB

8

3,538,242,
300,224B

3,295.24GB
3.22TB

2,653,681,
725,168B

2,471.43GB
2.41TB

2,874,143,
720,612B

2,676.75GB
2.61TB

9

378,149,645,
834,766B

352,179.30GB
343.93TB

294,116,391,
204,818B

273,917.23GB
267.50TB

314,654,315,
991,905B

293,044.67GB
286.18TB

TABLE XI: Storage Requirement for All Printable ASCII
Character Passwords when virtual columns is 100,000

Password
Length

Original
Rainbow

Table
Method 1 Method 2

7

9,776,
722,158B
9.11GB

0.0089TB

7,681,
710,267B
7.15GB

0.0070TB

7,886,
680,524B
7.35GB

0.0072TB

8

1,061,472,
690,064B
988.57GB
0.9654TB

796,104,
517,548B
741.43GB
0.7241TB

861,768,
412,357B
802.58GB
0.7838TB

9

113,444,893,
750,446B

105,653.79GB
103.18TB

88,234,917,
361,458B

82,175.17GB
80.25TB

94,067,022,
588,305B

87,606.74GB
85.55TB

B. Success Rate Improvement Analysis

Here, we analyse the improvement in terms of success
rate of password recovery. To do so, we set the storage
requirement to be a fixed value and compute the achieveable
success rate. Table XII to Table XV shows the success rate
when the storage is capped at a certain value and the virtual
columns are 30,000 for different password lengths, while
Table XVI to Table XIX shows the evaluation when the
virtual columns are 100,000 instead. The password character
set consists of the alpha-numeric characters.

TABLE XII: Success Rate for 7-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

0.5GB
38347922
117387154

=32.67%

53687091
117387154

=45.74%

48890461
117387154

=41.65%

1GB
76695844
117387154

=65.34%

107374182
117387154

=91.47%

97696907
117387154

=83.23%

1.5GB
115043766
117387154

=98%

117387154
117387154

=100%

117387154
117387154

=100%

TABLE XIII: Success Rate for 8-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50GB
3355443200
7278003520

=46.10%

4473924266
7278003520

=61.47%

4181941501
7278003520

=57.46%

75GB
5033164800
7278003520

=69.16%

6710886400
7278003520

=92.21%

6246829624
7278003520

=85.83%

100GB
6710886400
7278003520

=92.21%

7278003520
7278003520

=100%

7278003520
7278003520

=100%

We observe from the evaluations that in the event of
storage limitation, method 1 performs significantly better in

TABLE XIV: Success Rate for 9-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
61083979320
451236218209

=13.54%

84577817521
451236218209

=18.74%

78601112041
451236218209

=17.42%

3TB
183251937962
451236218209

=40.61%

253733452563
451236218209

=56.23%

235674201723
451236218209

=52.23%

5TB
305419896604
451236218209

=67.69%

422889087606
451236218209

=93.72%

392747291405
451236218209

=87.04%

486

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XV: Success Rate for 10-Character Alpha-Numeric
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

100TB
5497558138880
27976645528945

=19.65%

7330077518506
27976645528945

=26.20%

6913095382840
27976645528945

=24.71%

300TB
16492674416640
27976645528945

=58.95%

21990232555520
27976645528945

=78.60%

20656990730040
27976645528945

=73.84%

500TB
27487790694400
27976645528945

=98.25%

27976645528945
27976645528945

=100%

27976645528945
27976645528945

=100%

TABLE XVI: Success Rate for 7-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

0.1GB
7669584
35216147

=21.78%

10737418
35216147

=30.49%

9845303
35216147

=27.96%

0.2GB
15339168
35216147

=43.56%

21474836
35216147

=60.98%

19606593
35216147

=55.68%

0.3GB
23008753
35216147

=65.34%

32212254
35216147

=91.47%

29367882
35216147

=83.39%

terms of password recovery success rate compared to both the
original rainbow table and method 2, consistently. Based on
the results above, the improvement in success rate of method
1 over the original rainbow table can reach up to 26.13%.

Table XX to Table XXII shows the success rate when the
storage is capped at a certain value and the virtual columns
are 30,000 for different password lengths, while Table XXIII
to Table XXV shows the evaluation when the virtual columns
are 100,000 instead. The password character set consists of
all the printable ASCII characters.

TABLE XVII: Success Rate for 8-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

10GB
671088640
2183401056

=30.74%

894784853
2183401056

=40.98%

878120504
2183401056

=40.22%

20GB
1342177280
2183401056

=61.47%

1789569706
2183401056

=81.96%

1704075753
2183401056

=78.05%

30GB
2013265920
2183401056

=92.21%

2183401056
2183401056

=100%

2183401056
2183401056

=100%

TABLE XVIII: Success Rate for 9-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
61083979320
135370865463

=45.12%

84577817521
135370865463

=62.48%

78601112041
135370865463

=58.06%

1.5TB
91625968981
135370865463

=67.69%

126866726281
135370865463

=93.72%

117869384461
135370865463

=87.07%

2TB
122167958641
135370865463

=90.25%

135370865463
135370865463

=100%

135370865463
135370865463

=100%

TABLE XIX: Success Rate for 10-Character Alpha-Numeric
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50TB
2748779069440
8392993658684

=32.75%

3665038759253
8392993658684

=43.67%

3477121546040
8392993658684

=41.43%

100TB
5497558138880
8392993658684

=65.50%

7330077518506
8392993658684

=87.34%

6913095382840
8392993658684

=82.37%

150TB
8246337208320
8392993658684

=98.25%

8392993658684
8392993658684

=100%

8392993658684
8392993658684

=100%

TABLE XX: Success Rate for 7-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

10GB
766958445
2327790987

=32.95%

976128930
2327790987

=41.93%

935898773
2327790987

=40.21%

20GB
1533916891
2327790987

=65.90%

1952257861
2327790987

=83.87%

1830683626
2327790987

=78.64%

30GB
2300875337
2327790987

=98.84%

2327790987
2327790987

=100%

2327790987
2327790987

=100%

487

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XXI: Success Rate for 8-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

1TB
68719476736
221140143764

=31.08%

91625968981
221140143764

=41.43%

84629982776
221140143764

=38.27%

2TB
137438953472
221140143764

=62.15%

183251937962
221140143764

=82.87%

169207800297
221140143764

=76.52%

3TB
206158430208
221140143764

=93.23%

221140143764
221140143764

=100%

221140143764
221140143764

=100%

TABLE XXII: Success Rate for 9-Character Printable ASCII
Passwords when virtual columns are 30,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

100TB
6108397932088
21008313657487

=29.08%

7853654484114
21008313657487

=37.38%

7361436776533
21008313657487

=35.04%

200TB
12216795864177
21008313657487

=58.15%

15707308968228
21008313657487

=74.77%

14691514295040
21008313657487

=69.93%

300TB
18325193796266
21008313657487

=87.23%

21008313657487
21008313657487

=100%

21008313657487
21008313657487

=100%

Similarly, in the case of using all printable ASCII characters
as the password character set, we observe from the evaluations
that in the event of storage limitation, method 1 performs
significantly better in terms of password recovery success
rate compared to both the original rainbow table and method
2, consistently. Based on the results above, the improvement
in success rate of method 1 over the original rainbow table
can reach up to 23.60%.

TABLE XXIII: Success Rate for 7-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

3GB
230087533
698337297

=32.95%

292838679
698337297

=41.93%

309549376
698337297

=27.96%

5GB
383479222
698337297

=54.91%

488064465
698337297

=69.89%

488506346
698337297

=69.95%

7GB
536870912
698337297

=76.88%

683290251
698337297

=97.85%

667463317
698337297

=95.58%

TABLE XXIV: Success Rate for 8-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

500GB
33554432000
66342043129

=50.58%

44739242666
66342043129

=67.44%

41349927716
66342043129

=62.33%

700GB
46976204800
66342043129

=70.81%

62634939733
66342043129

=94.41%

57869032701
66342043129

=87.23%

900GB
60397977600
66342043129

=91.04%

66342043129
66342043129

=100%

66342043129
66342043129

=100%

TABLE XXV: Success Rate for 9-Character Printable ASCII
Passwords when virtual columns are 100,000

Storage

Limit

Original

Rainbow

Table

Method 1 Method 2

50TB
3054198966044
6302494097247

=48.46%

3926827242057
6302494097247

=62.31%

3696398017280
6302494097247

=58.65%

75TB
4581298449066
6302494097247

=72.69%

5890240863085
6302494097247

=93.46%

5528917396906
6302494097247

=87.73%

100TB
6108397932088
6302494097247

=96.92%

6302494097247
6302494097247

=100%

6302494097247
6302494097247

=100%

VI. CONCLUSIONS

This paper briefly describes our previous work on an
enhanced rainbow table design [2] coupled with a sorting
algorithm [1], which when applied, has a significant
improvement over the orginal rainbow tables. Special
characters are added to the storage to allow the sorting of the
enhanced rainbow tables so that the password lookup time can
be optimized. We further proposed 2 new storage methods
to be applied with the enhanced rainbow table and showed
that even with this insertion of characters to the passwords,
the improvement in storage space required to store the same
number of passwords reaches 28.57% lesser than what is
required in the original tables in the case of alpha-numeric
character set. The improvement, when the password character
set consists of all the printable ASCII characters, reaches
25%. This is achieved while maintaining the same success
rate.

By considering storage space limitations, we also evaluated
the achieveable success rate of password recovery in different
scenarios. Our analysis shows that an improvement of up
to 26.13% and 23.60% can be achieved in terms of success
rate, when compared to the original rainbow tables, for the
alpha-numeric passwords and passwords containing any of
the printable ASCII characters.

488

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

References

[1] H. M. Ying and V. L. L. Thing, “A novel rainbow table
sorting method”, International Conference on Technical and Legal
Aspects of the e-Society (CYBERLAWS), February 2011

[2] V. L. L. Thing and H. M. Ying, “A novel time-memory
trade-off method for password recovery”, Digital Investigation,
International Journal of Digital Forensics and Incident Response,
Elsevier, Vol. 6, Supplement, pp. S114-S120, September 2009

[3] S. M. Smyth, “Searches of computers and computer data
at the United States border: The need for a new framework
following United States V. Arnold”, Journal of Law, Technology
and Policy, Vol. 2009, No. 1, pp. 69-105, February 2009.

[4] Google News, “Favorite passwords: ‘1234’ and ‘password”’,
http://www.google.com/hostednews/afp/article/ALeqM5jeUc6
Bblnd0M19WVQWvjS6D2puvw, [retrieved, January 2012].

[5] Cain and Abel, “Password recovery tool”, http://www.oxid.it,
[retrieved, January 2012].

[6] John The Ripper, “Password cracker”, http://www.openwall.com,
[retrieved, January 2012].

[7] LCPSoft, “Lcpsoft programs”, http://www.lcpsoft.com,
[retrieved, January 2012].

[8] S. Contini and Y. L. Yin, “Forgery and partial key-recovery
attacks on HMAC and NMAC using hash collisions”, Annual
International Conference on the Theory and Application of
Cryptology and Information Security (AsiaCrypt), Lecture Notes in
Computer Science, Vol. 4284, pp. 37-53, 2006.

[9] P. A. Fouque, G. Leurent, and P. Q. Nguyen, “Full key-
recovery attacks on HMAC/NMAC-MD4 and NMAC-MD5”,
Advances in Cryptology, Lecture Notes in Computer Science, Vol.
4622, pp. 13-30, Springer, 2007.

[10] Y. Sasaki, G. Yamamoto, and K. Aoki, “Practical password
recovery on an MD5 challenge and response”, Cryptology ePrint
Archive, Report 2007/101, April 2008.

[11] Y. Sasaki, L. Wang, K. Ohta, and N. Kunihiro, “Security
of MD5 challenge and response: Extension of APOP password
recovery attack”, The Cryptographers’ Track at the RSA Conference
on Topics in Cryptology, Vol. 4964, pp. 1-18, April 2008.

[12] M. E. Hellman, “A cryptanalytic time-memory trade-off”,
IEEE Transactions on Information Theory, Vol. IT-26, No. 4, pp.
401-406, July 1980.

[13] D. Todorov, “Mechanics of user identification and authentication:
Fundamentals of identity management”, Auerbach Publications,
Taylor and Francis Group, June 2007.

[14] R. Rivest, “The MD5 message-digest algorithm”, IETF

RFC 1321, April 1992.

[15] National Institute of Standards and Technology (NIST),
“Secure hash standard”, Federal Information Processing Standards
Publication 180-2, August 2002.

[16] H. Dobbertin, A. Bosselaers, and B. Preneel, “Ripemd-
160: A strengthened version of RIPEMD”, International Workshop
on Fast Software Encryption, Lecture Notes in Computer Science,
Vol. 1039, pp. 71-82, Springer, April 1996.

[17] P. Oechslin, “Making a faster cryptanalytic time-memory
trade-off”, Annual International Cryptology Conference (CRYPTO),
Advances in Cryptography, Lecture Notes in Computer Science,
Vol. 279, pp. 617-630, October 2003.

[18] A. Narayanan and V. Shmatikov, “Fast dictionary attacks
on passwords using time-space tradeoff”, ACM Conference on
Computer and Communications Security, pp. 364-372, 2005.

[19] D. E. R. Denning, “Cryptography and data security”,
Addison-Wesley Publication, 1982.

